timewise 0.4.5__tar.gz → 0.4.7__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {timewise-0.4.5 → timewise-0.4.7}/PKG-INFO +3 -1
- {timewise-0.4.5 → timewise-0.4.7}/pyproject.toml +3 -1
- {timewise-0.4.5 → timewise-0.4.7}/timewise/wise_data_base.py +1 -1
- {timewise-0.4.5 → timewise-0.4.7}/timewise/wise_data_by_visit.py +55 -31
- {timewise-0.4.5 → timewise-0.4.7}/LICENSE +0 -0
- {timewise-0.4.5 → timewise-0.4.7}/README.md +0 -0
- {timewise-0.4.5 → timewise-0.4.7}/timewise/__init__.py +0 -0
- {timewise-0.4.5 → timewise-0.4.7}/timewise/big_parent_sample.py +0 -0
- {timewise-0.4.5 → timewise-0.4.7}/timewise/cli.py +0 -0
- {timewise-0.4.5 → timewise-0.4.7}/timewise/config_loader.py +0 -0
- {timewise-0.4.5 → timewise-0.4.7}/timewise/general.py +0 -0
- {timewise-0.4.5 → timewise-0.4.7}/timewise/parent_sample_base.py +0 -0
- {timewise-0.4.5 → timewise-0.4.7}/timewise/point_source_utils.py +0 -0
- {timewise-0.4.5 → timewise-0.4.7}/timewise/utils.py +0 -0
- {timewise-0.4.5 → timewise-0.4.7}/timewise/wise_bigdata_desy_cluster.py +0 -0
- {timewise-0.4.5 → timewise-0.4.7}/timewise/wise_flux_conversion_correction.dat +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: timewise
|
|
3
|
-
Version: 0.4.
|
|
3
|
+
Version: 0.4.7
|
|
4
4
|
Summary: A small package to download infrared data from the WISE satellite
|
|
5
5
|
Home-page: https://github.com/JannisNe/timewise
|
|
6
6
|
License: MIT
|
|
@@ -15,6 +15,8 @@ Classifier: Programming Language :: Python :: 3.10
|
|
|
15
15
|
Classifier: Programming Language :: Python :: 3.11
|
|
16
16
|
Requires-Dist: astropy (>=5.1,<6.0)
|
|
17
17
|
Requires-Dist: backoff (>=2.1.2,<3.0.0)
|
|
18
|
+
Requires-Dist: jupyter[jupyter] (>=1.0.0,<2.0.0)
|
|
19
|
+
Requires-Dist: jupyterlab[jupyter] (>=4.0.6,<5.0.0)
|
|
18
20
|
Requires-Dist: matplotlib (>=3.5.3,<4.0.0)
|
|
19
21
|
Requires-Dist: numpy (>=1.23.2,<2.0.0)
|
|
20
22
|
Requires-Dist: pandas (>=1.4.3,<3.0.0)
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
[tool.poetry]
|
|
2
2
|
name = "timewise"
|
|
3
|
-
version = "0.4.
|
|
3
|
+
version = "0.4.7"
|
|
4
4
|
description = "A small package to download infrared data from the WISE satellite"
|
|
5
5
|
authors = ["Jannis Necker <jannis.necker@gmail.com>"]
|
|
6
6
|
license = "MIT"
|
|
@@ -30,6 +30,8 @@ seaborn = ">=0.11.2,<0.13.0"
|
|
|
30
30
|
urllib3 = "1.26.15"
|
|
31
31
|
pydantic = ">=1.9.0,<2.0.0"
|
|
32
32
|
scikit-learn = "^1.3.0"
|
|
33
|
+
jupyterlab = {version = "^4.0.6", extras = ["jupyter"]}
|
|
34
|
+
jupyter = {version = "^1.0.0", extras = ["jupyter"]}
|
|
33
35
|
|
|
34
36
|
[tool.poetry.dev-dependencies]
|
|
35
37
|
coveralls = "^3.3.1"
|
|
@@ -1693,7 +1693,7 @@ class WISEDataBase(abc.ABC):
|
|
|
1693
1693
|
|
|
1694
1694
|
if return_all:
|
|
1695
1695
|
return_closest_allwise_mask = list(closest_allwise_mask) if closest_allwise_mask is not None else None
|
|
1696
|
-
return list(bad_indices), cluster_res, return_closest_allwise_mask
|
|
1696
|
+
return list(bad_indices), cluster_res, data_mask, return_closest_allwise_mask
|
|
1697
1697
|
else:
|
|
1698
1698
|
return list(bad_indices)
|
|
1699
1699
|
|
|
@@ -4,6 +4,7 @@ import numpy as np
|
|
|
4
4
|
import logging
|
|
5
5
|
from scipy import stats
|
|
6
6
|
import matplotlib.pyplot as plt
|
|
7
|
+
from matplotlib.lines import Line2D
|
|
7
8
|
|
|
8
9
|
from timewise.wise_data_base import WISEDataBase
|
|
9
10
|
from timewise.utils import get_excess_variance
|
|
@@ -499,7 +500,7 @@ class WiseDataByVisit(WISEDataBase):
|
|
|
499
500
|
|
|
500
501
|
# get a mask indicating outliers based on position
|
|
501
502
|
ra, dec = pos.astype(float)
|
|
502
|
-
bad_indices_position, cluster_res, allwise_mask = self.calculate_position_mask(
|
|
503
|
+
bad_indices_position, cluster_res, data_mask, allwise_mask = self.calculate_position_mask(
|
|
503
504
|
lightcurve, ra=ra, dec=dec, return_all=True, whitelist_region=self.whitelist_region.to("arcsec").value
|
|
504
505
|
)
|
|
505
506
|
position_mask = (
|
|
@@ -537,8 +538,7 @@ class WiseDataByVisit(WISEDataBase):
|
|
|
537
538
|
)
|
|
538
539
|
|
|
539
540
|
# set markers for visits
|
|
540
|
-
markers =
|
|
541
|
-
'_', 'P', 'X']
|
|
541
|
+
markers = list(Line2D.filled_markers) + ["$1$", "$2$", "$3$", "$4$", "$5$", "$6$", "$7$", "$8$", "$9$"]
|
|
542
542
|
|
|
543
543
|
# calculate ra and dec relative to center of cutout
|
|
544
544
|
ra = (lightcurve.ra - pos[self.parent_sample.default_keymap["ra"]]) * 3600
|
|
@@ -547,41 +547,65 @@ class WiseDataByVisit(WISEDataBase):
|
|
|
547
547
|
# for each visit plot the datapoints on the cutout
|
|
548
548
|
for visit in np.unique(visit_map):
|
|
549
549
|
m = visit_map == visit
|
|
550
|
-
|
|
551
550
|
label = str(visit)
|
|
552
|
-
marker
|
|
553
|
-
color = f"C{visit}"
|
|
551
|
+
axs[0].plot([], [], marker=markers[visit], label=label, mec="k", mew=1, mfc="none", ls="")
|
|
554
552
|
|
|
555
|
-
for im,
|
|
553
|
+
for im, mec, zorder in zip(
|
|
556
554
|
[position_mask, ~position_mask],
|
|
557
|
-
[
|
|
558
|
-
[label, ""],
|
|
555
|
+
["k", "none"],
|
|
559
556
|
[1, 0]
|
|
560
557
|
):
|
|
561
558
|
mask = m & im
|
|
562
|
-
|
|
563
|
-
|
|
564
|
-
|
|
565
|
-
|
|
566
|
-
|
|
567
|
-
|
|
568
|
-
xerr=datapoints.sigra[has_sig] / 3600,
|
|
569
|
-
yerr=datapoints.sigdec[has_sig] / 3600,
|
|
570
|
-
label=_label,
|
|
571
|
-
marker=marker,
|
|
572
|
-
ls="",
|
|
573
|
-
color=_color,
|
|
574
|
-
zorder=zorder
|
|
575
|
-
)
|
|
576
|
-
axs[0].scatter(
|
|
577
|
-
ra[mask][~has_sig],
|
|
578
|
-
dec[mask][~has_sig],
|
|
579
|
-
marker=marker,
|
|
580
|
-
color=_color,
|
|
581
|
-
zorder=zorder
|
|
559
|
+
|
|
560
|
+
for i_data_mask, i_data in zip([data_mask, ~data_mask], ["data", "other_allwise"]):
|
|
561
|
+
datapoints = lightcurve[mask & i_data_mask]
|
|
562
|
+
cluster_labels = (
|
|
563
|
+
cluster_res.labels_[mask[i_data_mask]] if i_data == "data"
|
|
564
|
+
else np.array([-1] * len(datapoints))
|
|
582
565
|
)
|
|
583
|
-
|
|
584
|
-
|
|
566
|
+
|
|
567
|
+
for cluster_label in np.unique(cluster_labels):
|
|
568
|
+
cluster_label_mask = cluster_labels == cluster_label
|
|
569
|
+
datapoints_cluster = datapoints[cluster_label_mask]
|
|
570
|
+
# make a marker for the visit and colored by cluster
|
|
571
|
+
color = f"C{cluster_label}" if cluster_label != -1 else "grey"
|
|
572
|
+
|
|
573
|
+
if ("sigra" in datapoints_cluster.columns) and ("sigdec" in datapoints_cluster.columns):
|
|
574
|
+
has_sig = ~datapoints_cluster.sigra.isna() & ~datapoints_cluster.sigdec.isna()
|
|
575
|
+
_ra = ra[mask & i_data_mask][cluster_label_mask]
|
|
576
|
+
_dec = dec[mask & i_data_mask][cluster_label_mask]
|
|
577
|
+
|
|
578
|
+
axs[0].errorbar(
|
|
579
|
+
_ra[has_sig],
|
|
580
|
+
_dec[has_sig],
|
|
581
|
+
xerr=datapoints_cluster.sigra[has_sig] / 3600,
|
|
582
|
+
yerr=datapoints_cluster.sigdec[has_sig] / 3600,
|
|
583
|
+
marker=markers[visit],
|
|
584
|
+
ls="",
|
|
585
|
+
color=color,
|
|
586
|
+
zorder=zorder,
|
|
587
|
+
ms=10,
|
|
588
|
+
mec=mec,
|
|
589
|
+
mew=0.1
|
|
590
|
+
)
|
|
591
|
+
axs[0].scatter(
|
|
592
|
+
_ra[~has_sig],
|
|
593
|
+
_dec[~has_sig],
|
|
594
|
+
marker=markers[visit],
|
|
595
|
+
color=color,
|
|
596
|
+
zorder=zorder,
|
|
597
|
+
edgecolors=mec,
|
|
598
|
+
linewidths=0.1,
|
|
599
|
+
)
|
|
600
|
+
else:
|
|
601
|
+
axs[0].scatter(
|
|
602
|
+
ra[mask], dec[mask],
|
|
603
|
+
marker=markers[visit],
|
|
604
|
+
color=color,
|
|
605
|
+
zorder=zorder,
|
|
606
|
+
edgecolors=mec,
|
|
607
|
+
linewidths=0.1,
|
|
608
|
+
)
|
|
585
609
|
|
|
586
610
|
# for each band indicate the outliers based on brightness with circles
|
|
587
611
|
for b, outlier_mask in outlier_masks.items():
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|