thermolib 0.9.0__tar.gz → 0.9.2__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (35) hide show
  1. {thermolib-0.9.0 → thermolib-0.9.2}/Cargo.lock +1 -1
  2. {thermolib-0.9.0 → thermolib-0.9.2}/Cargo.toml +1 -1
  3. {thermolib-0.9.0 → thermolib-0.9.2}/PKG-INFO +1 -1
  4. thermolib-0.9.2/scripts/fit_cp0.py +101 -0
  5. thermolib-0.9.2/scripts/pc_saft/calc_gly.py +114 -0
  6. thermolib-0.9.2/scripts/pc_saft/hc_pure.md +15 -0
  7. thermolib-0.9.2/scripts/pc_saft/hc_pure.py +68 -0
  8. thermolib-0.9.2/scripts/pc_saft/hs_term.md +37 -0
  9. thermolib-0.9.2/scripts/pc_saft/hs_term.py +185 -0
  10. thermolib-0.9.2/scripts/pc_saft/p_term.md +24 -0
  11. thermolib-0.9.2/scripts/pc_saft/p_term.py +144 -0
  12. {thermolib-0.9.0 → thermolib-0.9.2}/scripts/pc_saft/x_term.md +10 -0
  13. {thermolib-0.9.0 → thermolib-0.9.2}/scripts/pc_saft/x_term.py +30 -1
  14. {thermolib-0.9.0 → thermolib-0.9.2}/src/lib.rs +2 -0
  15. thermolib-0.9.2/src/pc_saft/assoc_pure.rs +1015 -0
  16. {thermolib-0.9.0 → thermolib-0.9.2}/src/pc_saft/disp_term.rs +293 -315
  17. thermolib-0.9.2/src/pc_saft/gii_term.rs +166 -0
  18. {thermolib-0.9.0 → thermolib-0.9.2}/src/pc_saft/hs_term.rs +13 -11
  19. {thermolib-0.9.0 → thermolib-0.9.2}/src/pc_saft/macros.rs +24 -24
  20. thermolib-0.9.2/src/pc_saft/pc_saft_gly_pure.rs +294 -0
  21. thermolib-0.9.2/src/pc_saft/pc_saft_pure.rs +350 -0
  22. thermolib-0.9.2/src/pc_saft/polar_term.rs +2159 -0
  23. thermolib-0.9.2/src/pc_saft.rs +62 -0
  24. {thermolib-0.9.0 → thermolib-0.9.2}/src/python.rs +2 -0
  25. thermolib-0.9.0/src/pc_saft/gii_term.rs +0 -110
  26. thermolib-0.9.0/src/pc_saft/pc_saft_gly.rs +0 -946
  27. thermolib-0.9.0/src/pc_saft.rs +0 -44
  28. {thermolib-0.9.0 → thermolib-0.9.2}/.gitignore +0 -0
  29. {thermolib-0.9.0 → thermolib-0.9.2}/LICENSE +0 -0
  30. {thermolib-0.9.0 → thermolib-0.9.2}/README.md +0 -0
  31. {thermolib-0.9.0 → thermolib-0.9.2}/pyproject.toml +0 -0
  32. {thermolib-0.9.0 → thermolib-0.9.2}/scripts/algorithms/brent_zero.py +0 -0
  33. {thermolib-0.9.0 → thermolib-0.9.2}/scripts/pc_saft/c_term.md +0 -0
  34. {thermolib-0.9.0 → thermolib-0.9.2}/scripts/pc_saft/c_term.py +0 -0
  35. {thermolib-0.9.0 → thermolib-0.9.2}/src/algorithms.rs +0 -0
@@ -176,7 +176,7 @@ checksum = "61c41af27dd6d1e27b1b16b489db798443478cef1f06a660c96db617ba5de3b1"
176
176
 
177
177
  [[package]]
178
178
  name = "thermolib"
179
- version = "0.9.0"
179
+ version = "0.9.2"
180
180
  dependencies = [
181
181
  "anyhow",
182
182
  "pyo3",
@@ -1,6 +1,6 @@
1
1
  [package]
2
2
  name = "thermolib"
3
- version = "0.9.0"
3
+ version = "0.9.2"
4
4
  edition = "2024"
5
5
  license = "MIT"
6
6
  description = "An open-source library for the calculation of fluid properties."
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: thermolib
3
- Version: 0.9.0
3
+ Version: 0.9.2
4
4
  License-File: LICENSE
5
5
  Summary: An open-source library for the calculation of fluid properties.
6
6
  License: MIT
@@ -0,0 +1,101 @@
1
+ """
2
+ Cp0
3
+ """
4
+
5
+ import numpy as np
6
+ import matplotlib.pyplot as plt
7
+ from scipy.optimize import least_squares
8
+
9
+
10
+ # CODATA2018 constants: speed of light in vacuum
11
+ C = 299792458 # m s^-1
12
+ # CODATA2018 constants: Planck constant
13
+ H = 6.62607015e-34 # J Hz^-1
14
+ # CODATA2018 constants: Boltzmann constant
15
+ K = 1.380649e-23 # J K^-1
16
+ # CODATA2018 constants: molar gas constant
17
+ R = 8.314462618 # J mol^-1 K^-1
18
+
19
+
20
+ def gaussian():
21
+ # B3LYP/cc-pVTZ+d opt freq => sclZPE=0.9886
22
+ # B2PLYPD3/cc-pVTZ opt freq => sclZPE=0.983
23
+ """
24
+ # B2PLYPD3/cc-pVTZ opt freq
25
+
26
+ Carbon Dioxide
27
+
28
+ 0 1
29
+ C 0.00 0.00 0.00
30
+ O 1.16 0.00 0.00
31
+ O -1.16 0.00 0.00
32
+
33
+
34
+ """
35
+ # g16 < CO2.gjf > CO2.out
36
+ # freq = [671.6652, 671.6652, 1371.8538, 2417.1567]
37
+ # freq = [663.7419, 663.7419, 1344.6641, 2403.6794]
38
+ return
39
+
40
+
41
+ def orca():
42
+ # B3LYP cc-pVT(+d)Z opt freq => sclZPE=0.9886
43
+ """
44
+ ! B3LYP cc-pVT(+d)Z opt freq noautostart miniprint nopop
45
+ %maxcore 1000
46
+ %pal nprocs 4 end
47
+ * xyz 0 1
48
+ C 0.00 0.00 0.00
49
+ O 1.16 0.00 0.00
50
+ O -1.16 0.00 0.00
51
+ *
52
+ """
53
+ # D:\ORCA_6.0.0\orca CO2.inp > CO2.out
54
+ # freq = [670.78, 670.78, 1370.62, 2414.32]
55
+ return
56
+
57
+
58
+ def calc_cp0(temp, freq_plus):
59
+ """calculate isobaric heat capacity"""
60
+ vi = np.array([freq_plus[1:]]).transpose()
61
+ temp = H * vi / K / temp
62
+ expt = np.exp(-temp)
63
+ return R * (np.sum(temp**2 * expt / (1 - expt) ** 2, axis=0) + freq_plus[0])
64
+
65
+
66
+ def aly_lee_cp0(temp, params):
67
+ """calculate isobaric heat capacity"""
68
+ return (
69
+ params[0]
70
+ + params[1] * (params[2] / temp / np.sinh(params[2] / temp)) ** 2
71
+ + params[3] * (params[4] / temp / np.cosh(params[4] / temp)) ** 2
72
+ )
73
+
74
+
75
+ def main():
76
+ """main function"""
77
+ # input parameters: nonlinear molecule or not ?
78
+ nm = False # CO2 is linear molecule
79
+ # input parameters: wave length (cm^-1)
80
+ wave = np.array([670.78, 670.78, 1370.62, 2414.32]) # CO2
81
+ # input parameters: temperature range
82
+ temp = list(range(200, 2000, 10))
83
+
84
+ freq = C * wave * 100 # vibration frequencies (s^-1)(Hz)
85
+ freq_plus = np.append([4 if nm else 3.5], freq)
86
+ cp0 = calc_cp0(temp, freq_plus)
87
+
88
+ result = least_squares(
89
+ lambda params, temp, cp0: aly_lee_cp0(temp, params) - cp0,
90
+ [1, 1, 1, 1, 1],
91
+ args=(temp, cp0),
92
+ )
93
+ params = np.round(result.x * 100) / 100
94
+ print("params:", params)
95
+ plt.scatter(temp, cp0, marker="+", c="g")
96
+ plt.plot(temp, aly_lee_cp0(temp, params), c="r")
97
+ plt.show()
98
+
99
+
100
+ if __name__ == "__main__":
101
+ main()
@@ -0,0 +1,114 @@
1
+ """PcSaftGlyPure"""
2
+
3
+ import math
4
+ from thermolib import PcSaftGlyPure # pylint: disable=no-name-in-module
5
+
6
+
7
+ def g2b_methanol():
8
+ """g2b_methanol"""
9
+ m, sigma, epsilon = 2.1049, 2.9008, 195.80 # m,sigma,epsilon
10
+ kappa_ab, epsilon_ab = 0.06085, 2477.7 # kappa_ab,epsilon_ab
11
+ f0, f1, f2 = 1.0714, 1.2621, -0.3698
12
+ fluid = PcSaftGlyPure(m, sigma, epsilon)
13
+ fluid.set_2B_assoc_term(kappa_ab, epsilon_ab, f0, f1, f2)
14
+ return fluid
15
+
16
+
17
+ def g2b_ethanol():
18
+ """g2b_ethanol"""
19
+ m, sigma, epsilon = 2.2266, 3.2625, 214.44 # m,sigma,epsilon
20
+ kappa_ab, epsilon_ab = 0.02457, 2601.7 # kappa_ab,epsilon_ab
21
+ f0, f1, f2 = 1.0025, 0.9962, 0.9970
22
+ fluid = PcSaftGlyPure(m, sigma, epsilon)
23
+ fluid.set_2B_assoc_term(kappa_ab, epsilon_ab, f0, f1, f2)
24
+ return fluid
25
+
26
+
27
+ def g2b_npropanol():
28
+ """g2b_npropanol"""
29
+ m, sigma, epsilon = 1.8220, 3.8639, 276.76 # m,sigma,epsilon
30
+ kappa_ab, epsilon_ab = 0.00539, 2836.6 # kappa_ab,epsilon_ab
31
+ f0, f1, f2 = 1.4482, 0.1625, 2.2331
32
+ fluid = PcSaftGlyPure(m, sigma, epsilon)
33
+ fluid.set_2B_assoc_term(kappa_ab, epsilon_ab, f0, f1, f2)
34
+ return fluid
35
+
36
+
37
+ def g2b_ipropanol():
38
+ """g2b_ipropanol"""
39
+ m, sigma, epsilon = 2.3181, 3.5750, 247.39 # m,sigma,epsilon
40
+ kappa_ab, epsilon_ab = 0.00904, 2450.0 # kappa_ab,epsilon_ab
41
+ f0, f1, f2 = 1.1767, -0.2650, 4.4788
42
+ fluid = PcSaftGlyPure(m, sigma, epsilon)
43
+ fluid.set_2B_assoc_term(kappa_ab, epsilon_ab, f0, f1, f2)
44
+ return fluid
45
+
46
+
47
+ def g2b_nbutanol():
48
+ """g2b_nbutanol"""
49
+ m, sigma, epsilon = 2.4655, 3.7411, 266.14 # m,sigma,epsilon
50
+ kappa_ab, epsilon_ab = 0.00896, 2605.9 # kappa_ab,epsilon_ab
51
+ f0, f1, f2 = 1.8210, -1.2714, 6.5992
52
+ fluid = PcSaftGlyPure(m, sigma, epsilon)
53
+ fluid.set_2B_assoc_term(kappa_ab, epsilon_ab, f0, f1, f2)
54
+ return fluid
55
+
56
+
57
+ def gross_methanol():
58
+ """gross_methanol"""
59
+ m, sigma, epsilon = 1.5255, 3.2300, 188.90 # m,sigma,epsilon
60
+ kappa_ab, epsilon_ab = 0.035176, 2899.5 # kappa_ab,epsilon_ab
61
+ fluid = PcSaftGlyPure(m, sigma, epsilon)
62
+ fluid.set_2B_assoc_term(kappa_ab, epsilon_ab, 1, 1, 1)
63
+ return fluid
64
+
65
+
66
+ def gross_ethanol():
67
+ """gross_ethanol"""
68
+ m, sigma, epsilon = 2.3827, 3.1771, 198.24 # m,sigma,epsilon
69
+ kappa_ab, epsilon_ab = 0.032384, 2653.4 # kappa_ab,epsilon_ab
70
+ fluid = PcSaftGlyPure(m, sigma, epsilon)
71
+ fluid.set_2B_assoc_term(kappa_ab, epsilon_ab, 1, 1, 1)
72
+ return fluid
73
+
74
+
75
+ def gross_npropanol():
76
+ """gross_npropanol"""
77
+ m, sigma, epsilon = 2.9997, 3.2522, 233.40 # m,sigma,epsilon
78
+ kappa_ab, epsilon_ab = 0.015268, 2276.8 # kappa_ab,epsilon_ab
79
+ fluid = PcSaftGlyPure(m, sigma, epsilon)
80
+ fluid.set_2B_assoc_term(kappa_ab, epsilon_ab, 1, 1, 1)
81
+ return fluid
82
+
83
+
84
+ def gross_ipropanol():
85
+ """gross_ipropanol"""
86
+ m, sigma, epsilon = 3.0929, 3.2085, 208.42 # m,sigma,epsilon
87
+ kappa_ab, epsilon_ab = 0.024675, 2253.9 # kappa_ab,epsilon_ab
88
+ fluid = PcSaftGlyPure(m, sigma, epsilon)
89
+ fluid.set_2B_assoc_term(kappa_ab, epsilon_ab, 1, 1, 1)
90
+ return fluid
91
+
92
+
93
+ def gross_nbutanol():
94
+ """gross_nbutanol"""
95
+ m, sigma, epsilon = 2.7515, 3.6139, 259.59 # m,sigma,epsilon
96
+ kappa_ab, epsilon_ab = 0.006692, 2544.6 # kappa_ab,epsilon_ab
97
+ fluid = PcSaftGlyPure(m, sigma, epsilon)
98
+ fluid.set_2B_assoc_term(kappa_ab, epsilon_ab, 1, 1, 1)
99
+ return fluid
100
+
101
+
102
+ def main():
103
+ """main function"""
104
+ fluid = g2b_methanol()
105
+ fluid.c_flash()
106
+ crit_t, crit_p, crit_rho = fluid.T(), fluid.p(), fluid.rho()
107
+ for temp in range(math.floor(0.6 * crit_t), math.ceil(crit_t)):
108
+ fluid.t_flash(temp)
109
+ print(fluid.T_s(), fluid.p_s(), fluid.rho_v(), fluid.rho_l())
110
+ print(crit_t, crit_p, crit_rho, crit_rho)
111
+
112
+
113
+ if __name__ == "__main__":
114
+ main()
@@ -0,0 +1,15 @@
1
+ $$ hs0 = - \frac{\eta \left(3 \eta - 4\right)}{\left(\eta - 1\right)^{2}} $$
2
+ $$ hs1 = \frac{2 \left(\eta - 2\right)}{\left(\eta - 1\right)^{3}} $$
3
+ $$ hs2 = - \frac{2 \left(2 \eta - 5\right)}{\left(\eta - 1\right)^{4}} $$
4
+ $$ hs3 = \frac{12 \left(\eta - 3\right)}{\left(\eta - 1\right)^{5}} $$
5
+ $$ hs4 = - \frac{24 \left(2 \eta - 7\right)}{\left(\eta - 1\right)^{6}} $$
6
+ $$ gii0 = \frac{\eta - 2}{2 \left(\eta - 1\right)^{3}} $$
7
+ $$ gii1 = - \frac{2 \eta - 5}{2 \left(\eta - 1\right)^{4}} $$
8
+ $$ gii2 = \frac{3 \left(\eta - 3\right)}{\left(\eta - 1\right)^{5}} $$
9
+ $$ gii3 = - \frac{6 \left(2 \eta - 7\right)}{\left(\eta - 1\right)^{6}} $$
10
+ $$ gii4 = \frac{60 \left(\eta - 4\right)}{\left(\eta - 1\right)^{7}} $$
11
+ $$ lng0 = \log{\left(\frac{1 - \frac{\eta}{2}}{\left(1 - \eta\right)^{3}} \right)} $$
12
+ $$ lng1 = - \frac{2 \eta - 5}{\left(\eta - 2\right) \left(\eta - 1\right)} $$
13
+ $$ lng2 = \frac{2 \eta^{2} - 10 \eta + 11}{\left(\eta - 2\right)^{2} \left(\eta - 1\right)^{2}} $$
14
+ $$ lng3 = - \frac{2 \left(2 \eta^{3} - 15 \eta^{2} + 33 \eta - 23\right)}{\left(\eta - 2\right)^{3} \left(\eta - 1\right)^{3}} $$
15
+ $$ lng4 = \frac{6 \left(2 \eta^{4} - 20 \eta^{3} + 66 \eta^{2} - 92 \eta + 47\right)}{\left(\eta - 2\right)^{4} \left(\eta - 1\right)^{4}} $$
@@ -0,0 +1,68 @@
1
+ """
2
+ HcPure
3
+ """
4
+
5
+ import sympy as sp
6
+
7
+
8
+ eta = sp.symbols("eta")
9
+
10
+
11
+ hs = eta * (4 - 3 * eta) / (1 - eta) ** 2
12
+ print("$$ hs0 =", sp.latex(hs.factor()), "$$")
13
+
14
+
15
+ hs1 = sp.diff(hs, eta)
16
+ print("$$ hs1 =", sp.latex(hs1.factor()), "$$")
17
+
18
+
19
+ hs2 = sp.diff(hs1, eta)
20
+ print("$$ hs2 =", sp.latex(hs2.factor()), "$$")
21
+
22
+
23
+ hs3 = sp.diff(hs2, eta)
24
+ print("$$ hs3 =", sp.latex(hs3.factor()), "$$")
25
+
26
+
27
+ hs4 = sp.diff(hs3, eta)
28
+ print("$$ hs4 =", sp.latex(hs4.factor()), "$$")
29
+
30
+
31
+ gii = (2 - eta) / 2 / (1 - eta) ** 3
32
+ print("$$ gii0 =", sp.latex(gii.factor()), "$$")
33
+
34
+
35
+ gii1 = sp.diff(gii, eta)
36
+ print("$$ gii1 =", sp.latex(gii1.factor()), "$$")
37
+
38
+
39
+ gii2 = sp.diff(gii1, eta)
40
+ print("$$ gii2 =", sp.latex(gii2.factor()), "$$")
41
+
42
+
43
+ gii3 = sp.diff(gii2, eta)
44
+ print("$$ gii3 =", sp.latex(gii3.factor()), "$$")
45
+
46
+
47
+ gii4 = sp.diff(gii3, eta)
48
+ print("$$ gii4 =", sp.latex(gii4.factor()), "$$")
49
+
50
+
51
+ lng = sp.ln(gii)
52
+ print("$$ lng0 =", sp.latex(lng.simplify()), "$$")
53
+
54
+
55
+ lng1 = sp.diff(lng, eta)
56
+ print("$$ lng1 =", sp.latex(lng1.factor()), "$$")
57
+
58
+
59
+ lng2 = sp.diff(lng1, eta)
60
+ print("$$ lng2 =", sp.latex(lng2.factor()), "$$")
61
+
62
+
63
+ lng3 = sp.diff(lng2, eta)
64
+ print("$$ lng3 =", sp.latex(lng3.factor()), "$$")
65
+
66
+
67
+ lng4 = sp.diff(lng3, eta)
68
+ print("$$ lng4 =", sp.latex(lng4.factor()), "$$")
@@ -0,0 +1,37 @@
1
+ $$ z0 = - \frac{3 z_{1} z_{2}}{1 - z_{3}} - \frac{z_{2}^{3}}{z_{3} \left(1 - z_{3}\right)^{2}} - \frac{z_{2}^{3} \log{\left(1 - z_{3} \right)}}{z_{3}^{2}} $$
2
+ $$ z1 = \frac{3 z_{2}}{1 - z_{3}} $$
3
+ $$ z2 = \frac{3 z_{1}}{1 - z_{3}} + \frac{3 z_{2}^{2}}{z_{3} \left(1 - z_{3}\right)^{2}} + \frac{3 z_{2}^{2} \log{\left(1 - z_{3} \right)}}{z_{3}^{2}} $$
4
+ $$ z3 = \frac{3 z_{1} z_{2}}{\left(1 - z_{3}\right)^{2}} + \frac{2 z_{2}^{3}}{z_{3} \left(1 - z_{3}\right)^{3}} - \frac{z_{2}^{3}}{z_{3}^{2} \left(1 - z_{3}\right)} - \frac{z_{2}^{3}}{z_{3}^{2} \left(1 - z_{3}\right)^{2}} - \frac{2 z_{2}^{3} \log{\left(1 - z_{3} \right)}}{z_{3}^{3}} $$
5
+ $$ \alpha^{hs}_\rho = \frac{z_{2} \left(3 z_{1} z_{3} - 3 z_{1} + z_{2}^{2} z_{3} - 3 z_{2}^{2}\right)}{z_{0} \left(z_{3} - 1\right)^{3}} $$
6
+ $$ z0z0 = \frac{6 z_{1} z_{2}}{1 - z_{3}} + \frac{2 z_{2}^{3}}{z_{3} \left(1 - z_{3}\right)^{2}} + \frac{2 z_{2}^{3} \log{\left(1 - z_{3} \right)}}{z_{3}^{2}} $$
7
+ $$ z0z1 = - \frac{6 z_{2}}{1 - z_{3}} $$
8
+ $$ z0z2 = - \frac{6 z_{1}}{1 - z_{3}} - \frac{6 z_{2}^{2}}{z_{3} \left(1 - z_{3}\right)^{2}} - \frac{6 z_{2}^{2} \log{\left(1 - z_{3} \right)}}{z_{3}^{2}} $$
9
+ $$ z0z3 = - \frac{6 z_{1} z_{2}}{\left(1 - z_{3}\right)^{2}} - \frac{4 z_{2}^{3}}{z_{3} \left(1 - z_{3}\right)^{3}} + \frac{2 z_{2}^{3}}{z_{3}^{2} \left(1 - z_{3}\right)} + \frac{2 z_{2}^{3}}{z_{3}^{2} \left(1 - z_{3}\right)^{2}} + \frac{4 z_{2}^{3} \log{\left(1 - z_{3} \right)}}{z_{3}^{3}} $$
10
+ $$ z1z1 = 0 $$
11
+ $$ z1z2 = \frac{6}{1 - z_{3}} $$
12
+ $$ z1z3 = \frac{6 z_{2}}{\left(1 - z_{3}\right)^{2}} $$
13
+ $$ z2z2 = \frac{6 z_{2}}{z_{3} \left(1 - z_{3}\right)^{2}} + \frac{6 z_{2} \log{\left(1 - z_{3} \right)}}{z_{3}^{2}} $$
14
+ $$ z2z3 = \frac{6 z_{1}}{\left(1 - z_{3}\right)^{2}} + \frac{12 z_{2}^{2}}{z_{3} \left(1 - z_{3}\right)^{3}} - \frac{6 z_{2}^{2}}{z_{3}^{2} \left(1 - z_{3}\right)} - \frac{6 z_{2}^{2}}{z_{3}^{2} \left(1 - z_{3}\right)^{2}} - \frac{12 z_{2}^{2} \log{\left(1 - z_{3} \right)}}{z_{3}^{3}} $$
15
+ $$ z3z3 = \frac{6 z_{1} z_{2}}{\left(1 - z_{3}\right)^{3}} + \frac{6 z_{2}^{3}}{z_{3} \left(1 - z_{3}\right)^{4}} - \frac{z_{2}^{3}}{z_{3}^{2} \left(1 - z_{3}\right)^{2}} - \frac{4 z_{2}^{3}}{z_{3}^{2} \left(1 - z_{3}\right)^{3}} + \frac{4 z_{2}^{3}}{z_{3}^{3} \left(1 - z_{3}\right)} + \frac{2 z_{2}^{3}}{z_{3}^{3} \left(1 - z_{3}\right)^{2}} + \frac{6 z_{2}^{3} \log{\left(1 - z_{3} \right)}}{z_{3}^{4}} $$
16
+ $$ \alpha^{hs}_{\rho\rho} = - \frac{z_{2} \left(6 z_{1} z_{3}^{2} - 6 z_{1} z_{3} + z_{2}^{2} z_{3}^{2} - 4 z_{2}^{2} z_{3} - 3 z_{2}^{2}\right)}{z_{0} \left(z_{3} - 1\right)^{4}} $$
17
+ $$ z0z0z0 = - \frac{18 z_{1} z_{2}}{1 - z_{3}} - \frac{6 z_{2}^{3}}{z_{3} \left(1 - z_{3}\right)^{2}} - \frac{6 z_{2}^{3} \log{\left(1 - z_{3} \right)}}{z_{3}^{2}} $$
18
+ $$ z0z0z1 = \frac{18 z_{2}}{1 - z_{3}} $$
19
+ $$ z0z0z2 = \frac{18 z_{1}}{1 - z_{3}} + \frac{18 z_{2}^{2}}{z_{3} \left(1 - z_{3}\right)^{2}} + \frac{18 z_{2}^{2} \log{\left(1 - z_{3} \right)}}{z_{3}^{2}} $$
20
+ $$ z0z0z3 = \frac{18 z_{1} z_{2}}{\left(1 - z_{3}\right)^{2}} + \frac{12 z_{2}^{3}}{z_{3} \left(1 - z_{3}\right)^{3}} - \frac{6 z_{2}^{3}}{z_{3}^{2} \left(1 - z_{3}\right)} - \frac{6 z_{2}^{3}}{z_{3}^{2} \left(1 - z_{3}\right)^{2}} - \frac{12 z_{2}^{3} \log{\left(1 - z_{3} \right)}}{z_{3}^{3}} $$
21
+ $$ z0z1z1 = 0 $$
22
+ $$ z0z1z2 = - \frac{18}{1 - z_{3}} $$
23
+ $$ z0z1z3 = - \frac{18 z_{2}}{\left(1 - z_{3}\right)^{2}} $$
24
+ $$ z0z2z2 = - \frac{18 z_{2}}{z_{3} \left(1 - z_{3}\right)^{2}} - \frac{18 z_{2} \log{\left(1 - z_{3} \right)}}{z_{3}^{2}} $$
25
+ $$ z0z2z3 = - \frac{18 z_{1}}{\left(1 - z_{3}\right)^{2}} - \frac{36 z_{2}^{2}}{z_{3} \left(1 - z_{3}\right)^{3}} + \frac{18 z_{2}^{2}}{z_{3}^{2} \left(1 - z_{3}\right)} + \frac{18 z_{2}^{2}}{z_{3}^{2} \left(1 - z_{3}\right)^{2}} + \frac{36 z_{2}^{2} \log{\left(1 - z_{3} \right)}}{z_{3}^{3}} $$
26
+ $$ z0z3z3 = - \frac{18 z_{1} z_{2}}{\left(1 - z_{3}\right)^{3}} - \frac{18 z_{2}^{3}}{z_{3} \left(1 - z_{3}\right)^{4}} + \frac{3 z_{2}^{3}}{z_{3}^{2} \left(1 - z_{3}\right)^{2}} + \frac{12 z_{2}^{3}}{z_{3}^{2} \left(1 - z_{3}\right)^{3}} - \frac{12 z_{2}^{3}}{z_{3}^{3} \left(1 - z_{3}\right)} - \frac{6 z_{2}^{3}}{z_{3}^{3} \left(1 - z_{3}\right)^{2}} - \frac{18 z_{2}^{3} \log{\left(1 - z_{3} \right)}}{z_{3}^{4}} $$
27
+ $$ z1z1z1 = 0 $$
28
+ $$ z1z1z2 = 0 $$
29
+ $$ z1z1z3 = 0 $$
30
+ $$ z1z2z2 = 0 $$
31
+ $$ z1z2z3 = \frac{18}{\left(1 - z_{3}\right)^{2}} $$
32
+ $$ z1z3z3 = \frac{18 z_{2}}{\left(1 - z_{3}\right)^{3}} $$
33
+ $$ z2z2z2 = \frac{6}{z_{3} \left(1 - z_{3}\right)^{2}} + \frac{6 \log{\left(1 - z_{3} \right)}}{z_{3}^{2}} $$
34
+ $$ z2z2z3 = \frac{36 z_{2}}{z_{3} \left(1 - z_{3}\right)^{3}} - \frac{18 z_{2}}{z_{3}^{2} \left(1 - z_{3}\right)} - \frac{18 z_{2}}{z_{3}^{2} \left(1 - z_{3}\right)^{2}} - \frac{36 z_{2} \log{\left(1 - z_{3} \right)}}{z_{3}^{3}} $$
35
+ $$ z2z3z3 = \frac{18 z_{1}}{\left(1 - z_{3}\right)^{3}} + \frac{54 z_{2}^{2}}{z_{3} \left(1 - z_{3}\right)^{4}} - \frac{9 z_{2}^{2}}{z_{3}^{2} \left(1 - z_{3}\right)^{2}} - \frac{36 z_{2}^{2}}{z_{3}^{2} \left(1 - z_{3}\right)^{3}} + \frac{36 z_{2}^{2}}{z_{3}^{3} \left(1 - z_{3}\right)} + \frac{18 z_{2}^{2}}{z_{3}^{3} \left(1 - z_{3}\right)^{2}} + \frac{54 z_{2}^{2} \log{\left(1 - z_{3} \right)}}{z_{3}^{4}} $$
36
+ $$ z3z3z3 = \frac{18 z_{1} z_{2}}{\left(1 - z_{3}\right)^{4}} + \frac{24 z_{2}^{3}}{z_{3} \left(1 - z_{3}\right)^{5}} - \frac{2 z_{2}^{3}}{z_{3}^{2} \left(1 - z_{3}\right)^{3}} - \frac{18 z_{2}^{3}}{z_{3}^{2} \left(1 - z_{3}\right)^{4}} + \frac{6 z_{2}^{3}}{z_{3}^{3} \left(1 - z_{3}\right)^{2}} + \frac{12 z_{2}^{3}}{z_{3}^{3} \left(1 - z_{3}\right)^{3}} - \frac{18 z_{2}^{3}}{z_{3}^{4} \left(1 - z_{3}\right)} - \frac{6 z_{2}^{3}}{z_{3}^{4} \left(1 - z_{3}\right)^{2}} - \frac{24 z_{2}^{3} \log{\left(1 - z_{3} \right)}}{z_{3}^{5}} $$
37
+ $$ \alpha^{hs}_{\rho\rho\rho} = \frac{2 z_{2} z_{3} \left(9 z_{1} z_{3}^{2} - 9 z_{1} z_{3} + z_{2}^{2} z_{3}^{2} - 5 z_{2}^{2} z_{3} - 8 z_{2}^{2}\right)}{z_{0} \left(z_{3} - 1\right)^{5}} $$
@@ -0,0 +1,185 @@
1
+ """HsTerm"""
2
+
3
+ import sympy as sp
4
+
5
+
6
+ z0, z1, z2, z3 = sp.symbols("z0,z1,z2,z3")
7
+ hs = (
8
+ 3 * z1 * z2 / (1 - z3) + z2**3 / z3 / (1 - z3) ** 2 + z2**3 / z3**2 * sp.log(1 - z3)
9
+ ) / z0
10
+
11
+
12
+ hs_z0 = sp.diff(hs, z0)
13
+ print("$$ z0 =", sp.latex(hs_z0 * z0 * z0), "$$")
14
+
15
+
16
+ hs_z1 = sp.diff(hs, z1)
17
+ print("$$ z1 =", sp.latex(hs_z1 * z0), "$$")
18
+
19
+
20
+ hs_z2 = sp.diff(hs, z2)
21
+ print("$$ z2 =", sp.latex(hs_z2 * z0), "$$")
22
+
23
+
24
+ hs_z3 = sp.diff(hs, z3)
25
+ print("$$ z3 =", sp.latex(hs_z3 * z0), "$$")
26
+
27
+
28
+ hs_z = hs_z0 * z0 + hs_z1 * z1 + hs_z2 * z2 + hs_z3 * z3
29
+ print("$$ \\alpha^{hs}_\\rho =", sp.latex(hs_z.factor()), "$$")
30
+
31
+
32
+ hs_z0z0 = sp.diff(hs_z0, z0)
33
+ print("$$ z0z0 =", sp.latex(hs_z0z0 * z0 * z0 * z0), "$$")
34
+
35
+
36
+ hs_z0z1 = sp.diff(hs_z0, z1) + sp.diff(hs_z1, z0)
37
+ print("$$ z0z1 =", sp.latex(hs_z0z1 * z0 * z0), "$$")
38
+
39
+
40
+ hs_z0z2 = sp.diff(hs_z0, z2) + sp.diff(hs_z2, z0)
41
+ print("$$ z0z2 =", sp.latex(hs_z0z2 * z0 * z0), "$$")
42
+
43
+
44
+ hs_z0z3 = sp.diff(hs_z0, z3) + sp.diff(hs_z3, z0)
45
+ print("$$ z0z3 =", sp.latex(hs_z0z3 * z0 * z0), "$$")
46
+
47
+
48
+ hs_z1z1 = sp.diff(hs_z1, z1)
49
+ print("$$ z1z1 =", sp.latex(hs_z1z1 * z0), "$$")
50
+
51
+
52
+ hs_z1z2 = sp.diff(hs_z1, z2) + sp.diff(hs_z2, z1)
53
+ print("$$ z1z2 =", sp.latex(hs_z1z2 * z0), "$$")
54
+
55
+
56
+ hs_z1z3 = sp.diff(hs_z1, z3) + sp.diff(hs_z3, z1)
57
+ print("$$ z1z3 =", sp.latex(hs_z1z3 * z0), "$$")
58
+
59
+
60
+ hs_z2z2 = sp.diff(hs_z2, z2)
61
+ print("$$ z2z2 =", sp.latex(hs_z2z2 * z0), "$$")
62
+
63
+
64
+ hs_z2z3 = sp.diff(hs_z2, z3) + sp.diff(hs_z3, z2)
65
+ print("$$ z2z3 =", sp.latex(hs_z2z3 * z0), "$$")
66
+
67
+
68
+ hs_z3z3 = sp.diff(hs_z3, z3)
69
+ print("$$ z3z3 =", sp.latex(hs_z3z3 * z0), "$$")
70
+
71
+
72
+ hs_z0z = z0 * (hs_z0z0 * z0 + hs_z0z1 * z1 + hs_z0z2 * z2 + hs_z0z3 * z3)
73
+ hs_z1z = z1 * (hs_z1z1 * z1 + hs_z1z2 * z2 + hs_z1z3 * z3)
74
+ hs_z2z = z2 * (hs_z2z2 * z2 + hs_z2z3 * z3)
75
+ hs_z3z = z3 * (hs_z3z3 * z3)
76
+
77
+
78
+ hs_zz = hs_z0z + hs_z1z + hs_z2z + hs_z3z
79
+ print("$$ \\alpha^{hs}_{\\rho\\rho} =", sp.latex(hs_zz.factor()), "$$")
80
+
81
+
82
+ hs_z0z0z0 = sp.diff(hs_z0z0, z0)
83
+ print("$$ z0z0z0 =", sp.latex(hs_z0z0z0 * z0 * z0 * z0 * z0), "$$")
84
+
85
+
86
+ hs_z0z0z1 = sp.diff(hs_z0z0, z1) + sp.diff(hs_z0z1, z0)
87
+ print("$$ z0z0z1 =", sp.latex(hs_z0z0z1 * z0 * z0 * z0), "$$")
88
+
89
+
90
+ hs_z0z0z2 = sp.diff(hs_z0z0, z2) + sp.diff(hs_z0z2, z0)
91
+ print("$$ z0z0z2 =", sp.latex(hs_z0z0z2 * z0 * z0 * z0), "$$")
92
+
93
+
94
+ hs_z0z0z3 = sp.diff(hs_z0z0, z3) + sp.diff(hs_z0z3, z0)
95
+ print("$$ z0z0z3 =", sp.latex(hs_z0z0z3 * z0 * z0 * z0), "$$")
96
+
97
+
98
+ hs_z0z1z1 = sp.diff(hs_z0z1, z1) + sp.diff(hs_z1z1, z0)
99
+ print("$$ z0z1z1 =", sp.latex(hs_z0z1z1 * z0 * z0), "$$")
100
+
101
+
102
+ hs_z0z1z2 = sp.diff(hs_z0z1, z2) + sp.diff(hs_z0z2, z1) + sp.diff(hs_z1z2, z0)
103
+ print("$$ z0z1z2 =", sp.latex(hs_z0z1z2 * z0 * z0), "$$")
104
+
105
+
106
+ hs_z0z1z3 = sp.diff(hs_z0z1, z3) + sp.diff(hs_z0z3, z1) + sp.diff(hs_z1z3, z0)
107
+ print("$$ z0z1z3 =", sp.latex(hs_z0z1z3 * z0 * z0), "$$")
108
+
109
+
110
+ hs_z0z2z2 = sp.diff(hs_z0z2, z2) + sp.diff(hs_z2z2, z0)
111
+ print("$$ z0z2z2 =", sp.latex(hs_z0z2z2 * z0 * z0), "$$")
112
+
113
+
114
+ hs_z0z2z3 = sp.diff(hs_z0z2, z3) + sp.diff(hs_z0z3, z2) + sp.diff(hs_z2z3, z0)
115
+ print("$$ z0z2z3 =", sp.latex(hs_z0z2z3 * z0 * z0), "$$")
116
+
117
+
118
+ hs_z0z3z3 = sp.diff(hs_z0z3, z3) + sp.diff(hs_z3z3, z0)
119
+ print("$$ z0z3z3 =", sp.latex(hs_z0z3z3 * z0 * z0), "$$")
120
+
121
+
122
+ hs_z1z1z1 = sp.diff(hs_z1z1, z1)
123
+ print("$$ z1z1z1 =", sp.latex(hs_z1z1z1 * z0), "$$")
124
+
125
+
126
+ hs_z1z1z2 = sp.diff(hs_z1z1, z2) + sp.diff(hs_z1z2, z1)
127
+ print("$$ z1z1z2 =", sp.latex(hs_z1z1z2 * z0), "$$")
128
+
129
+
130
+ hs_z1z1z3 = sp.diff(hs_z1z1, z3) + sp.diff(hs_z1z3, z1)
131
+ print("$$ z1z1z3 =", sp.latex(hs_z1z1z3 * z0), "$$")
132
+
133
+
134
+ hs_z1z2z2 = sp.diff(hs_z1z2, z2) + sp.diff(hs_z2z2, z1)
135
+ print("$$ z1z2z2 =", sp.latex(hs_z1z2z2 * z0), "$$")
136
+
137
+
138
+ hs_z1z2z3 = sp.diff(hs_z1z2, z3) + sp.diff(hs_z1z3, z2) + sp.diff(hs_z2z3, z1)
139
+ print("$$ z1z2z3 =", sp.latex(hs_z1z2z3 * z0), "$$")
140
+
141
+
142
+ hs_z1z3z3 = sp.diff(hs_z1z3, z3) + sp.diff(hs_z3z3, z1)
143
+ print("$$ z1z3z3 =", sp.latex(hs_z1z3z3 * z0), "$$")
144
+
145
+
146
+ hs_z2z2z2 = sp.diff(hs_z2z2, z2)
147
+ print("$$ z2z2z2 =", sp.latex(hs_z2z2z2 * z0), "$$")
148
+
149
+
150
+ hs_z2z2z3 = sp.diff(hs_z2z2, z3) + sp.diff(hs_z2z3, z2)
151
+ print("$$ z2z2z3 =", sp.latex(hs_z2z2z3 * z0), "$$")
152
+
153
+
154
+ hs_z2z3z3 = sp.diff(hs_z2z3, z3) + sp.diff(hs_z3z3, z2)
155
+ print("$$ z2z3z3 =", sp.latex(hs_z2z3z3 * z0), "$$")
156
+
157
+
158
+ hs_z3z3z3 = sp.diff(hs_z3z3, z3)
159
+ print("$$ z3z3z3 =", sp.latex(hs_z3z3z3 * z0), "$$")
160
+
161
+
162
+ hs_z0z0z = z0 * z0 * (hs_z0z0z0 * z0 + hs_z0z0z1 * z1 + hs_z0z0z2 * z2 + hs_z0z0z3 * z3)
163
+ hs_z0z1z = z0 * z1 * (hs_z0z1z1 * z1 + hs_z0z1z2 * z2 + hs_z0z1z3 * z3)
164
+ hs_z0z2z = z0 * z2 * (hs_z0z2z2 * z2 + hs_z0z2z3 * z3)
165
+ hs_z0z3z = z0 * z3 * (hs_z0z3z3 * z3)
166
+ hs_z0z = hs_z0z0z + hs_z0z1z + hs_z0z2z + hs_z0z3z
167
+
168
+
169
+ hs_z1z1z = z1 * z1 * (hs_z1z1z1 * z1 + hs_z1z1z2 * z2 + hs_z1z1z3 * z3)
170
+ hs_z1z2z = z1 * z2 * (hs_z1z2z2 * z2 + hs_z1z2z3 * z3)
171
+ hs_z1z3z = z1 * z3 * (hs_z1z3z3 * z3)
172
+ hs_z1z = hs_z1z1z + hs_z1z2z + hs_z1z3z
173
+
174
+
175
+ hs_z2z2z = z2 * z2 * (hs_z2z2z2 * z2 + hs_z2z2z3 * z3)
176
+ hs_z2z3z = z2 * z3 * (hs_z2z3z3 * z3)
177
+ hs_z2z = hs_z2z2z + hs_z2z3z
178
+
179
+
180
+ hs_z3z3z = z3 * z3 * (hs_z3z3z3 * z3)
181
+ hs_z3z = hs_z3z3z
182
+
183
+
184
+ hs_zzz = hs_z0z + hs_z1z + hs_z2z + hs_z3z
185
+ print("$$ \\alpha^{hs}_{\\rho\\rho\\rho} =", sp.latex(hs_zzz.factor()), "$$")
@@ -0,0 +1,24 @@
1
+ $\frac{a}{d}$
2
+ $$ \frac{a_{2} \left(a_{2} a_{2d} + a_{2} a_{3d} - 2 a_{3} a_{2d}\right)}{\left(a_{2} - a_{3}\right)^{2}} $$
3
+ $\frac{a}{dd}$
4
+ $$ \frac{a_{2}^{3} a_{2dd} + a_{2}^{3} a_{3dd} - 3 a_{2}^{2} a_{3} a_{2dd} - a_{2}^{2} a_{3} a_{3dd} + 2 a_{2}^{2} a_{3d}^{2} + 2 a_{2} a_{3}^{2} a_{2dd} - 4 a_{2} a_{3} a_{2d} a_{3d} + 2 a_{3}^{2} a_{2d}^{2}}{\left(a_{2} - a_{3}\right)^{3}} $$
5
+ $\frac{a}{ddd}$
6
+ $$ \frac{a_{2}^{4} a_{2ddd} + a_{2}^{4} a_{3ddd} - 4 a_{2}^{3} a_{3} a_{2ddd} - 2 a_{2}^{3} a_{3} a_{3ddd} + 6 a_{2}^{3} a_{3dd} a_{3d} + 5 a_{2}^{2} a_{3}^{2} a_{2ddd} + a_{2}^{2} a_{3}^{2} a_{3ddd} - 6 a_{2}^{2} a_{3} a_{2dd} a_{3d} - 6 a_{2}^{2} a_{3} a_{2d} a_{3dd} - 6 a_{2}^{2} a_{3} a_{3dd} a_{3d} - 6 a_{2}^{2} a_{2d} a_{3d}^{2} + 6 a_{2}^{2} a_{3d}^{3} - 2 a_{2} a_{3}^{3} a_{2ddd} + 6 a_{2} a_{3}^{2} a_{2dd} a_{2d} + 6 a_{2} a_{3}^{2} a_{2dd} a_{3d} + 6 a_{2} a_{3}^{2} a_{2d} a_{3dd} + 12 a_{2} a_{3} a_{2d}^{2} a_{3d} - 12 a_{2} a_{3} a_{2d} a_{3d}^{2} - 6 a_{3}^{3} a_{2dd} a_{2d} - 6 a_{3}^{2} a_{2d}^{3} + 6 a_{3}^{2} a_{2d}^{2} a_{3d}}{\left(a_{2} - a_{3}\right)^{4}} $$
7
+ $\frac{a}{dddd}$
8
+ $$ \frac{a_{2}^{5} a_{2dddd} + a_{2}^{5} a_{3dddd} - 5 a_{2}^{4} a_{3} a_{2dddd} - 3 a_{2}^{4} a_{3} a_{3dddd} + 8 a_{2}^{4} a_{3ddd} a_{3d} + 6 a_{2}^{4} a_{3dd}^{2} + 9 a_{2}^{3} a_{3}^{2} a_{2dddd} + 3 a_{2}^{3} a_{3}^{2} a_{3dddd} - 8 a_{2}^{3} a_{3} a_{2ddd} a_{3d} - 12 a_{2}^{3} a_{3} a_{2dd} a_{3dd} - 8 a_{2}^{3} a_{3} a_{2d} a_{3ddd} - 16 a_{2}^{3} a_{3} a_{3ddd} a_{3d} - 12 a_{2}^{3} a_{3} a_{3dd}^{2} - 12 a_{2}^{3} a_{2dd} a_{3d}^{2} - 24 a_{2}^{3} a_{2d} a_{3dd} a_{3d} + 36 a_{2}^{3} a_{3dd} a_{3d}^{2} - 7 a_{2}^{2} a_{3}^{3} a_{2dddd} - a_{2}^{2} a_{3}^{3} a_{3dddd} + 8 a_{2}^{2} a_{3}^{2} a_{2ddd} a_{2d} + 16 a_{2}^{2} a_{3}^{2} a_{2ddd} a_{3d} + 6 a_{2}^{2} a_{3}^{2} a_{2dd}^{2} + 24 a_{2}^{2} a_{3}^{2} a_{2dd} a_{3dd} + 16 a_{2}^{2} a_{3}^{2} a_{2d} a_{3ddd} + 8 a_{2}^{2} a_{3}^{2} a_{3ddd} a_{3d} + 6 a_{2}^{2} a_{3}^{2} a_{3dd}^{2} + 48 a_{2}^{2} a_{3} a_{2dd} a_{2d} a_{3d} - 12 a_{2}^{2} a_{3} a_{2dd} a_{3d}^{2} + 24 a_{2}^{2} a_{3} a_{2d}^{2} a_{3dd} - 24 a_{2}^{2} a_{3} a_{2d} a_{3dd} a_{3d} - 36 a_{2}^{2} a_{3} a_{3dd} a_{3d}^{2} + 24 a_{2}^{2} a_{2d}^{2} a_{3d}^{2} - 48 a_{2}^{2} a_{2d} a_{3d}^{3} + 24 a_{2}^{2} a_{3d}^{4} + 2 a_{2} a_{3}^{4} a_{2dddd} - 16 a_{2} a_{3}^{3} a_{2ddd} a_{2d} - 8 a_{2} a_{3}^{3} a_{2ddd} a_{3d} - 12 a_{2} a_{3}^{3} a_{2dd}^{2} - 12 a_{2} a_{3}^{3} a_{2dd} a_{3dd} - 8 a_{2} a_{3}^{3} a_{2d} a_{3ddd} - 36 a_{2} a_{3}^{2} a_{2dd} a_{2d}^{2} - 24 a_{2} a_{3}^{2} a_{2dd} a_{2d} a_{3d} + 24 a_{2} a_{3}^{2} a_{2dd} a_{3d}^{2} - 12 a_{2} a_{3}^{2} a_{2d}^{2} a_{3dd} + 48 a_{2} a_{3}^{2} a_{2d} a_{3dd} a_{3d} - 48 a_{2} a_{3} a_{2d}^{3} a_{3d} + 96 a_{2} a_{3} a_{2d}^{2} a_{3d}^{2} - 48 a_{2} a_{3} a_{2d} a_{3d}^{3} + 8 a_{3}^{4} a_{2ddd} a_{2d} + 6 a_{3}^{4} a_{2dd}^{2} + 36 a_{3}^{3} a_{2dd} a_{2d}^{2} - 24 a_{3}^{3} a_{2dd} a_{2d} a_{3d} - 12 a_{3}^{3} a_{2d}^{2} a_{3dd} + 24 a_{3}^{2} a_{2d}^{4} - 48 a_{3}^{2} a_{2d}^{3} a_{3d} + 24 a_{3}^{2} a_{2d}^{2} a_{3d}^{2}}{\left(a_{2} - a_{3}\right)^{5}} $$
9
+ $\frac{a}{t}$
10
+ $$ \frac{a_{2} \left(a_{2} a_{2t} + a_{2} a_{3t} - 2 a_{3} a_{2t}\right)}{\left(a_{2} - a_{3}\right)^{2}} $$
11
+ $\frac{a}{td}$
12
+ $$ \frac{a_{2}^{3} a_{2td} + a_{2}^{3} a_{3td} - 3 a_{2}^{2} a_{3} a_{2td} - a_{2}^{2} a_{3} a_{3td} + 2 a_{2}^{2} a_{3d} a_{3t} + 2 a_{2} a_{3}^{2} a_{2td} - 2 a_{2} a_{3} a_{2d} a_{3t} - 2 a_{2} a_{3} a_{2t} a_{3d} + 2 a_{3}^{2} a_{2d} a_{2t}}{\left(a_{2} - a_{3}\right)^{3}} $$
13
+ $\frac{a}{dt}$
14
+ $$ \frac{a_{2}^{3} a_{2td} + a_{2}^{3} a_{3td} - 3 a_{2}^{2} a_{3} a_{2td} - a_{2}^{2} a_{3} a_{3td} + 2 a_{2}^{2} a_{3d} a_{3t} + 2 a_{2} a_{3}^{2} a_{2td} - 2 a_{2} a_{3} a_{2d} a_{3t} - 2 a_{2} a_{3} a_{2t} a_{3d} + 2 a_{3}^{2} a_{2d} a_{2t}}{\left(a_{2} - a_{3}\right)^{3}} $$
15
+ $\frac{a}{tdd}$
16
+ $$ \frac{a_{2}^{4} a_{2tdd} + a_{2}^{4} a_{3tdd} - 4 a_{2}^{3} a_{3} a_{2tdd} - 2 a_{2}^{3} a_{3} a_{3tdd} + 2 a_{2}^{3} a_{3dd} a_{3t} + 4 a_{2}^{3} a_{3d} a_{3td} + 5 a_{2}^{2} a_{3}^{2} a_{2tdd} + a_{2}^{2} a_{3}^{2} a_{3tdd} - 2 a_{2}^{2} a_{3} a_{2dd} a_{3t} - 4 a_{2}^{2} a_{3} a_{2d} a_{3td} - 4 a_{2}^{2} a_{3} a_{2td} a_{3d} - 2 a_{2}^{2} a_{3} a_{2t} a_{3dd} - 2 a_{2}^{2} a_{3} a_{3dd} a_{3t} - 4 a_{2}^{2} a_{3} a_{3d} a_{3td} - 4 a_{2}^{2} a_{2d} a_{3d} a_{3t} - 2 a_{2}^{2} a_{2t} a_{3d}^{2} + 6 a_{2}^{2} a_{3d}^{2} a_{3t} - 2 a_{2} a_{3}^{3} a_{2tdd} + 2 a_{2} a_{3}^{2} a_{2dd} a_{2t} + 2 a_{2} a_{3}^{2} a_{2dd} a_{3t} + 4 a_{2} a_{3}^{2} a_{2d} a_{2td} + 4 a_{2} a_{3}^{2} a_{2d} a_{3td} + 4 a_{2} a_{3}^{2} a_{2td} a_{3d} + 2 a_{2} a_{3}^{2} a_{2t} a_{3dd} + 4 a_{2} a_{3} a_{2d}^{2} a_{3t} + 8 a_{2} a_{3} a_{2d} a_{2t} a_{3d} - 8 a_{2} a_{3} a_{2d} a_{3d} a_{3t} - 4 a_{2} a_{3} a_{2t} a_{3d}^{2} - 2 a_{3}^{3} a_{2dd} a_{2t} - 4 a_{3}^{3} a_{2d} a_{2td} - 6 a_{3}^{2} a_{2d}^{2} a_{2t} + 2 a_{3}^{2} a_{2d}^{2} a_{3t} + 4 a_{3}^{2} a_{2d} a_{2t} a_{3d}}{\left(a_{2} - a_{3}\right)^{4}} $$
17
+ $\frac{a}{ddt}$
18
+ $$ \frac{a_{2}^{4} a_{2tdd} + a_{2}^{4} a_{3tdd} - 4 a_{2}^{3} a_{3} a_{2tdd} - 2 a_{2}^{3} a_{3} a_{3tdd} + 2 a_{2}^{3} a_{3dd} a_{3t} + 4 a_{2}^{3} a_{3d} a_{3td} + 5 a_{2}^{2} a_{3}^{2} a_{2tdd} + a_{2}^{2} a_{3}^{2} a_{3tdd} - 2 a_{2}^{2} a_{3} a_{2dd} a_{3t} - 4 a_{2}^{2} a_{3} a_{2d} a_{3td} - 4 a_{2}^{2} a_{3} a_{2td} a_{3d} - 2 a_{2}^{2} a_{3} a_{2t} a_{3dd} - 2 a_{2}^{2} a_{3} a_{3dd} a_{3t} - 4 a_{2}^{2} a_{3} a_{3d} a_{3td} - 4 a_{2}^{2} a_{2d} a_{3d} a_{3t} - 2 a_{2}^{2} a_{2t} a_{3d}^{2} + 6 a_{2}^{2} a_{3d}^{2} a_{3t} - 2 a_{2} a_{3}^{3} a_{2tdd} + 2 a_{2} a_{3}^{2} a_{2dd} a_{2t} + 2 a_{2} a_{3}^{2} a_{2dd} a_{3t} + 4 a_{2} a_{3}^{2} a_{2d} a_{2td} + 4 a_{2} a_{3}^{2} a_{2d} a_{3td} + 4 a_{2} a_{3}^{2} a_{2td} a_{3d} + 2 a_{2} a_{3}^{2} a_{2t} a_{3dd} + 4 a_{2} a_{3} a_{2d}^{2} a_{3t} + 8 a_{2} a_{3} a_{2d} a_{2t} a_{3d} - 8 a_{2} a_{3} a_{2d} a_{3d} a_{3t} - 4 a_{2} a_{3} a_{2t} a_{3d}^{2} - 2 a_{3}^{3} a_{2dd} a_{2t} - 4 a_{3}^{3} a_{2d} a_{2td} - 6 a_{3}^{2} a_{2d}^{2} a_{2t} + 2 a_{3}^{2} a_{2d}^{2} a_{3t} + 4 a_{3}^{2} a_{2d} a_{2t} a_{3d}}{\left(a_{2} - a_{3}\right)^{4}} $$
19
+ $\frac{a}{tddd}$
20
+ $$ \frac{a_{2}^{5} a_{2tddd} + a_{2}^{5} a_{3tddd} - 5 a_{2}^{4} a_{3} a_{2tddd} - 3 a_{2}^{4} a_{3} a_{3tddd} + 2 a_{2}^{4} a_{3ddd} a_{3t} + 6 a_{2}^{4} a_{3dd} a_{3td} + 6 a_{2}^{4} a_{3d} a_{3tdd} + 9 a_{2}^{3} a_{3}^{2} a_{2tddd} + 3 a_{2}^{3} a_{3}^{2} a_{3tddd} - 2 a_{2}^{3} a_{3} a_{2ddd} a_{3t} - 6 a_{2}^{3} a_{3} a_{2dd} a_{3td} - 6 a_{2}^{3} a_{3} a_{2d} a_{3tdd} - 6 a_{2}^{3} a_{3} a_{2tdd} a_{3d} - 6 a_{2}^{3} a_{3} a_{2td} a_{3dd} - 2 a_{2}^{3} a_{3} a_{2t} a_{3ddd} - 4 a_{2}^{3} a_{3} a_{3ddd} a_{3t} - 12 a_{2}^{3} a_{3} a_{3dd} a_{3td} - 12 a_{2}^{3} a_{3} a_{3d} a_{3tdd} - 6 a_{2}^{3} a_{2dd} a_{3d} a_{3t} - 6 a_{2}^{3} a_{2d} a_{3dd} a_{3t} - 12 a_{2}^{3} a_{2d} a_{3d} a_{3td} - 6 a_{2}^{3} a_{2td} a_{3d}^{2} - 6 a_{2}^{3} a_{2t} a_{3dd} a_{3d} + 18 a_{2}^{3} a_{3dd} a_{3d} a_{3t} + 18 a_{2}^{3} a_{3d}^{2} a_{3td} - 7 a_{2}^{2} a_{3}^{3} a_{2tddd} - a_{2}^{2} a_{3}^{3} a_{3tddd} + 2 a_{2}^{2} a_{3}^{2} a_{2ddd} a_{2t} + 4 a_{2}^{2} a_{3}^{2} a_{2ddd} a_{3t} + 6 a_{2}^{2} a_{3}^{2} a_{2dd} a_{2td} + 12 a_{2}^{2} a_{3}^{2} a_{2dd} a_{3td} + 6 a_{2}^{2} a_{3}^{2} a_{2d} a_{2tdd} + 12 a_{2}^{2} a_{3}^{2} a_{2d} a_{3tdd} + 12 a_{2}^{2} a_{3}^{2} a_{2tdd} a_{3d} + 12 a_{2}^{2} a_{3}^{2} a_{2td} a_{3dd} + 4 a_{2}^{2} a_{3}^{2} a_{2t} a_{3ddd} + 2 a_{2}^{2} a_{3}^{2} a_{3ddd} a_{3t} + 6 a_{2}^{2} a_{3}^{2} a_{3dd} a_{3td} + 6 a_{2}^{2} a_{3}^{2} a_{3d} a_{3tdd} + 12 a_{2}^{2} a_{3} a_{2dd} a_{2d} a_{3t} + 12 a_{2}^{2} a_{3} a_{2dd} a_{2t} a_{3d} - 6 a_{2}^{2} a_{3} a_{2dd} a_{3d} a_{3t} + 12 a_{2}^{2} a_{3} a_{2d}^{2} a_{3td} + 24 a_{2}^{2} a_{3} a_{2d} a_{2td} a_{3d} + 12 a_{2}^{2} a_{3} a_{2d} a_{2t} a_{3dd} - 6 a_{2}^{2} a_{3} a_{2d} a_{3dd} a_{3t} - 12 a_{2}^{2} a_{3} a_{2d} a_{3d} a_{3td} - 6 a_{2}^{2} a_{3} a_{2td} a_{3d}^{2} - 6 a_{2}^{2} a_{3} a_{2t} a_{3dd} a_{3d} - 18 a_{2}^{2} a_{3} a_{3dd} a_{3d} a_{3t} - 18 a_{2}^{2} a_{3} a_{3d}^{2} a_{3td} + 12 a_{2}^{2} a_{2d}^{2} a_{3d} a_{3t} + 12 a_{2}^{2} a_{2d} a_{2t} a_{3d}^{2} - 36 a_{2}^{2} a_{2d} a_{3d}^{2} a_{3t} - 12 a_{2}^{2} a_{2t} a_{3d}^{3} + 24 a_{2}^{2} a_{3d}^{3} a_{3t} + 2 a_{2} a_{3}^{4} a_{2tddd} - 4 a_{2} a_{3}^{3} a_{2ddd} a_{2t} - 2 a_{2} a_{3}^{3} a_{2ddd} a_{3t} - 12 a_{2} a_{3}^{3} a_{2dd} a_{2td} - 6 a_{2} a_{3}^{3} a_{2dd} a_{3td} - 12 a_{2} a_{3}^{3} a_{2d} a_{2tdd} - 6 a_{2} a_{3}^{3} a_{2d} a_{3tdd} - 6 a_{2} a_{3}^{3} a_{2tdd} a_{3d} - 6 a_{2} a_{3}^{3} a_{2td} a_{3dd} - 2 a_{2} a_{3}^{3} a_{2t} a_{3ddd} - 18 a_{2} a_{3}^{2} a_{2dd} a_{2d} a_{2t} - 6 a_{2} a_{3}^{2} a_{2dd} a_{2d} a_{3t} - 6 a_{2} a_{3}^{2} a_{2dd} a_{2t} a_{3d} + 12 a_{2} a_{3}^{2} a_{2dd} a_{3d} a_{3t} - 18 a_{2} a_{3}^{2} a_{2d}^{2} a_{2td} - 6 a_{2} a_{3}^{2} a_{2d}^{2} a_{3td} - 12 a_{2} a_{3}^{2} a_{2d} a_{2td} a_{3d} - 6 a_{2} a_{3}^{2} a_{2d} a_{2t} a_{3dd} + 12 a_{2} a_{3}^{2} a_{2d} a_{3dd} a_{3t} + 24 a_{2} a_{3}^{2} a_{2d} a_{3d} a_{3td} + 12 a_{2} a_{3}^{2} a_{2td} a_{3d}^{2} + 12 a_{2} a_{3}^{2} a_{2t} a_{3dd} a_{3d} - 12 a_{2} a_{3} a_{2d}^{3} a_{3t} - 36 a_{2} a_{3} a_{2d}^{2} a_{2t} a_{3d} + 48 a_{2} a_{3} a_{2d}^{2} a_{3d} a_{3t} + 48 a_{2} a_{3} a_{2d} a_{2t} a_{3d}^{2} - 36 a_{2} a_{3} a_{2d} a_{3d}^{2} a_{3t} - 12 a_{2} a_{3} a_{2t} a_{3d}^{3} + 2 a_{3}^{4} a_{2ddd} a_{2t} + 6 a_{3}^{4} a_{2dd} a_{2td} + 6 a_{3}^{4} a_{2d} a_{2tdd} + 18 a_{3}^{3} a_{2dd} a_{2d} a_{2t} - 6 a_{3}^{3} a_{2dd} a_{2d} a_{3t} - 6 a_{3}^{3} a_{2dd} a_{2t} a_{3d} + 18 a_{3}^{3} a_{2d}^{2} a_{2td} - 6 a_{3}^{3} a_{2d}^{2} a_{3td} - 12 a_{3}^{3} a_{2d} a_{2td} a_{3d} - 6 a_{3}^{3} a_{2d} a_{2t} a_{3dd} + 24 a_{3}^{2} a_{2d}^{3} a_{2t} - 12 a_{3}^{2} a_{2d}^{3} a_{3t} - 36 a_{3}^{2} a_{2d}^{2} a_{2t} a_{3d} + 12 a_{3}^{2} a_{2d}^{2} a_{3d} a_{3t} + 12 a_{3}^{2} a_{2d} a_{2t} a_{3d}^{2}}{\left(a_{2} - a_{3}\right)^{5}} $$
21
+ $\frac{a}{dddt}$
22
+ $$ \frac{a_{2}^{5} a_{2tddd} + a_{2}^{5} a_{3tddd} - 5 a_{2}^{4} a_{3} a_{2tddd} - 3 a_{2}^{4} a_{3} a_{3tddd} + 2 a_{2}^{4} a_{3ddd} a_{3t} + 6 a_{2}^{4} a_{3dd} a_{3td} + 6 a_{2}^{4} a_{3d} a_{3tdd} + 9 a_{2}^{3} a_{3}^{2} a_{2tddd} + 3 a_{2}^{3} a_{3}^{2} a_{3tddd} - 2 a_{2}^{3} a_{3} a_{2ddd} a_{3t} - 6 a_{2}^{3} a_{3} a_{2dd} a_{3td} - 6 a_{2}^{3} a_{3} a_{2d} a_{3tdd} - 6 a_{2}^{3} a_{3} a_{2tdd} a_{3d} - 6 a_{2}^{3} a_{3} a_{2td} a_{3dd} - 2 a_{2}^{3} a_{3} a_{2t} a_{3ddd} - 4 a_{2}^{3} a_{3} a_{3ddd} a_{3t} - 12 a_{2}^{3} a_{3} a_{3dd} a_{3td} - 12 a_{2}^{3} a_{3} a_{3d} a_{3tdd} - 6 a_{2}^{3} a_{2dd} a_{3d} a_{3t} - 6 a_{2}^{3} a_{2d} a_{3dd} a_{3t} - 12 a_{2}^{3} a_{2d} a_{3d} a_{3td} - 6 a_{2}^{3} a_{2td} a_{3d}^{2} - 6 a_{2}^{3} a_{2t} a_{3dd} a_{3d} + 18 a_{2}^{3} a_{3dd} a_{3d} a_{3t} + 18 a_{2}^{3} a_{3d}^{2} a_{3td} - 7 a_{2}^{2} a_{3}^{3} a_{2tddd} - a_{2}^{2} a_{3}^{3} a_{3tddd} + 2 a_{2}^{2} a_{3}^{2} a_{2ddd} a_{2t} + 4 a_{2}^{2} a_{3}^{2} a_{2ddd} a_{3t} + 6 a_{2}^{2} a_{3}^{2} a_{2dd} a_{2td} + 12 a_{2}^{2} a_{3}^{2} a_{2dd} a_{3td} + 6 a_{2}^{2} a_{3}^{2} a_{2d} a_{2tdd} + 12 a_{2}^{2} a_{3}^{2} a_{2d} a_{3tdd} + 12 a_{2}^{2} a_{3}^{2} a_{2tdd} a_{3d} + 12 a_{2}^{2} a_{3}^{2} a_{2td} a_{3dd} + 4 a_{2}^{2} a_{3}^{2} a_{2t} a_{3ddd} + 2 a_{2}^{2} a_{3}^{2} a_{3ddd} a_{3t} + 6 a_{2}^{2} a_{3}^{2} a_{3dd} a_{3td} + 6 a_{2}^{2} a_{3}^{2} a_{3d} a_{3tdd} + 12 a_{2}^{2} a_{3} a_{2dd} a_{2d} a_{3t} + 12 a_{2}^{2} a_{3} a_{2dd} a_{2t} a_{3d} - 6 a_{2}^{2} a_{3} a_{2dd} a_{3d} a_{3t} + 12 a_{2}^{2} a_{3} a_{2d}^{2} a_{3td} + 24 a_{2}^{2} a_{3} a_{2d} a_{2td} a_{3d} + 12 a_{2}^{2} a_{3} a_{2d} a_{2t} a_{3dd} - 6 a_{2}^{2} a_{3} a_{2d} a_{3dd} a_{3t} - 12 a_{2}^{2} a_{3} a_{2d} a_{3d} a_{3td} - 6 a_{2}^{2} a_{3} a_{2td} a_{3d}^{2} - 6 a_{2}^{2} a_{3} a_{2t} a_{3dd} a_{3d} - 18 a_{2}^{2} a_{3} a_{3dd} a_{3d} a_{3t} - 18 a_{2}^{2} a_{3} a_{3d}^{2} a_{3td} + 12 a_{2}^{2} a_{2d}^{2} a_{3d} a_{3t} + 12 a_{2}^{2} a_{2d} a_{2t} a_{3d}^{2} - 36 a_{2}^{2} a_{2d} a_{3d}^{2} a_{3t} - 12 a_{2}^{2} a_{2t} a_{3d}^{3} + 24 a_{2}^{2} a_{3d}^{3} a_{3t} + 2 a_{2} a_{3}^{4} a_{2tddd} - 4 a_{2} a_{3}^{3} a_{2ddd} a_{2t} - 2 a_{2} a_{3}^{3} a_{2ddd} a_{3t} - 12 a_{2} a_{3}^{3} a_{2dd} a_{2td} - 6 a_{2} a_{3}^{3} a_{2dd} a_{3td} - 12 a_{2} a_{3}^{3} a_{2d} a_{2tdd} - 6 a_{2} a_{3}^{3} a_{2d} a_{3tdd} - 6 a_{2} a_{3}^{3} a_{2tdd} a_{3d} - 6 a_{2} a_{3}^{3} a_{2td} a_{3dd} - 2 a_{2} a_{3}^{3} a_{2t} a_{3ddd} - 18 a_{2} a_{3}^{2} a_{2dd} a_{2d} a_{2t} - 6 a_{2} a_{3}^{2} a_{2dd} a_{2d} a_{3t} - 6 a_{2} a_{3}^{2} a_{2dd} a_{2t} a_{3d} + 12 a_{2} a_{3}^{2} a_{2dd} a_{3d} a_{3t} - 18 a_{2} a_{3}^{2} a_{2d}^{2} a_{2td} - 6 a_{2} a_{3}^{2} a_{2d}^{2} a_{3td} - 12 a_{2} a_{3}^{2} a_{2d} a_{2td} a_{3d} - 6 a_{2} a_{3}^{2} a_{2d} a_{2t} a_{3dd} + 12 a_{2} a_{3}^{2} a_{2d} a_{3dd} a_{3t} + 24 a_{2} a_{3}^{2} a_{2d} a_{3d} a_{3td} + 12 a_{2} a_{3}^{2} a_{2td} a_{3d}^{2} + 12 a_{2} a_{3}^{2} a_{2t} a_{3dd} a_{3d} - 12 a_{2} a_{3} a_{2d}^{3} a_{3t} - 36 a_{2} a_{3} a_{2d}^{2} a_{2t} a_{3d} + 48 a_{2} a_{3} a_{2d}^{2} a_{3d} a_{3t} + 48 a_{2} a_{3} a_{2d} a_{2t} a_{3d}^{2} - 36 a_{2} a_{3} a_{2d} a_{3d}^{2} a_{3t} - 12 a_{2} a_{3} a_{2t} a_{3d}^{3} + 2 a_{3}^{4} a_{2ddd} a_{2t} + 6 a_{3}^{4} a_{2dd} a_{2td} + 6 a_{3}^{4} a_{2d} a_{2tdd} + 18 a_{3}^{3} a_{2dd} a_{2d} a_{2t} - 6 a_{3}^{3} a_{2dd} a_{2d} a_{3t} - 6 a_{3}^{3} a_{2dd} a_{2t} a_{3d} + 18 a_{3}^{3} a_{2d}^{2} a_{2td} - 6 a_{3}^{3} a_{2d}^{2} a_{3td} - 12 a_{3}^{3} a_{2d} a_{2td} a_{3d} - 6 a_{3}^{3} a_{2d} a_{2t} a_{3dd} + 24 a_{3}^{2} a_{2d}^{3} a_{2t} - 12 a_{3}^{2} a_{2d}^{3} a_{3t} - 36 a_{3}^{2} a_{2d}^{2} a_{2t} a_{3d} + 12 a_{3}^{2} a_{2d}^{2} a_{3d} a_{3t} + 12 a_{3}^{2} a_{2d} a_{2t} a_{3d}^{2}}{\left(a_{2} - a_{3}\right)^{5}} $$
23
+ $\frac{a}{tt}$
24
+ $$ \frac{a_{2}^{3} a_{2tt} + a_{2}^{3} a_{3tt} - 3 a_{2}^{2} a_{3} a_{2tt} - a_{2}^{2} a_{3} a_{3tt} + 2 a_{2}^{2} a_{3t}^{2} + 2 a_{2} a_{3}^{2} a_{2tt} - 4 a_{2} a_{3} a_{2t} a_{3t} + 2 a_{3}^{2} a_{2t}^{2}}{\left(a_{2} - a_{3}\right)^{3}} $$