thermolib 0.9.0__tar.gz → 0.9.2__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {thermolib-0.9.0 → thermolib-0.9.2}/Cargo.lock +1 -1
- {thermolib-0.9.0 → thermolib-0.9.2}/Cargo.toml +1 -1
- {thermolib-0.9.0 → thermolib-0.9.2}/PKG-INFO +1 -1
- thermolib-0.9.2/scripts/fit_cp0.py +101 -0
- thermolib-0.9.2/scripts/pc_saft/calc_gly.py +114 -0
- thermolib-0.9.2/scripts/pc_saft/hc_pure.md +15 -0
- thermolib-0.9.2/scripts/pc_saft/hc_pure.py +68 -0
- thermolib-0.9.2/scripts/pc_saft/hs_term.md +37 -0
- thermolib-0.9.2/scripts/pc_saft/hs_term.py +185 -0
- thermolib-0.9.2/scripts/pc_saft/p_term.md +24 -0
- thermolib-0.9.2/scripts/pc_saft/p_term.py +144 -0
- {thermolib-0.9.0 → thermolib-0.9.2}/scripts/pc_saft/x_term.md +10 -0
- {thermolib-0.9.0 → thermolib-0.9.2}/scripts/pc_saft/x_term.py +30 -1
- {thermolib-0.9.0 → thermolib-0.9.2}/src/lib.rs +2 -0
- thermolib-0.9.2/src/pc_saft/assoc_pure.rs +1015 -0
- {thermolib-0.9.0 → thermolib-0.9.2}/src/pc_saft/disp_term.rs +293 -315
- thermolib-0.9.2/src/pc_saft/gii_term.rs +166 -0
- {thermolib-0.9.0 → thermolib-0.9.2}/src/pc_saft/hs_term.rs +13 -11
- {thermolib-0.9.0 → thermolib-0.9.2}/src/pc_saft/macros.rs +24 -24
- thermolib-0.9.2/src/pc_saft/pc_saft_gly_pure.rs +294 -0
- thermolib-0.9.2/src/pc_saft/pc_saft_pure.rs +350 -0
- thermolib-0.9.2/src/pc_saft/polar_term.rs +2159 -0
- thermolib-0.9.2/src/pc_saft.rs +62 -0
- {thermolib-0.9.0 → thermolib-0.9.2}/src/python.rs +2 -0
- thermolib-0.9.0/src/pc_saft/gii_term.rs +0 -110
- thermolib-0.9.0/src/pc_saft/pc_saft_gly.rs +0 -946
- thermolib-0.9.0/src/pc_saft.rs +0 -44
- {thermolib-0.9.0 → thermolib-0.9.2}/.gitignore +0 -0
- {thermolib-0.9.0 → thermolib-0.9.2}/LICENSE +0 -0
- {thermolib-0.9.0 → thermolib-0.9.2}/README.md +0 -0
- {thermolib-0.9.0 → thermolib-0.9.2}/pyproject.toml +0 -0
- {thermolib-0.9.0 → thermolib-0.9.2}/scripts/algorithms/brent_zero.py +0 -0
- {thermolib-0.9.0 → thermolib-0.9.2}/scripts/pc_saft/c_term.md +0 -0
- {thermolib-0.9.0 → thermolib-0.9.2}/scripts/pc_saft/c_term.py +0 -0
- {thermolib-0.9.0 → thermolib-0.9.2}/src/algorithms.rs +0 -0
@@ -0,0 +1,101 @@
|
|
1
|
+
"""
|
2
|
+
Cp0
|
3
|
+
"""
|
4
|
+
|
5
|
+
import numpy as np
|
6
|
+
import matplotlib.pyplot as plt
|
7
|
+
from scipy.optimize import least_squares
|
8
|
+
|
9
|
+
|
10
|
+
# CODATA2018 constants: speed of light in vacuum
|
11
|
+
C = 299792458 # m s^-1
|
12
|
+
# CODATA2018 constants: Planck constant
|
13
|
+
H = 6.62607015e-34 # J Hz^-1
|
14
|
+
# CODATA2018 constants: Boltzmann constant
|
15
|
+
K = 1.380649e-23 # J K^-1
|
16
|
+
# CODATA2018 constants: molar gas constant
|
17
|
+
R = 8.314462618 # J mol^-1 K^-1
|
18
|
+
|
19
|
+
|
20
|
+
def gaussian():
|
21
|
+
# B3LYP/cc-pVTZ+d opt freq => sclZPE=0.9886
|
22
|
+
# B2PLYPD3/cc-pVTZ opt freq => sclZPE=0.983
|
23
|
+
"""
|
24
|
+
# B2PLYPD3/cc-pVTZ opt freq
|
25
|
+
|
26
|
+
Carbon Dioxide
|
27
|
+
|
28
|
+
0 1
|
29
|
+
C 0.00 0.00 0.00
|
30
|
+
O 1.16 0.00 0.00
|
31
|
+
O -1.16 0.00 0.00
|
32
|
+
|
33
|
+
|
34
|
+
"""
|
35
|
+
# g16 < CO2.gjf > CO2.out
|
36
|
+
# freq = [671.6652, 671.6652, 1371.8538, 2417.1567]
|
37
|
+
# freq = [663.7419, 663.7419, 1344.6641, 2403.6794]
|
38
|
+
return
|
39
|
+
|
40
|
+
|
41
|
+
def orca():
|
42
|
+
# B3LYP cc-pVT(+d)Z opt freq => sclZPE=0.9886
|
43
|
+
"""
|
44
|
+
! B3LYP cc-pVT(+d)Z opt freq noautostart miniprint nopop
|
45
|
+
%maxcore 1000
|
46
|
+
%pal nprocs 4 end
|
47
|
+
* xyz 0 1
|
48
|
+
C 0.00 0.00 0.00
|
49
|
+
O 1.16 0.00 0.00
|
50
|
+
O -1.16 0.00 0.00
|
51
|
+
*
|
52
|
+
"""
|
53
|
+
# D:\ORCA_6.0.0\orca CO2.inp > CO2.out
|
54
|
+
# freq = [670.78, 670.78, 1370.62, 2414.32]
|
55
|
+
return
|
56
|
+
|
57
|
+
|
58
|
+
def calc_cp0(temp, freq_plus):
|
59
|
+
"""calculate isobaric heat capacity"""
|
60
|
+
vi = np.array([freq_plus[1:]]).transpose()
|
61
|
+
temp = H * vi / K / temp
|
62
|
+
expt = np.exp(-temp)
|
63
|
+
return R * (np.sum(temp**2 * expt / (1 - expt) ** 2, axis=0) + freq_plus[0])
|
64
|
+
|
65
|
+
|
66
|
+
def aly_lee_cp0(temp, params):
|
67
|
+
"""calculate isobaric heat capacity"""
|
68
|
+
return (
|
69
|
+
params[0]
|
70
|
+
+ params[1] * (params[2] / temp / np.sinh(params[2] / temp)) ** 2
|
71
|
+
+ params[3] * (params[4] / temp / np.cosh(params[4] / temp)) ** 2
|
72
|
+
)
|
73
|
+
|
74
|
+
|
75
|
+
def main():
|
76
|
+
"""main function"""
|
77
|
+
# input parameters: nonlinear molecule or not ?
|
78
|
+
nm = False # CO2 is linear molecule
|
79
|
+
# input parameters: wave length (cm^-1)
|
80
|
+
wave = np.array([670.78, 670.78, 1370.62, 2414.32]) # CO2
|
81
|
+
# input parameters: temperature range
|
82
|
+
temp = list(range(200, 2000, 10))
|
83
|
+
|
84
|
+
freq = C * wave * 100 # vibration frequencies (s^-1)(Hz)
|
85
|
+
freq_plus = np.append([4 if nm else 3.5], freq)
|
86
|
+
cp0 = calc_cp0(temp, freq_plus)
|
87
|
+
|
88
|
+
result = least_squares(
|
89
|
+
lambda params, temp, cp0: aly_lee_cp0(temp, params) - cp0,
|
90
|
+
[1, 1, 1, 1, 1],
|
91
|
+
args=(temp, cp0),
|
92
|
+
)
|
93
|
+
params = np.round(result.x * 100) / 100
|
94
|
+
print("params:", params)
|
95
|
+
plt.scatter(temp, cp0, marker="+", c="g")
|
96
|
+
plt.plot(temp, aly_lee_cp0(temp, params), c="r")
|
97
|
+
plt.show()
|
98
|
+
|
99
|
+
|
100
|
+
if __name__ == "__main__":
|
101
|
+
main()
|
@@ -0,0 +1,114 @@
|
|
1
|
+
"""PcSaftGlyPure"""
|
2
|
+
|
3
|
+
import math
|
4
|
+
from thermolib import PcSaftGlyPure # pylint: disable=no-name-in-module
|
5
|
+
|
6
|
+
|
7
|
+
def g2b_methanol():
|
8
|
+
"""g2b_methanol"""
|
9
|
+
m, sigma, epsilon = 2.1049, 2.9008, 195.80 # m,sigma,epsilon
|
10
|
+
kappa_ab, epsilon_ab = 0.06085, 2477.7 # kappa_ab,epsilon_ab
|
11
|
+
f0, f1, f2 = 1.0714, 1.2621, -0.3698
|
12
|
+
fluid = PcSaftGlyPure(m, sigma, epsilon)
|
13
|
+
fluid.set_2B_assoc_term(kappa_ab, epsilon_ab, f0, f1, f2)
|
14
|
+
return fluid
|
15
|
+
|
16
|
+
|
17
|
+
def g2b_ethanol():
|
18
|
+
"""g2b_ethanol"""
|
19
|
+
m, sigma, epsilon = 2.2266, 3.2625, 214.44 # m,sigma,epsilon
|
20
|
+
kappa_ab, epsilon_ab = 0.02457, 2601.7 # kappa_ab,epsilon_ab
|
21
|
+
f0, f1, f2 = 1.0025, 0.9962, 0.9970
|
22
|
+
fluid = PcSaftGlyPure(m, sigma, epsilon)
|
23
|
+
fluid.set_2B_assoc_term(kappa_ab, epsilon_ab, f0, f1, f2)
|
24
|
+
return fluid
|
25
|
+
|
26
|
+
|
27
|
+
def g2b_npropanol():
|
28
|
+
"""g2b_npropanol"""
|
29
|
+
m, sigma, epsilon = 1.8220, 3.8639, 276.76 # m,sigma,epsilon
|
30
|
+
kappa_ab, epsilon_ab = 0.00539, 2836.6 # kappa_ab,epsilon_ab
|
31
|
+
f0, f1, f2 = 1.4482, 0.1625, 2.2331
|
32
|
+
fluid = PcSaftGlyPure(m, sigma, epsilon)
|
33
|
+
fluid.set_2B_assoc_term(kappa_ab, epsilon_ab, f0, f1, f2)
|
34
|
+
return fluid
|
35
|
+
|
36
|
+
|
37
|
+
def g2b_ipropanol():
|
38
|
+
"""g2b_ipropanol"""
|
39
|
+
m, sigma, epsilon = 2.3181, 3.5750, 247.39 # m,sigma,epsilon
|
40
|
+
kappa_ab, epsilon_ab = 0.00904, 2450.0 # kappa_ab,epsilon_ab
|
41
|
+
f0, f1, f2 = 1.1767, -0.2650, 4.4788
|
42
|
+
fluid = PcSaftGlyPure(m, sigma, epsilon)
|
43
|
+
fluid.set_2B_assoc_term(kappa_ab, epsilon_ab, f0, f1, f2)
|
44
|
+
return fluid
|
45
|
+
|
46
|
+
|
47
|
+
def g2b_nbutanol():
|
48
|
+
"""g2b_nbutanol"""
|
49
|
+
m, sigma, epsilon = 2.4655, 3.7411, 266.14 # m,sigma,epsilon
|
50
|
+
kappa_ab, epsilon_ab = 0.00896, 2605.9 # kappa_ab,epsilon_ab
|
51
|
+
f0, f1, f2 = 1.8210, -1.2714, 6.5992
|
52
|
+
fluid = PcSaftGlyPure(m, sigma, epsilon)
|
53
|
+
fluid.set_2B_assoc_term(kappa_ab, epsilon_ab, f0, f1, f2)
|
54
|
+
return fluid
|
55
|
+
|
56
|
+
|
57
|
+
def gross_methanol():
|
58
|
+
"""gross_methanol"""
|
59
|
+
m, sigma, epsilon = 1.5255, 3.2300, 188.90 # m,sigma,epsilon
|
60
|
+
kappa_ab, epsilon_ab = 0.035176, 2899.5 # kappa_ab,epsilon_ab
|
61
|
+
fluid = PcSaftGlyPure(m, sigma, epsilon)
|
62
|
+
fluid.set_2B_assoc_term(kappa_ab, epsilon_ab, 1, 1, 1)
|
63
|
+
return fluid
|
64
|
+
|
65
|
+
|
66
|
+
def gross_ethanol():
|
67
|
+
"""gross_ethanol"""
|
68
|
+
m, sigma, epsilon = 2.3827, 3.1771, 198.24 # m,sigma,epsilon
|
69
|
+
kappa_ab, epsilon_ab = 0.032384, 2653.4 # kappa_ab,epsilon_ab
|
70
|
+
fluid = PcSaftGlyPure(m, sigma, epsilon)
|
71
|
+
fluid.set_2B_assoc_term(kappa_ab, epsilon_ab, 1, 1, 1)
|
72
|
+
return fluid
|
73
|
+
|
74
|
+
|
75
|
+
def gross_npropanol():
|
76
|
+
"""gross_npropanol"""
|
77
|
+
m, sigma, epsilon = 2.9997, 3.2522, 233.40 # m,sigma,epsilon
|
78
|
+
kappa_ab, epsilon_ab = 0.015268, 2276.8 # kappa_ab,epsilon_ab
|
79
|
+
fluid = PcSaftGlyPure(m, sigma, epsilon)
|
80
|
+
fluid.set_2B_assoc_term(kappa_ab, epsilon_ab, 1, 1, 1)
|
81
|
+
return fluid
|
82
|
+
|
83
|
+
|
84
|
+
def gross_ipropanol():
|
85
|
+
"""gross_ipropanol"""
|
86
|
+
m, sigma, epsilon = 3.0929, 3.2085, 208.42 # m,sigma,epsilon
|
87
|
+
kappa_ab, epsilon_ab = 0.024675, 2253.9 # kappa_ab,epsilon_ab
|
88
|
+
fluid = PcSaftGlyPure(m, sigma, epsilon)
|
89
|
+
fluid.set_2B_assoc_term(kappa_ab, epsilon_ab, 1, 1, 1)
|
90
|
+
return fluid
|
91
|
+
|
92
|
+
|
93
|
+
def gross_nbutanol():
|
94
|
+
"""gross_nbutanol"""
|
95
|
+
m, sigma, epsilon = 2.7515, 3.6139, 259.59 # m,sigma,epsilon
|
96
|
+
kappa_ab, epsilon_ab = 0.006692, 2544.6 # kappa_ab,epsilon_ab
|
97
|
+
fluid = PcSaftGlyPure(m, sigma, epsilon)
|
98
|
+
fluid.set_2B_assoc_term(kappa_ab, epsilon_ab, 1, 1, 1)
|
99
|
+
return fluid
|
100
|
+
|
101
|
+
|
102
|
+
def main():
|
103
|
+
"""main function"""
|
104
|
+
fluid = g2b_methanol()
|
105
|
+
fluid.c_flash()
|
106
|
+
crit_t, crit_p, crit_rho = fluid.T(), fluid.p(), fluid.rho()
|
107
|
+
for temp in range(math.floor(0.6 * crit_t), math.ceil(crit_t)):
|
108
|
+
fluid.t_flash(temp)
|
109
|
+
print(fluid.T_s(), fluid.p_s(), fluid.rho_v(), fluid.rho_l())
|
110
|
+
print(crit_t, crit_p, crit_rho, crit_rho)
|
111
|
+
|
112
|
+
|
113
|
+
if __name__ == "__main__":
|
114
|
+
main()
|
@@ -0,0 +1,15 @@
|
|
1
|
+
$$ hs0 = - \frac{\eta \left(3 \eta - 4\right)}{\left(\eta - 1\right)^{2}} $$
|
2
|
+
$$ hs1 = \frac{2 \left(\eta - 2\right)}{\left(\eta - 1\right)^{3}} $$
|
3
|
+
$$ hs2 = - \frac{2 \left(2 \eta - 5\right)}{\left(\eta - 1\right)^{4}} $$
|
4
|
+
$$ hs3 = \frac{12 \left(\eta - 3\right)}{\left(\eta - 1\right)^{5}} $$
|
5
|
+
$$ hs4 = - \frac{24 \left(2 \eta - 7\right)}{\left(\eta - 1\right)^{6}} $$
|
6
|
+
$$ gii0 = \frac{\eta - 2}{2 \left(\eta - 1\right)^{3}} $$
|
7
|
+
$$ gii1 = - \frac{2 \eta - 5}{2 \left(\eta - 1\right)^{4}} $$
|
8
|
+
$$ gii2 = \frac{3 \left(\eta - 3\right)}{\left(\eta - 1\right)^{5}} $$
|
9
|
+
$$ gii3 = - \frac{6 \left(2 \eta - 7\right)}{\left(\eta - 1\right)^{6}} $$
|
10
|
+
$$ gii4 = \frac{60 \left(\eta - 4\right)}{\left(\eta - 1\right)^{7}} $$
|
11
|
+
$$ lng0 = \log{\left(\frac{1 - \frac{\eta}{2}}{\left(1 - \eta\right)^{3}} \right)} $$
|
12
|
+
$$ lng1 = - \frac{2 \eta - 5}{\left(\eta - 2\right) \left(\eta - 1\right)} $$
|
13
|
+
$$ lng2 = \frac{2 \eta^{2} - 10 \eta + 11}{\left(\eta - 2\right)^{2} \left(\eta - 1\right)^{2}} $$
|
14
|
+
$$ lng3 = - \frac{2 \left(2 \eta^{3} - 15 \eta^{2} + 33 \eta - 23\right)}{\left(\eta - 2\right)^{3} \left(\eta - 1\right)^{3}} $$
|
15
|
+
$$ lng4 = \frac{6 \left(2 \eta^{4} - 20 \eta^{3} + 66 \eta^{2} - 92 \eta + 47\right)}{\left(\eta - 2\right)^{4} \left(\eta - 1\right)^{4}} $$
|
@@ -0,0 +1,68 @@
|
|
1
|
+
"""
|
2
|
+
HcPure
|
3
|
+
"""
|
4
|
+
|
5
|
+
import sympy as sp
|
6
|
+
|
7
|
+
|
8
|
+
eta = sp.symbols("eta")
|
9
|
+
|
10
|
+
|
11
|
+
hs = eta * (4 - 3 * eta) / (1 - eta) ** 2
|
12
|
+
print("$$ hs0 =", sp.latex(hs.factor()), "$$")
|
13
|
+
|
14
|
+
|
15
|
+
hs1 = sp.diff(hs, eta)
|
16
|
+
print("$$ hs1 =", sp.latex(hs1.factor()), "$$")
|
17
|
+
|
18
|
+
|
19
|
+
hs2 = sp.diff(hs1, eta)
|
20
|
+
print("$$ hs2 =", sp.latex(hs2.factor()), "$$")
|
21
|
+
|
22
|
+
|
23
|
+
hs3 = sp.diff(hs2, eta)
|
24
|
+
print("$$ hs3 =", sp.latex(hs3.factor()), "$$")
|
25
|
+
|
26
|
+
|
27
|
+
hs4 = sp.diff(hs3, eta)
|
28
|
+
print("$$ hs4 =", sp.latex(hs4.factor()), "$$")
|
29
|
+
|
30
|
+
|
31
|
+
gii = (2 - eta) / 2 / (1 - eta) ** 3
|
32
|
+
print("$$ gii0 =", sp.latex(gii.factor()), "$$")
|
33
|
+
|
34
|
+
|
35
|
+
gii1 = sp.diff(gii, eta)
|
36
|
+
print("$$ gii1 =", sp.latex(gii1.factor()), "$$")
|
37
|
+
|
38
|
+
|
39
|
+
gii2 = sp.diff(gii1, eta)
|
40
|
+
print("$$ gii2 =", sp.latex(gii2.factor()), "$$")
|
41
|
+
|
42
|
+
|
43
|
+
gii3 = sp.diff(gii2, eta)
|
44
|
+
print("$$ gii3 =", sp.latex(gii3.factor()), "$$")
|
45
|
+
|
46
|
+
|
47
|
+
gii4 = sp.diff(gii3, eta)
|
48
|
+
print("$$ gii4 =", sp.latex(gii4.factor()), "$$")
|
49
|
+
|
50
|
+
|
51
|
+
lng = sp.ln(gii)
|
52
|
+
print("$$ lng0 =", sp.latex(lng.simplify()), "$$")
|
53
|
+
|
54
|
+
|
55
|
+
lng1 = sp.diff(lng, eta)
|
56
|
+
print("$$ lng1 =", sp.latex(lng1.factor()), "$$")
|
57
|
+
|
58
|
+
|
59
|
+
lng2 = sp.diff(lng1, eta)
|
60
|
+
print("$$ lng2 =", sp.latex(lng2.factor()), "$$")
|
61
|
+
|
62
|
+
|
63
|
+
lng3 = sp.diff(lng2, eta)
|
64
|
+
print("$$ lng3 =", sp.latex(lng3.factor()), "$$")
|
65
|
+
|
66
|
+
|
67
|
+
lng4 = sp.diff(lng3, eta)
|
68
|
+
print("$$ lng4 =", sp.latex(lng4.factor()), "$$")
|
@@ -0,0 +1,37 @@
|
|
1
|
+
$$ z0 = - \frac{3 z_{1} z_{2}}{1 - z_{3}} - \frac{z_{2}^{3}}{z_{3} \left(1 - z_{3}\right)^{2}} - \frac{z_{2}^{3} \log{\left(1 - z_{3} \right)}}{z_{3}^{2}} $$
|
2
|
+
$$ z1 = \frac{3 z_{2}}{1 - z_{3}} $$
|
3
|
+
$$ z2 = \frac{3 z_{1}}{1 - z_{3}} + \frac{3 z_{2}^{2}}{z_{3} \left(1 - z_{3}\right)^{2}} + \frac{3 z_{2}^{2} \log{\left(1 - z_{3} \right)}}{z_{3}^{2}} $$
|
4
|
+
$$ z3 = \frac{3 z_{1} z_{2}}{\left(1 - z_{3}\right)^{2}} + \frac{2 z_{2}^{3}}{z_{3} \left(1 - z_{3}\right)^{3}} - \frac{z_{2}^{3}}{z_{3}^{2} \left(1 - z_{3}\right)} - \frac{z_{2}^{3}}{z_{3}^{2} \left(1 - z_{3}\right)^{2}} - \frac{2 z_{2}^{3} \log{\left(1 - z_{3} \right)}}{z_{3}^{3}} $$
|
5
|
+
$$ \alpha^{hs}_\rho = \frac{z_{2} \left(3 z_{1} z_{3} - 3 z_{1} + z_{2}^{2} z_{3} - 3 z_{2}^{2}\right)}{z_{0} \left(z_{3} - 1\right)^{3}} $$
|
6
|
+
$$ z0z0 = \frac{6 z_{1} z_{2}}{1 - z_{3}} + \frac{2 z_{2}^{3}}{z_{3} \left(1 - z_{3}\right)^{2}} + \frac{2 z_{2}^{3} \log{\left(1 - z_{3} \right)}}{z_{3}^{2}} $$
|
7
|
+
$$ z0z1 = - \frac{6 z_{2}}{1 - z_{3}} $$
|
8
|
+
$$ z0z2 = - \frac{6 z_{1}}{1 - z_{3}} - \frac{6 z_{2}^{2}}{z_{3} \left(1 - z_{3}\right)^{2}} - \frac{6 z_{2}^{2} \log{\left(1 - z_{3} \right)}}{z_{3}^{2}} $$
|
9
|
+
$$ z0z3 = - \frac{6 z_{1} z_{2}}{\left(1 - z_{3}\right)^{2}} - \frac{4 z_{2}^{3}}{z_{3} \left(1 - z_{3}\right)^{3}} + \frac{2 z_{2}^{3}}{z_{3}^{2} \left(1 - z_{3}\right)} + \frac{2 z_{2}^{3}}{z_{3}^{2} \left(1 - z_{3}\right)^{2}} + \frac{4 z_{2}^{3} \log{\left(1 - z_{3} \right)}}{z_{3}^{3}} $$
|
10
|
+
$$ z1z1 = 0 $$
|
11
|
+
$$ z1z2 = \frac{6}{1 - z_{3}} $$
|
12
|
+
$$ z1z3 = \frac{6 z_{2}}{\left(1 - z_{3}\right)^{2}} $$
|
13
|
+
$$ z2z2 = \frac{6 z_{2}}{z_{3} \left(1 - z_{3}\right)^{2}} + \frac{6 z_{2} \log{\left(1 - z_{3} \right)}}{z_{3}^{2}} $$
|
14
|
+
$$ z2z3 = \frac{6 z_{1}}{\left(1 - z_{3}\right)^{2}} + \frac{12 z_{2}^{2}}{z_{3} \left(1 - z_{3}\right)^{3}} - \frac{6 z_{2}^{2}}{z_{3}^{2} \left(1 - z_{3}\right)} - \frac{6 z_{2}^{2}}{z_{3}^{2} \left(1 - z_{3}\right)^{2}} - \frac{12 z_{2}^{2} \log{\left(1 - z_{3} \right)}}{z_{3}^{3}} $$
|
15
|
+
$$ z3z3 = \frac{6 z_{1} z_{2}}{\left(1 - z_{3}\right)^{3}} + \frac{6 z_{2}^{3}}{z_{3} \left(1 - z_{3}\right)^{4}} - \frac{z_{2}^{3}}{z_{3}^{2} \left(1 - z_{3}\right)^{2}} - \frac{4 z_{2}^{3}}{z_{3}^{2} \left(1 - z_{3}\right)^{3}} + \frac{4 z_{2}^{3}}{z_{3}^{3} \left(1 - z_{3}\right)} + \frac{2 z_{2}^{3}}{z_{3}^{3} \left(1 - z_{3}\right)^{2}} + \frac{6 z_{2}^{3} \log{\left(1 - z_{3} \right)}}{z_{3}^{4}} $$
|
16
|
+
$$ \alpha^{hs}_{\rho\rho} = - \frac{z_{2} \left(6 z_{1} z_{3}^{2} - 6 z_{1} z_{3} + z_{2}^{2} z_{3}^{2} - 4 z_{2}^{2} z_{3} - 3 z_{2}^{2}\right)}{z_{0} \left(z_{3} - 1\right)^{4}} $$
|
17
|
+
$$ z0z0z0 = - \frac{18 z_{1} z_{2}}{1 - z_{3}} - \frac{6 z_{2}^{3}}{z_{3} \left(1 - z_{3}\right)^{2}} - \frac{6 z_{2}^{3} \log{\left(1 - z_{3} \right)}}{z_{3}^{2}} $$
|
18
|
+
$$ z0z0z1 = \frac{18 z_{2}}{1 - z_{3}} $$
|
19
|
+
$$ z0z0z2 = \frac{18 z_{1}}{1 - z_{3}} + \frac{18 z_{2}^{2}}{z_{3} \left(1 - z_{3}\right)^{2}} + \frac{18 z_{2}^{2} \log{\left(1 - z_{3} \right)}}{z_{3}^{2}} $$
|
20
|
+
$$ z0z0z3 = \frac{18 z_{1} z_{2}}{\left(1 - z_{3}\right)^{2}} + \frac{12 z_{2}^{3}}{z_{3} \left(1 - z_{3}\right)^{3}} - \frac{6 z_{2}^{3}}{z_{3}^{2} \left(1 - z_{3}\right)} - \frac{6 z_{2}^{3}}{z_{3}^{2} \left(1 - z_{3}\right)^{2}} - \frac{12 z_{2}^{3} \log{\left(1 - z_{3} \right)}}{z_{3}^{3}} $$
|
21
|
+
$$ z0z1z1 = 0 $$
|
22
|
+
$$ z0z1z2 = - \frac{18}{1 - z_{3}} $$
|
23
|
+
$$ z0z1z3 = - \frac{18 z_{2}}{\left(1 - z_{3}\right)^{2}} $$
|
24
|
+
$$ z0z2z2 = - \frac{18 z_{2}}{z_{3} \left(1 - z_{3}\right)^{2}} - \frac{18 z_{2} \log{\left(1 - z_{3} \right)}}{z_{3}^{2}} $$
|
25
|
+
$$ z0z2z3 = - \frac{18 z_{1}}{\left(1 - z_{3}\right)^{2}} - \frac{36 z_{2}^{2}}{z_{3} \left(1 - z_{3}\right)^{3}} + \frac{18 z_{2}^{2}}{z_{3}^{2} \left(1 - z_{3}\right)} + \frac{18 z_{2}^{2}}{z_{3}^{2} \left(1 - z_{3}\right)^{2}} + \frac{36 z_{2}^{2} \log{\left(1 - z_{3} \right)}}{z_{3}^{3}} $$
|
26
|
+
$$ z0z3z3 = - \frac{18 z_{1} z_{2}}{\left(1 - z_{3}\right)^{3}} - \frac{18 z_{2}^{3}}{z_{3} \left(1 - z_{3}\right)^{4}} + \frac{3 z_{2}^{3}}{z_{3}^{2} \left(1 - z_{3}\right)^{2}} + \frac{12 z_{2}^{3}}{z_{3}^{2} \left(1 - z_{3}\right)^{3}} - \frac{12 z_{2}^{3}}{z_{3}^{3} \left(1 - z_{3}\right)} - \frac{6 z_{2}^{3}}{z_{3}^{3} \left(1 - z_{3}\right)^{2}} - \frac{18 z_{2}^{3} \log{\left(1 - z_{3} \right)}}{z_{3}^{4}} $$
|
27
|
+
$$ z1z1z1 = 0 $$
|
28
|
+
$$ z1z1z2 = 0 $$
|
29
|
+
$$ z1z1z3 = 0 $$
|
30
|
+
$$ z1z2z2 = 0 $$
|
31
|
+
$$ z1z2z3 = \frac{18}{\left(1 - z_{3}\right)^{2}} $$
|
32
|
+
$$ z1z3z3 = \frac{18 z_{2}}{\left(1 - z_{3}\right)^{3}} $$
|
33
|
+
$$ z2z2z2 = \frac{6}{z_{3} \left(1 - z_{3}\right)^{2}} + \frac{6 \log{\left(1 - z_{3} \right)}}{z_{3}^{2}} $$
|
34
|
+
$$ z2z2z3 = \frac{36 z_{2}}{z_{3} \left(1 - z_{3}\right)^{3}} - \frac{18 z_{2}}{z_{3}^{2} \left(1 - z_{3}\right)} - \frac{18 z_{2}}{z_{3}^{2} \left(1 - z_{3}\right)^{2}} - \frac{36 z_{2} \log{\left(1 - z_{3} \right)}}{z_{3}^{3}} $$
|
35
|
+
$$ z2z3z3 = \frac{18 z_{1}}{\left(1 - z_{3}\right)^{3}} + \frac{54 z_{2}^{2}}{z_{3} \left(1 - z_{3}\right)^{4}} - \frac{9 z_{2}^{2}}{z_{3}^{2} \left(1 - z_{3}\right)^{2}} - \frac{36 z_{2}^{2}}{z_{3}^{2} \left(1 - z_{3}\right)^{3}} + \frac{36 z_{2}^{2}}{z_{3}^{3} \left(1 - z_{3}\right)} + \frac{18 z_{2}^{2}}{z_{3}^{3} \left(1 - z_{3}\right)^{2}} + \frac{54 z_{2}^{2} \log{\left(1 - z_{3} \right)}}{z_{3}^{4}} $$
|
36
|
+
$$ z3z3z3 = \frac{18 z_{1} z_{2}}{\left(1 - z_{3}\right)^{4}} + \frac{24 z_{2}^{3}}{z_{3} \left(1 - z_{3}\right)^{5}} - \frac{2 z_{2}^{3}}{z_{3}^{2} \left(1 - z_{3}\right)^{3}} - \frac{18 z_{2}^{3}}{z_{3}^{2} \left(1 - z_{3}\right)^{4}} + \frac{6 z_{2}^{3}}{z_{3}^{3} \left(1 - z_{3}\right)^{2}} + \frac{12 z_{2}^{3}}{z_{3}^{3} \left(1 - z_{3}\right)^{3}} - \frac{18 z_{2}^{3}}{z_{3}^{4} \left(1 - z_{3}\right)} - \frac{6 z_{2}^{3}}{z_{3}^{4} \left(1 - z_{3}\right)^{2}} - \frac{24 z_{2}^{3} \log{\left(1 - z_{3} \right)}}{z_{3}^{5}} $$
|
37
|
+
$$ \alpha^{hs}_{\rho\rho\rho} = \frac{2 z_{2} z_{3} \left(9 z_{1} z_{3}^{2} - 9 z_{1} z_{3} + z_{2}^{2} z_{3}^{2} - 5 z_{2}^{2} z_{3} - 8 z_{2}^{2}\right)}{z_{0} \left(z_{3} - 1\right)^{5}} $$
|
@@ -0,0 +1,185 @@
|
|
1
|
+
"""HsTerm"""
|
2
|
+
|
3
|
+
import sympy as sp
|
4
|
+
|
5
|
+
|
6
|
+
z0, z1, z2, z3 = sp.symbols("z0,z1,z2,z3")
|
7
|
+
hs = (
|
8
|
+
3 * z1 * z2 / (1 - z3) + z2**3 / z3 / (1 - z3) ** 2 + z2**3 / z3**2 * sp.log(1 - z3)
|
9
|
+
) / z0
|
10
|
+
|
11
|
+
|
12
|
+
hs_z0 = sp.diff(hs, z0)
|
13
|
+
print("$$ z0 =", sp.latex(hs_z0 * z0 * z0), "$$")
|
14
|
+
|
15
|
+
|
16
|
+
hs_z1 = sp.diff(hs, z1)
|
17
|
+
print("$$ z1 =", sp.latex(hs_z1 * z0), "$$")
|
18
|
+
|
19
|
+
|
20
|
+
hs_z2 = sp.diff(hs, z2)
|
21
|
+
print("$$ z2 =", sp.latex(hs_z2 * z0), "$$")
|
22
|
+
|
23
|
+
|
24
|
+
hs_z3 = sp.diff(hs, z3)
|
25
|
+
print("$$ z3 =", sp.latex(hs_z3 * z0), "$$")
|
26
|
+
|
27
|
+
|
28
|
+
hs_z = hs_z0 * z0 + hs_z1 * z1 + hs_z2 * z2 + hs_z3 * z3
|
29
|
+
print("$$ \\alpha^{hs}_\\rho =", sp.latex(hs_z.factor()), "$$")
|
30
|
+
|
31
|
+
|
32
|
+
hs_z0z0 = sp.diff(hs_z0, z0)
|
33
|
+
print("$$ z0z0 =", sp.latex(hs_z0z0 * z0 * z0 * z0), "$$")
|
34
|
+
|
35
|
+
|
36
|
+
hs_z0z1 = sp.diff(hs_z0, z1) + sp.diff(hs_z1, z0)
|
37
|
+
print("$$ z0z1 =", sp.latex(hs_z0z1 * z0 * z0), "$$")
|
38
|
+
|
39
|
+
|
40
|
+
hs_z0z2 = sp.diff(hs_z0, z2) + sp.diff(hs_z2, z0)
|
41
|
+
print("$$ z0z2 =", sp.latex(hs_z0z2 * z0 * z0), "$$")
|
42
|
+
|
43
|
+
|
44
|
+
hs_z0z3 = sp.diff(hs_z0, z3) + sp.diff(hs_z3, z0)
|
45
|
+
print("$$ z0z3 =", sp.latex(hs_z0z3 * z0 * z0), "$$")
|
46
|
+
|
47
|
+
|
48
|
+
hs_z1z1 = sp.diff(hs_z1, z1)
|
49
|
+
print("$$ z1z1 =", sp.latex(hs_z1z1 * z0), "$$")
|
50
|
+
|
51
|
+
|
52
|
+
hs_z1z2 = sp.diff(hs_z1, z2) + sp.diff(hs_z2, z1)
|
53
|
+
print("$$ z1z2 =", sp.latex(hs_z1z2 * z0), "$$")
|
54
|
+
|
55
|
+
|
56
|
+
hs_z1z3 = sp.diff(hs_z1, z3) + sp.diff(hs_z3, z1)
|
57
|
+
print("$$ z1z3 =", sp.latex(hs_z1z3 * z0), "$$")
|
58
|
+
|
59
|
+
|
60
|
+
hs_z2z2 = sp.diff(hs_z2, z2)
|
61
|
+
print("$$ z2z2 =", sp.latex(hs_z2z2 * z0), "$$")
|
62
|
+
|
63
|
+
|
64
|
+
hs_z2z3 = sp.diff(hs_z2, z3) + sp.diff(hs_z3, z2)
|
65
|
+
print("$$ z2z3 =", sp.latex(hs_z2z3 * z0), "$$")
|
66
|
+
|
67
|
+
|
68
|
+
hs_z3z3 = sp.diff(hs_z3, z3)
|
69
|
+
print("$$ z3z3 =", sp.latex(hs_z3z3 * z0), "$$")
|
70
|
+
|
71
|
+
|
72
|
+
hs_z0z = z0 * (hs_z0z0 * z0 + hs_z0z1 * z1 + hs_z0z2 * z2 + hs_z0z3 * z3)
|
73
|
+
hs_z1z = z1 * (hs_z1z1 * z1 + hs_z1z2 * z2 + hs_z1z3 * z3)
|
74
|
+
hs_z2z = z2 * (hs_z2z2 * z2 + hs_z2z3 * z3)
|
75
|
+
hs_z3z = z3 * (hs_z3z3 * z3)
|
76
|
+
|
77
|
+
|
78
|
+
hs_zz = hs_z0z + hs_z1z + hs_z2z + hs_z3z
|
79
|
+
print("$$ \\alpha^{hs}_{\\rho\\rho} =", sp.latex(hs_zz.factor()), "$$")
|
80
|
+
|
81
|
+
|
82
|
+
hs_z0z0z0 = sp.diff(hs_z0z0, z0)
|
83
|
+
print("$$ z0z0z0 =", sp.latex(hs_z0z0z0 * z0 * z0 * z0 * z0), "$$")
|
84
|
+
|
85
|
+
|
86
|
+
hs_z0z0z1 = sp.diff(hs_z0z0, z1) + sp.diff(hs_z0z1, z0)
|
87
|
+
print("$$ z0z0z1 =", sp.latex(hs_z0z0z1 * z0 * z0 * z0), "$$")
|
88
|
+
|
89
|
+
|
90
|
+
hs_z0z0z2 = sp.diff(hs_z0z0, z2) + sp.diff(hs_z0z2, z0)
|
91
|
+
print("$$ z0z0z2 =", sp.latex(hs_z0z0z2 * z0 * z0 * z0), "$$")
|
92
|
+
|
93
|
+
|
94
|
+
hs_z0z0z3 = sp.diff(hs_z0z0, z3) + sp.diff(hs_z0z3, z0)
|
95
|
+
print("$$ z0z0z3 =", sp.latex(hs_z0z0z3 * z0 * z0 * z0), "$$")
|
96
|
+
|
97
|
+
|
98
|
+
hs_z0z1z1 = sp.diff(hs_z0z1, z1) + sp.diff(hs_z1z1, z0)
|
99
|
+
print("$$ z0z1z1 =", sp.latex(hs_z0z1z1 * z0 * z0), "$$")
|
100
|
+
|
101
|
+
|
102
|
+
hs_z0z1z2 = sp.diff(hs_z0z1, z2) + sp.diff(hs_z0z2, z1) + sp.diff(hs_z1z2, z0)
|
103
|
+
print("$$ z0z1z2 =", sp.latex(hs_z0z1z2 * z0 * z0), "$$")
|
104
|
+
|
105
|
+
|
106
|
+
hs_z0z1z3 = sp.diff(hs_z0z1, z3) + sp.diff(hs_z0z3, z1) + sp.diff(hs_z1z3, z0)
|
107
|
+
print("$$ z0z1z3 =", sp.latex(hs_z0z1z3 * z0 * z0), "$$")
|
108
|
+
|
109
|
+
|
110
|
+
hs_z0z2z2 = sp.diff(hs_z0z2, z2) + sp.diff(hs_z2z2, z0)
|
111
|
+
print("$$ z0z2z2 =", sp.latex(hs_z0z2z2 * z0 * z0), "$$")
|
112
|
+
|
113
|
+
|
114
|
+
hs_z0z2z3 = sp.diff(hs_z0z2, z3) + sp.diff(hs_z0z3, z2) + sp.diff(hs_z2z3, z0)
|
115
|
+
print("$$ z0z2z3 =", sp.latex(hs_z0z2z3 * z0 * z0), "$$")
|
116
|
+
|
117
|
+
|
118
|
+
hs_z0z3z3 = sp.diff(hs_z0z3, z3) + sp.diff(hs_z3z3, z0)
|
119
|
+
print("$$ z0z3z3 =", sp.latex(hs_z0z3z3 * z0 * z0), "$$")
|
120
|
+
|
121
|
+
|
122
|
+
hs_z1z1z1 = sp.diff(hs_z1z1, z1)
|
123
|
+
print("$$ z1z1z1 =", sp.latex(hs_z1z1z1 * z0), "$$")
|
124
|
+
|
125
|
+
|
126
|
+
hs_z1z1z2 = sp.diff(hs_z1z1, z2) + sp.diff(hs_z1z2, z1)
|
127
|
+
print("$$ z1z1z2 =", sp.latex(hs_z1z1z2 * z0), "$$")
|
128
|
+
|
129
|
+
|
130
|
+
hs_z1z1z3 = sp.diff(hs_z1z1, z3) + sp.diff(hs_z1z3, z1)
|
131
|
+
print("$$ z1z1z3 =", sp.latex(hs_z1z1z3 * z0), "$$")
|
132
|
+
|
133
|
+
|
134
|
+
hs_z1z2z2 = sp.diff(hs_z1z2, z2) + sp.diff(hs_z2z2, z1)
|
135
|
+
print("$$ z1z2z2 =", sp.latex(hs_z1z2z2 * z0), "$$")
|
136
|
+
|
137
|
+
|
138
|
+
hs_z1z2z3 = sp.diff(hs_z1z2, z3) + sp.diff(hs_z1z3, z2) + sp.diff(hs_z2z3, z1)
|
139
|
+
print("$$ z1z2z3 =", sp.latex(hs_z1z2z3 * z0), "$$")
|
140
|
+
|
141
|
+
|
142
|
+
hs_z1z3z3 = sp.diff(hs_z1z3, z3) + sp.diff(hs_z3z3, z1)
|
143
|
+
print("$$ z1z3z3 =", sp.latex(hs_z1z3z3 * z0), "$$")
|
144
|
+
|
145
|
+
|
146
|
+
hs_z2z2z2 = sp.diff(hs_z2z2, z2)
|
147
|
+
print("$$ z2z2z2 =", sp.latex(hs_z2z2z2 * z0), "$$")
|
148
|
+
|
149
|
+
|
150
|
+
hs_z2z2z3 = sp.diff(hs_z2z2, z3) + sp.diff(hs_z2z3, z2)
|
151
|
+
print("$$ z2z2z3 =", sp.latex(hs_z2z2z3 * z0), "$$")
|
152
|
+
|
153
|
+
|
154
|
+
hs_z2z3z3 = sp.diff(hs_z2z3, z3) + sp.diff(hs_z3z3, z2)
|
155
|
+
print("$$ z2z3z3 =", sp.latex(hs_z2z3z3 * z0), "$$")
|
156
|
+
|
157
|
+
|
158
|
+
hs_z3z3z3 = sp.diff(hs_z3z3, z3)
|
159
|
+
print("$$ z3z3z3 =", sp.latex(hs_z3z3z3 * z0), "$$")
|
160
|
+
|
161
|
+
|
162
|
+
hs_z0z0z = z0 * z0 * (hs_z0z0z0 * z0 + hs_z0z0z1 * z1 + hs_z0z0z2 * z2 + hs_z0z0z3 * z3)
|
163
|
+
hs_z0z1z = z0 * z1 * (hs_z0z1z1 * z1 + hs_z0z1z2 * z2 + hs_z0z1z3 * z3)
|
164
|
+
hs_z0z2z = z0 * z2 * (hs_z0z2z2 * z2 + hs_z0z2z3 * z3)
|
165
|
+
hs_z0z3z = z0 * z3 * (hs_z0z3z3 * z3)
|
166
|
+
hs_z0z = hs_z0z0z + hs_z0z1z + hs_z0z2z + hs_z0z3z
|
167
|
+
|
168
|
+
|
169
|
+
hs_z1z1z = z1 * z1 * (hs_z1z1z1 * z1 + hs_z1z1z2 * z2 + hs_z1z1z3 * z3)
|
170
|
+
hs_z1z2z = z1 * z2 * (hs_z1z2z2 * z2 + hs_z1z2z3 * z3)
|
171
|
+
hs_z1z3z = z1 * z3 * (hs_z1z3z3 * z3)
|
172
|
+
hs_z1z = hs_z1z1z + hs_z1z2z + hs_z1z3z
|
173
|
+
|
174
|
+
|
175
|
+
hs_z2z2z = z2 * z2 * (hs_z2z2z2 * z2 + hs_z2z2z3 * z3)
|
176
|
+
hs_z2z3z = z2 * z3 * (hs_z2z3z3 * z3)
|
177
|
+
hs_z2z = hs_z2z2z + hs_z2z3z
|
178
|
+
|
179
|
+
|
180
|
+
hs_z3z3z = z3 * z3 * (hs_z3z3z3 * z3)
|
181
|
+
hs_z3z = hs_z3z3z
|
182
|
+
|
183
|
+
|
184
|
+
hs_zzz = hs_z0z + hs_z1z + hs_z2z + hs_z3z
|
185
|
+
print("$$ \\alpha^{hs}_{\\rho\\rho\\rho} =", sp.latex(hs_zzz.factor()), "$$")
|
@@ -0,0 +1,24 @@
|
|
1
|
+
$\frac{a}{d}$
|
2
|
+
$$ \frac{a_{2} \left(a_{2} a_{2d} + a_{2} a_{3d} - 2 a_{3} a_{2d}\right)}{\left(a_{2} - a_{3}\right)^{2}} $$
|
3
|
+
$\frac{a}{dd}$
|
4
|
+
$$ \frac{a_{2}^{3} a_{2dd} + a_{2}^{3} a_{3dd} - 3 a_{2}^{2} a_{3} a_{2dd} - a_{2}^{2} a_{3} a_{3dd} + 2 a_{2}^{2} a_{3d}^{2} + 2 a_{2} a_{3}^{2} a_{2dd} - 4 a_{2} a_{3} a_{2d} a_{3d} + 2 a_{3}^{2} a_{2d}^{2}}{\left(a_{2} - a_{3}\right)^{3}} $$
|
5
|
+
$\frac{a}{ddd}$
|
6
|
+
$$ \frac{a_{2}^{4} a_{2ddd} + a_{2}^{4} a_{3ddd} - 4 a_{2}^{3} a_{3} a_{2ddd} - 2 a_{2}^{3} a_{3} a_{3ddd} + 6 a_{2}^{3} a_{3dd} a_{3d} + 5 a_{2}^{2} a_{3}^{2} a_{2ddd} + a_{2}^{2} a_{3}^{2} a_{3ddd} - 6 a_{2}^{2} a_{3} a_{2dd} a_{3d} - 6 a_{2}^{2} a_{3} a_{2d} a_{3dd} - 6 a_{2}^{2} a_{3} a_{3dd} a_{3d} - 6 a_{2}^{2} a_{2d} a_{3d}^{2} + 6 a_{2}^{2} a_{3d}^{3} - 2 a_{2} a_{3}^{3} a_{2ddd} + 6 a_{2} a_{3}^{2} a_{2dd} a_{2d} + 6 a_{2} a_{3}^{2} a_{2dd} a_{3d} + 6 a_{2} a_{3}^{2} a_{2d} a_{3dd} + 12 a_{2} a_{3} a_{2d}^{2} a_{3d} - 12 a_{2} a_{3} a_{2d} a_{3d}^{2} - 6 a_{3}^{3} a_{2dd} a_{2d} - 6 a_{3}^{2} a_{2d}^{3} + 6 a_{3}^{2} a_{2d}^{2} a_{3d}}{\left(a_{2} - a_{3}\right)^{4}} $$
|
7
|
+
$\frac{a}{dddd}$
|
8
|
+
$$ \frac{a_{2}^{5} a_{2dddd} + a_{2}^{5} a_{3dddd} - 5 a_{2}^{4} a_{3} a_{2dddd} - 3 a_{2}^{4} a_{3} a_{3dddd} + 8 a_{2}^{4} a_{3ddd} a_{3d} + 6 a_{2}^{4} a_{3dd}^{2} + 9 a_{2}^{3} a_{3}^{2} a_{2dddd} + 3 a_{2}^{3} a_{3}^{2} a_{3dddd} - 8 a_{2}^{3} a_{3} a_{2ddd} a_{3d} - 12 a_{2}^{3} a_{3} a_{2dd} a_{3dd} - 8 a_{2}^{3} a_{3} a_{2d} a_{3ddd} - 16 a_{2}^{3} a_{3} a_{3ddd} a_{3d} - 12 a_{2}^{3} a_{3} a_{3dd}^{2} - 12 a_{2}^{3} a_{2dd} a_{3d}^{2} - 24 a_{2}^{3} a_{2d} a_{3dd} a_{3d} + 36 a_{2}^{3} a_{3dd} a_{3d}^{2} - 7 a_{2}^{2} a_{3}^{3} a_{2dddd} - a_{2}^{2} a_{3}^{3} a_{3dddd} + 8 a_{2}^{2} a_{3}^{2} a_{2ddd} a_{2d} + 16 a_{2}^{2} a_{3}^{2} a_{2ddd} a_{3d} + 6 a_{2}^{2} a_{3}^{2} a_{2dd}^{2} + 24 a_{2}^{2} a_{3}^{2} a_{2dd} a_{3dd} + 16 a_{2}^{2} a_{3}^{2} a_{2d} a_{3ddd} + 8 a_{2}^{2} a_{3}^{2} a_{3ddd} a_{3d} + 6 a_{2}^{2} a_{3}^{2} a_{3dd}^{2} + 48 a_{2}^{2} a_{3} a_{2dd} a_{2d} a_{3d} - 12 a_{2}^{2} a_{3} a_{2dd} a_{3d}^{2} + 24 a_{2}^{2} a_{3} a_{2d}^{2} a_{3dd} - 24 a_{2}^{2} a_{3} a_{2d} a_{3dd} a_{3d} - 36 a_{2}^{2} a_{3} a_{3dd} a_{3d}^{2} + 24 a_{2}^{2} a_{2d}^{2} a_{3d}^{2} - 48 a_{2}^{2} a_{2d} a_{3d}^{3} + 24 a_{2}^{2} a_{3d}^{4} + 2 a_{2} a_{3}^{4} a_{2dddd} - 16 a_{2} a_{3}^{3} a_{2ddd} a_{2d} - 8 a_{2} a_{3}^{3} a_{2ddd} a_{3d} - 12 a_{2} a_{3}^{3} a_{2dd}^{2} - 12 a_{2} a_{3}^{3} a_{2dd} a_{3dd} - 8 a_{2} a_{3}^{3} a_{2d} a_{3ddd} - 36 a_{2} a_{3}^{2} a_{2dd} a_{2d}^{2} - 24 a_{2} a_{3}^{2} a_{2dd} a_{2d} a_{3d} + 24 a_{2} a_{3}^{2} a_{2dd} a_{3d}^{2} - 12 a_{2} a_{3}^{2} a_{2d}^{2} a_{3dd} + 48 a_{2} a_{3}^{2} a_{2d} a_{3dd} a_{3d} - 48 a_{2} a_{3} a_{2d}^{3} a_{3d} + 96 a_{2} a_{3} a_{2d}^{2} a_{3d}^{2} - 48 a_{2} a_{3} a_{2d} a_{3d}^{3} + 8 a_{3}^{4} a_{2ddd} a_{2d} + 6 a_{3}^{4} a_{2dd}^{2} + 36 a_{3}^{3} a_{2dd} a_{2d}^{2} - 24 a_{3}^{3} a_{2dd} a_{2d} a_{3d} - 12 a_{3}^{3} a_{2d}^{2} a_{3dd} + 24 a_{3}^{2} a_{2d}^{4} - 48 a_{3}^{2} a_{2d}^{3} a_{3d} + 24 a_{3}^{2} a_{2d}^{2} a_{3d}^{2}}{\left(a_{2} - a_{3}\right)^{5}} $$
|
9
|
+
$\frac{a}{t}$
|
10
|
+
$$ \frac{a_{2} \left(a_{2} a_{2t} + a_{2} a_{3t} - 2 a_{3} a_{2t}\right)}{\left(a_{2} - a_{3}\right)^{2}} $$
|
11
|
+
$\frac{a}{td}$
|
12
|
+
$$ \frac{a_{2}^{3} a_{2td} + a_{2}^{3} a_{3td} - 3 a_{2}^{2} a_{3} a_{2td} - a_{2}^{2} a_{3} a_{3td} + 2 a_{2}^{2} a_{3d} a_{3t} + 2 a_{2} a_{3}^{2} a_{2td} - 2 a_{2} a_{3} a_{2d} a_{3t} - 2 a_{2} a_{3} a_{2t} a_{3d} + 2 a_{3}^{2} a_{2d} a_{2t}}{\left(a_{2} - a_{3}\right)^{3}} $$
|
13
|
+
$\frac{a}{dt}$
|
14
|
+
$$ \frac{a_{2}^{3} a_{2td} + a_{2}^{3} a_{3td} - 3 a_{2}^{2} a_{3} a_{2td} - a_{2}^{2} a_{3} a_{3td} + 2 a_{2}^{2} a_{3d} a_{3t} + 2 a_{2} a_{3}^{2} a_{2td} - 2 a_{2} a_{3} a_{2d} a_{3t} - 2 a_{2} a_{3} a_{2t} a_{3d} + 2 a_{3}^{2} a_{2d} a_{2t}}{\left(a_{2} - a_{3}\right)^{3}} $$
|
15
|
+
$\frac{a}{tdd}$
|
16
|
+
$$ \frac{a_{2}^{4} a_{2tdd} + a_{2}^{4} a_{3tdd} - 4 a_{2}^{3} a_{3} a_{2tdd} - 2 a_{2}^{3} a_{3} a_{3tdd} + 2 a_{2}^{3} a_{3dd} a_{3t} + 4 a_{2}^{3} a_{3d} a_{3td} + 5 a_{2}^{2} a_{3}^{2} a_{2tdd} + a_{2}^{2} a_{3}^{2} a_{3tdd} - 2 a_{2}^{2} a_{3} a_{2dd} a_{3t} - 4 a_{2}^{2} a_{3} a_{2d} a_{3td} - 4 a_{2}^{2} a_{3} a_{2td} a_{3d} - 2 a_{2}^{2} a_{3} a_{2t} a_{3dd} - 2 a_{2}^{2} a_{3} a_{3dd} a_{3t} - 4 a_{2}^{2} a_{3} a_{3d} a_{3td} - 4 a_{2}^{2} a_{2d} a_{3d} a_{3t} - 2 a_{2}^{2} a_{2t} a_{3d}^{2} + 6 a_{2}^{2} a_{3d}^{2} a_{3t} - 2 a_{2} a_{3}^{3} a_{2tdd} + 2 a_{2} a_{3}^{2} a_{2dd} a_{2t} + 2 a_{2} a_{3}^{2} a_{2dd} a_{3t} + 4 a_{2} a_{3}^{2} a_{2d} a_{2td} + 4 a_{2} a_{3}^{2} a_{2d} a_{3td} + 4 a_{2} a_{3}^{2} a_{2td} a_{3d} + 2 a_{2} a_{3}^{2} a_{2t} a_{3dd} + 4 a_{2} a_{3} a_{2d}^{2} a_{3t} + 8 a_{2} a_{3} a_{2d} a_{2t} a_{3d} - 8 a_{2} a_{3} a_{2d} a_{3d} a_{3t} - 4 a_{2} a_{3} a_{2t} a_{3d}^{2} - 2 a_{3}^{3} a_{2dd} a_{2t} - 4 a_{3}^{3} a_{2d} a_{2td} - 6 a_{3}^{2} a_{2d}^{2} a_{2t} + 2 a_{3}^{2} a_{2d}^{2} a_{3t} + 4 a_{3}^{2} a_{2d} a_{2t} a_{3d}}{\left(a_{2} - a_{3}\right)^{4}} $$
|
17
|
+
$\frac{a}{ddt}$
|
18
|
+
$$ \frac{a_{2}^{4} a_{2tdd} + a_{2}^{4} a_{3tdd} - 4 a_{2}^{3} a_{3} a_{2tdd} - 2 a_{2}^{3} a_{3} a_{3tdd} + 2 a_{2}^{3} a_{3dd} a_{3t} + 4 a_{2}^{3} a_{3d} a_{3td} + 5 a_{2}^{2} a_{3}^{2} a_{2tdd} + a_{2}^{2} a_{3}^{2} a_{3tdd} - 2 a_{2}^{2} a_{3} a_{2dd} a_{3t} - 4 a_{2}^{2} a_{3} a_{2d} a_{3td} - 4 a_{2}^{2} a_{3} a_{2td} a_{3d} - 2 a_{2}^{2} a_{3} a_{2t} a_{3dd} - 2 a_{2}^{2} a_{3} a_{3dd} a_{3t} - 4 a_{2}^{2} a_{3} a_{3d} a_{3td} - 4 a_{2}^{2} a_{2d} a_{3d} a_{3t} - 2 a_{2}^{2} a_{2t} a_{3d}^{2} + 6 a_{2}^{2} a_{3d}^{2} a_{3t} - 2 a_{2} a_{3}^{3} a_{2tdd} + 2 a_{2} a_{3}^{2} a_{2dd} a_{2t} + 2 a_{2} a_{3}^{2} a_{2dd} a_{3t} + 4 a_{2} a_{3}^{2} a_{2d} a_{2td} + 4 a_{2} a_{3}^{2} a_{2d} a_{3td} + 4 a_{2} a_{3}^{2} a_{2td} a_{3d} + 2 a_{2} a_{3}^{2} a_{2t} a_{3dd} + 4 a_{2} a_{3} a_{2d}^{2} a_{3t} + 8 a_{2} a_{3} a_{2d} a_{2t} a_{3d} - 8 a_{2} a_{3} a_{2d} a_{3d} a_{3t} - 4 a_{2} a_{3} a_{2t} a_{3d}^{2} - 2 a_{3}^{3} a_{2dd} a_{2t} - 4 a_{3}^{3} a_{2d} a_{2td} - 6 a_{3}^{2} a_{2d}^{2} a_{2t} + 2 a_{3}^{2} a_{2d}^{2} a_{3t} + 4 a_{3}^{2} a_{2d} a_{2t} a_{3d}}{\left(a_{2} - a_{3}\right)^{4}} $$
|
19
|
+
$\frac{a}{tddd}$
|
20
|
+
$$ \frac{a_{2}^{5} a_{2tddd} + a_{2}^{5} a_{3tddd} - 5 a_{2}^{4} a_{3} a_{2tddd} - 3 a_{2}^{4} a_{3} a_{3tddd} + 2 a_{2}^{4} a_{3ddd} a_{3t} + 6 a_{2}^{4} a_{3dd} a_{3td} + 6 a_{2}^{4} a_{3d} a_{3tdd} + 9 a_{2}^{3} a_{3}^{2} a_{2tddd} + 3 a_{2}^{3} a_{3}^{2} a_{3tddd} - 2 a_{2}^{3} a_{3} a_{2ddd} a_{3t} - 6 a_{2}^{3} a_{3} a_{2dd} a_{3td} - 6 a_{2}^{3} a_{3} a_{2d} a_{3tdd} - 6 a_{2}^{3} a_{3} a_{2tdd} a_{3d} - 6 a_{2}^{3} a_{3} a_{2td} a_{3dd} - 2 a_{2}^{3} a_{3} a_{2t} a_{3ddd} - 4 a_{2}^{3} a_{3} a_{3ddd} a_{3t} - 12 a_{2}^{3} a_{3} a_{3dd} a_{3td} - 12 a_{2}^{3} a_{3} a_{3d} a_{3tdd} - 6 a_{2}^{3} a_{2dd} a_{3d} a_{3t} - 6 a_{2}^{3} a_{2d} a_{3dd} a_{3t} - 12 a_{2}^{3} a_{2d} a_{3d} a_{3td} - 6 a_{2}^{3} a_{2td} a_{3d}^{2} - 6 a_{2}^{3} a_{2t} a_{3dd} a_{3d} + 18 a_{2}^{3} a_{3dd} a_{3d} a_{3t} + 18 a_{2}^{3} a_{3d}^{2} a_{3td} - 7 a_{2}^{2} a_{3}^{3} a_{2tddd} - a_{2}^{2} a_{3}^{3} a_{3tddd} + 2 a_{2}^{2} a_{3}^{2} a_{2ddd} a_{2t} + 4 a_{2}^{2} a_{3}^{2} a_{2ddd} a_{3t} + 6 a_{2}^{2} a_{3}^{2} a_{2dd} a_{2td} + 12 a_{2}^{2} a_{3}^{2} a_{2dd} a_{3td} + 6 a_{2}^{2} a_{3}^{2} a_{2d} a_{2tdd} + 12 a_{2}^{2} a_{3}^{2} a_{2d} a_{3tdd} + 12 a_{2}^{2} a_{3}^{2} a_{2tdd} a_{3d} + 12 a_{2}^{2} a_{3}^{2} a_{2td} a_{3dd} + 4 a_{2}^{2} a_{3}^{2} a_{2t} a_{3ddd} + 2 a_{2}^{2} a_{3}^{2} a_{3ddd} a_{3t} + 6 a_{2}^{2} a_{3}^{2} a_{3dd} a_{3td} + 6 a_{2}^{2} a_{3}^{2} a_{3d} a_{3tdd} + 12 a_{2}^{2} a_{3} a_{2dd} a_{2d} a_{3t} + 12 a_{2}^{2} a_{3} a_{2dd} a_{2t} a_{3d} - 6 a_{2}^{2} a_{3} a_{2dd} a_{3d} a_{3t} + 12 a_{2}^{2} a_{3} a_{2d}^{2} a_{3td} + 24 a_{2}^{2} a_{3} a_{2d} a_{2td} a_{3d} + 12 a_{2}^{2} a_{3} a_{2d} a_{2t} a_{3dd} - 6 a_{2}^{2} a_{3} a_{2d} a_{3dd} a_{3t} - 12 a_{2}^{2} a_{3} a_{2d} a_{3d} a_{3td} - 6 a_{2}^{2} a_{3} a_{2td} a_{3d}^{2} - 6 a_{2}^{2} a_{3} a_{2t} a_{3dd} a_{3d} - 18 a_{2}^{2} a_{3} a_{3dd} a_{3d} a_{3t} - 18 a_{2}^{2} a_{3} a_{3d}^{2} a_{3td} + 12 a_{2}^{2} a_{2d}^{2} a_{3d} a_{3t} + 12 a_{2}^{2} a_{2d} a_{2t} a_{3d}^{2} - 36 a_{2}^{2} a_{2d} a_{3d}^{2} a_{3t} - 12 a_{2}^{2} a_{2t} a_{3d}^{3} + 24 a_{2}^{2} a_{3d}^{3} a_{3t} + 2 a_{2} a_{3}^{4} a_{2tddd} - 4 a_{2} a_{3}^{3} a_{2ddd} a_{2t} - 2 a_{2} a_{3}^{3} a_{2ddd} a_{3t} - 12 a_{2} a_{3}^{3} a_{2dd} a_{2td} - 6 a_{2} a_{3}^{3} a_{2dd} a_{3td} - 12 a_{2} a_{3}^{3} a_{2d} a_{2tdd} - 6 a_{2} a_{3}^{3} a_{2d} a_{3tdd} - 6 a_{2} a_{3}^{3} a_{2tdd} a_{3d} - 6 a_{2} a_{3}^{3} a_{2td} a_{3dd} - 2 a_{2} a_{3}^{3} a_{2t} a_{3ddd} - 18 a_{2} a_{3}^{2} a_{2dd} a_{2d} a_{2t} - 6 a_{2} a_{3}^{2} a_{2dd} a_{2d} a_{3t} - 6 a_{2} a_{3}^{2} a_{2dd} a_{2t} a_{3d} + 12 a_{2} a_{3}^{2} a_{2dd} a_{3d} a_{3t} - 18 a_{2} a_{3}^{2} a_{2d}^{2} a_{2td} - 6 a_{2} a_{3}^{2} a_{2d}^{2} a_{3td} - 12 a_{2} a_{3}^{2} a_{2d} a_{2td} a_{3d} - 6 a_{2} a_{3}^{2} a_{2d} a_{2t} a_{3dd} + 12 a_{2} a_{3}^{2} a_{2d} a_{3dd} a_{3t} + 24 a_{2} a_{3}^{2} a_{2d} a_{3d} a_{3td} + 12 a_{2} a_{3}^{2} a_{2td} a_{3d}^{2} + 12 a_{2} a_{3}^{2} a_{2t} a_{3dd} a_{3d} - 12 a_{2} a_{3} a_{2d}^{3} a_{3t} - 36 a_{2} a_{3} a_{2d}^{2} a_{2t} a_{3d} + 48 a_{2} a_{3} a_{2d}^{2} a_{3d} a_{3t} + 48 a_{2} a_{3} a_{2d} a_{2t} a_{3d}^{2} - 36 a_{2} a_{3} a_{2d} a_{3d}^{2} a_{3t} - 12 a_{2} a_{3} a_{2t} a_{3d}^{3} + 2 a_{3}^{4} a_{2ddd} a_{2t} + 6 a_{3}^{4} a_{2dd} a_{2td} + 6 a_{3}^{4} a_{2d} a_{2tdd} + 18 a_{3}^{3} a_{2dd} a_{2d} a_{2t} - 6 a_{3}^{3} a_{2dd} a_{2d} a_{3t} - 6 a_{3}^{3} a_{2dd} a_{2t} a_{3d} + 18 a_{3}^{3} a_{2d}^{2} a_{2td} - 6 a_{3}^{3} a_{2d}^{2} a_{3td} - 12 a_{3}^{3} a_{2d} a_{2td} a_{3d} - 6 a_{3}^{3} a_{2d} a_{2t} a_{3dd} + 24 a_{3}^{2} a_{2d}^{3} a_{2t} - 12 a_{3}^{2} a_{2d}^{3} a_{3t} - 36 a_{3}^{2} a_{2d}^{2} a_{2t} a_{3d} + 12 a_{3}^{2} a_{2d}^{2} a_{3d} a_{3t} + 12 a_{3}^{2} a_{2d} a_{2t} a_{3d}^{2}}{\left(a_{2} - a_{3}\right)^{5}} $$
|
21
|
+
$\frac{a}{dddt}$
|
22
|
+
$$ \frac{a_{2}^{5} a_{2tddd} + a_{2}^{5} a_{3tddd} - 5 a_{2}^{4} a_{3} a_{2tddd} - 3 a_{2}^{4} a_{3} a_{3tddd} + 2 a_{2}^{4} a_{3ddd} a_{3t} + 6 a_{2}^{4} a_{3dd} a_{3td} + 6 a_{2}^{4} a_{3d} a_{3tdd} + 9 a_{2}^{3} a_{3}^{2} a_{2tddd} + 3 a_{2}^{3} a_{3}^{2} a_{3tddd} - 2 a_{2}^{3} a_{3} a_{2ddd} a_{3t} - 6 a_{2}^{3} a_{3} a_{2dd} a_{3td} - 6 a_{2}^{3} a_{3} a_{2d} a_{3tdd} - 6 a_{2}^{3} a_{3} a_{2tdd} a_{3d} - 6 a_{2}^{3} a_{3} a_{2td} a_{3dd} - 2 a_{2}^{3} a_{3} a_{2t} a_{3ddd} - 4 a_{2}^{3} a_{3} a_{3ddd} a_{3t} - 12 a_{2}^{3} a_{3} a_{3dd} a_{3td} - 12 a_{2}^{3} a_{3} a_{3d} a_{3tdd} - 6 a_{2}^{3} a_{2dd} a_{3d} a_{3t} - 6 a_{2}^{3} a_{2d} a_{3dd} a_{3t} - 12 a_{2}^{3} a_{2d} a_{3d} a_{3td} - 6 a_{2}^{3} a_{2td} a_{3d}^{2} - 6 a_{2}^{3} a_{2t} a_{3dd} a_{3d} + 18 a_{2}^{3} a_{3dd} a_{3d} a_{3t} + 18 a_{2}^{3} a_{3d}^{2} a_{3td} - 7 a_{2}^{2} a_{3}^{3} a_{2tddd} - a_{2}^{2} a_{3}^{3} a_{3tddd} + 2 a_{2}^{2} a_{3}^{2} a_{2ddd} a_{2t} + 4 a_{2}^{2} a_{3}^{2} a_{2ddd} a_{3t} + 6 a_{2}^{2} a_{3}^{2} a_{2dd} a_{2td} + 12 a_{2}^{2} a_{3}^{2} a_{2dd} a_{3td} + 6 a_{2}^{2} a_{3}^{2} a_{2d} a_{2tdd} + 12 a_{2}^{2} a_{3}^{2} a_{2d} a_{3tdd} + 12 a_{2}^{2} a_{3}^{2} a_{2tdd} a_{3d} + 12 a_{2}^{2} a_{3}^{2} a_{2td} a_{3dd} + 4 a_{2}^{2} a_{3}^{2} a_{2t} a_{3ddd} + 2 a_{2}^{2} a_{3}^{2} a_{3ddd} a_{3t} + 6 a_{2}^{2} a_{3}^{2} a_{3dd} a_{3td} + 6 a_{2}^{2} a_{3}^{2} a_{3d} a_{3tdd} + 12 a_{2}^{2} a_{3} a_{2dd} a_{2d} a_{3t} + 12 a_{2}^{2} a_{3} a_{2dd} a_{2t} a_{3d} - 6 a_{2}^{2} a_{3} a_{2dd} a_{3d} a_{3t} + 12 a_{2}^{2} a_{3} a_{2d}^{2} a_{3td} + 24 a_{2}^{2} a_{3} a_{2d} a_{2td} a_{3d} + 12 a_{2}^{2} a_{3} a_{2d} a_{2t} a_{3dd} - 6 a_{2}^{2} a_{3} a_{2d} a_{3dd} a_{3t} - 12 a_{2}^{2} a_{3} a_{2d} a_{3d} a_{3td} - 6 a_{2}^{2} a_{3} a_{2td} a_{3d}^{2} - 6 a_{2}^{2} a_{3} a_{2t} a_{3dd} a_{3d} - 18 a_{2}^{2} a_{3} a_{3dd} a_{3d} a_{3t} - 18 a_{2}^{2} a_{3} a_{3d}^{2} a_{3td} + 12 a_{2}^{2} a_{2d}^{2} a_{3d} a_{3t} + 12 a_{2}^{2} a_{2d} a_{2t} a_{3d}^{2} - 36 a_{2}^{2} a_{2d} a_{3d}^{2} a_{3t} - 12 a_{2}^{2} a_{2t} a_{3d}^{3} + 24 a_{2}^{2} a_{3d}^{3} a_{3t} + 2 a_{2} a_{3}^{4} a_{2tddd} - 4 a_{2} a_{3}^{3} a_{2ddd} a_{2t} - 2 a_{2} a_{3}^{3} a_{2ddd} a_{3t} - 12 a_{2} a_{3}^{3} a_{2dd} a_{2td} - 6 a_{2} a_{3}^{3} a_{2dd} a_{3td} - 12 a_{2} a_{3}^{3} a_{2d} a_{2tdd} - 6 a_{2} a_{3}^{3} a_{2d} a_{3tdd} - 6 a_{2} a_{3}^{3} a_{2tdd} a_{3d} - 6 a_{2} a_{3}^{3} a_{2td} a_{3dd} - 2 a_{2} a_{3}^{3} a_{2t} a_{3ddd} - 18 a_{2} a_{3}^{2} a_{2dd} a_{2d} a_{2t} - 6 a_{2} a_{3}^{2} a_{2dd} a_{2d} a_{3t} - 6 a_{2} a_{3}^{2} a_{2dd} a_{2t} a_{3d} + 12 a_{2} a_{3}^{2} a_{2dd} a_{3d} a_{3t} - 18 a_{2} a_{3}^{2} a_{2d}^{2} a_{2td} - 6 a_{2} a_{3}^{2} a_{2d}^{2} a_{3td} - 12 a_{2} a_{3}^{2} a_{2d} a_{2td} a_{3d} - 6 a_{2} a_{3}^{2} a_{2d} a_{2t} a_{3dd} + 12 a_{2} a_{3}^{2} a_{2d} a_{3dd} a_{3t} + 24 a_{2} a_{3}^{2} a_{2d} a_{3d} a_{3td} + 12 a_{2} a_{3}^{2} a_{2td} a_{3d}^{2} + 12 a_{2} a_{3}^{2} a_{2t} a_{3dd} a_{3d} - 12 a_{2} a_{3} a_{2d}^{3} a_{3t} - 36 a_{2} a_{3} a_{2d}^{2} a_{2t} a_{3d} + 48 a_{2} a_{3} a_{2d}^{2} a_{3d} a_{3t} + 48 a_{2} a_{3} a_{2d} a_{2t} a_{3d}^{2} - 36 a_{2} a_{3} a_{2d} a_{3d}^{2} a_{3t} - 12 a_{2} a_{3} a_{2t} a_{3d}^{3} + 2 a_{3}^{4} a_{2ddd} a_{2t} + 6 a_{3}^{4} a_{2dd} a_{2td} + 6 a_{3}^{4} a_{2d} a_{2tdd} + 18 a_{3}^{3} a_{2dd} a_{2d} a_{2t} - 6 a_{3}^{3} a_{2dd} a_{2d} a_{3t} - 6 a_{3}^{3} a_{2dd} a_{2t} a_{3d} + 18 a_{3}^{3} a_{2d}^{2} a_{2td} - 6 a_{3}^{3} a_{2d}^{2} a_{3td} - 12 a_{3}^{3} a_{2d} a_{2td} a_{3d} - 6 a_{3}^{3} a_{2d} a_{2t} a_{3dd} + 24 a_{3}^{2} a_{2d}^{3} a_{2t} - 12 a_{3}^{2} a_{2d}^{3} a_{3t} - 36 a_{3}^{2} a_{2d}^{2} a_{2t} a_{3d} + 12 a_{3}^{2} a_{2d}^{2} a_{3d} a_{3t} + 12 a_{3}^{2} a_{2d} a_{2t} a_{3d}^{2}}{\left(a_{2} - a_{3}\right)^{5}} $$
|
23
|
+
$\frac{a}{tt}$
|
24
|
+
$$ \frac{a_{2}^{3} a_{2tt} + a_{2}^{3} a_{3tt} - 3 a_{2}^{2} a_{3} a_{2tt} - a_{2}^{2} a_{3} a_{3tt} + 2 a_{2}^{2} a_{3t}^{2} + 2 a_{2} a_{3}^{2} a_{2tt} - 4 a_{2} a_{3} a_{2t} a_{3t} + 2 a_{3}^{2} a_{2t}^{2}}{\left(a_{2} - a_{3}\right)^{3}} $$
|