tglc 0.6.5__tar.gz → 0.6.6__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {tglc-0.6.5/tglc.egg-info → tglc-0.6.6}/PKG-INFO +5 -3
- {tglc-0.6.5 → tglc-0.6.6}/README.rst +1 -0
- {tglc-0.6.5 → tglc-0.6.6}/setup.py +4 -4
- tglc-0.6.6/tglc/__init__.py +3 -0
- {tglc-0.6.5 → tglc-0.6.6}/tglc/effective_psf.py +5 -2
- {tglc-0.6.5 → tglc-0.6.6}/tglc/ffi.py +1 -1
- {tglc-0.6.5 → tglc-0.6.6}/tglc/quick_lc.py +12 -13
- {tglc-0.6.5 → tglc-0.6.6}/tglc/target_lightcurve.py +14 -5
- {tglc-0.6.5 → tglc-0.6.6/tglc.egg-info}/PKG-INFO +5 -3
- {tglc-0.6.5 → tglc-0.6.6}/tglc.egg-info/requires.txt +2 -1
- tglc-0.6.5/tglc/__init__.py +0 -3
- {tglc-0.6.5 → tglc-0.6.6}/LICENSE +0 -0
- {tglc-0.6.5 → tglc-0.6.6}/MANIFEST.in +0 -0
- {tglc-0.6.5 → tglc-0.6.6}/setup.cfg +0 -0
- {tglc-0.6.5 → tglc-0.6.6}/tglc/background_mask/__init__.py +0 -0
- {tglc-0.6.5 → tglc-0.6.6}/tglc/background_mask/median_mask.fits +0 -0
- {tglc-0.6.5 → tglc-0.6.6}/tglc/ffi_cut.py +0 -0
- {tglc-0.6.5 → tglc-0.6.6}/tglc/lc_plot.py +0 -0
- {tglc-0.6.5 → tglc-0.6.6}/tglc/mast.py +0 -0
- {tglc-0.6.5 → tglc-0.6.6}/tglc/run.py +0 -0
- {tglc-0.6.5 → tglc-0.6.6}/tglc/source_output.py +0 -0
- {tglc-0.6.5 → tglc-0.6.6}/tglc.egg-info/SOURCES.txt +0 -0
- {tglc-0.6.5 → tglc-0.6.6}/tglc.egg-info/dependency_links.txt +0 -0
- {tglc-0.6.5 → tglc-0.6.6}/tglc.egg-info/top_level.txt +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: tglc
|
|
3
|
-
Version: 0.6.
|
|
3
|
+
Version: 0.6.6
|
|
4
4
|
Summary: TESS-Gaia Light Curve
|
|
5
5
|
Home-page: https://github.com/TeHanHunter/TESS_Gaia_Light_Curve
|
|
6
6
|
Author: Te Han
|
|
@@ -8,11 +8,11 @@ Author-email: tehanhunter@gmail.com
|
|
|
8
8
|
Classifier: Programming Language :: Python :: 3
|
|
9
9
|
Classifier: License :: OSI Approved :: MIT License
|
|
10
10
|
Classifier: Operating System :: OS Independent
|
|
11
|
-
Requires-Python: >=3.8
|
|
11
|
+
Requires-Python: >=3.8, <3.13
|
|
12
12
|
Description-Content-Type: text/x-rst
|
|
13
13
|
License-File: LICENSE
|
|
14
14
|
Requires-Dist: astropy>=5.1
|
|
15
|
-
Requires-Dist: astroquery
|
|
15
|
+
Requires-Dist: astroquery==0.4.7
|
|
16
16
|
Requires-Dist: matplotlib
|
|
17
17
|
Requires-Dist: numpy
|
|
18
18
|
Requires-Dist: oauthlib
|
|
@@ -22,6 +22,7 @@ Requires-Dist: threadpoolctl
|
|
|
22
22
|
Requires-Dist: tqdm
|
|
23
23
|
Requires-Dist: wheel
|
|
24
24
|
Requires-Dist: wotan
|
|
25
|
+
Requires-Dist: seaborn
|
|
25
26
|
|
|
26
27
|
==================================
|
|
27
28
|
Introduction
|
|
@@ -29,6 +30,7 @@ Introduction
|
|
|
29
30
|
|
|
30
31
|
TESS-Gaia Light Curve (`TGLC <https://archive.stsci.edu/hlsp/tglc>`_) is a dataset of TESS full-frame image light curves publicly available via the MAST portal. It is fitted with effective PSF and decontaminated with Gaia DR3 and achieved percent-level photometric precision down to 16th TESS magnitude! It unlocks astrophysics to a vast number of dim stars below 12th TESS magnitude. A package called tglc is pip-installable for customized light curve fits.
|
|
31
32
|
|
|
33
|
+
|
|
32
34
|
==================================
|
|
33
35
|
Usage
|
|
34
36
|
==================================
|
|
@@ -4,6 +4,7 @@ Introduction
|
|
|
4
4
|
|
|
5
5
|
TESS-Gaia Light Curve (`TGLC <https://archive.stsci.edu/hlsp/tglc>`_) is a dataset of TESS full-frame image light curves publicly available via the MAST portal. It is fitted with effective PSF and decontaminated with Gaia DR3 and achieved percent-level photometric precision down to 16th TESS magnitude! It unlocks astrophysics to a vast number of dim stars below 12th TESS magnitude. A package called tglc is pip-installable for customized light curve fits.
|
|
6
6
|
|
|
7
|
+
|
|
7
8
|
==================================
|
|
8
9
|
Usage
|
|
9
10
|
==================================
|
|
@@ -6,7 +6,7 @@ with open("README.rst", "r", encoding="utf-8") as fh:
|
|
|
6
6
|
long_description = fh.read()
|
|
7
7
|
setuptools.setup(
|
|
8
8
|
name="tglc",
|
|
9
|
-
version='0.6.
|
|
9
|
+
version='0.6.6',
|
|
10
10
|
author="Te Han",
|
|
11
11
|
author_email="tehanhunter@gmail.com",
|
|
12
12
|
description="TESS-Gaia Light Curve",
|
|
@@ -18,9 +18,9 @@ setuptools.setup(
|
|
|
18
18
|
"License :: OSI Approved :: MIT License",
|
|
19
19
|
"Operating System :: OS Independent",
|
|
20
20
|
],
|
|
21
|
-
install_requires=['astropy>=5.1', 'astroquery', 'matplotlib', 'numpy', 'oauthlib', 'requests', 'scipy',
|
|
22
|
-
'threadpoolctl', 'tqdm', 'wheel', 'wotan'],
|
|
21
|
+
install_requires=['astropy>=5.1', 'astroquery==0.4.7', 'matplotlib', 'numpy', 'oauthlib', 'requests', 'scipy',
|
|
22
|
+
'threadpoolctl', 'tqdm', 'wheel', 'wotan', 'seaborn'],
|
|
23
23
|
packages=setuptools.find_packages(include=['tglc', 'tglc.*']),
|
|
24
|
-
python_requires=">=3.8",
|
|
24
|
+
python_requires=">=3.8, <3.13",
|
|
25
25
|
include_package_data=True
|
|
26
26
|
)
|
|
@@ -191,16 +191,19 @@ def fit_lc(A, source, star_info=None, x=0., y=0., star_num=0, factor=2, psf_size
|
|
|
191
191
|
coord = np.arange(size ** 2).reshape(size, size)
|
|
192
192
|
index = np.array(coord[down:up, left:right]).flatten()
|
|
193
193
|
A_cut = np.zeros((len(index), np.shape(A)[1]))
|
|
194
|
+
A_target = np.zeros((len(index), np.shape(A)[1]))
|
|
194
195
|
for i in range(len(index)):
|
|
195
196
|
A_ = np.zeros(np.shape(A)[-1])
|
|
196
197
|
star_pos = np.where(star_info_num[0] == index[i])[0]
|
|
197
198
|
A_[star_info_num[1][star_pos]] = star_info_num[2][star_pos]
|
|
199
|
+
A_target[i] = A_
|
|
198
200
|
A_cut[i] = A[index[i], :] - A_
|
|
199
201
|
aperture = np.zeros((len(source.time), len(index)))
|
|
200
202
|
for j in range(len(source.time)):
|
|
201
203
|
aperture[j] = np.array(source.flux[j][down:up, left:right]).flatten() - np.dot(A_cut, e_psf[j])
|
|
202
204
|
aperture = aperture.reshape((len(source.time), up - down, right - left))
|
|
203
|
-
|
|
205
|
+
target_5x5 = (np.dot(A_target, np.nanmedian(e_psf, axis=0)).reshape(cut_size, cut_size))
|
|
206
|
+
field_stars_5x5 = (np.dot(A_cut, np.nanmedian(e_psf, axis=0)).reshape(cut_size, cut_size))
|
|
204
207
|
|
|
205
208
|
# psf_lc
|
|
206
209
|
over_size = psf_size * factor + 1
|
|
@@ -262,7 +265,7 @@ def fit_lc(A, source, star_info=None, x=0., y=0., star_num=0, factor=2, psf_size
|
|
|
262
265
|
portion = np.nansum(psf_shape[:, 4:7, 4:7]) / np.nansum(psf_shape)
|
|
263
266
|
# print(np.nansum(psf_shape[:, 5, 5]) / np.nansum(psf_shape))
|
|
264
267
|
# np.save(f'toi-5344_psf_{source.sector}.npy', psf_shape)
|
|
265
|
-
return aperture, psf_lc, y - down, x - left, portion
|
|
268
|
+
return aperture, psf_lc, y - down, x - left, portion, target_5x5, field_stars_5x5
|
|
266
269
|
|
|
267
270
|
|
|
268
271
|
def fit_lc_float_field(A, source, star_info=None, x=np.array([]), y=np.array([]), star_num=0, factor=2, psf_size=11,
|
|
@@ -86,7 +86,7 @@ def convert_gaia_id(catalogdata_tic):
|
|
|
86
86
|
FROM gaiadr3.dr2_neighbourhood
|
|
87
87
|
WHERE dr2_source_id IN {gaia_ids}
|
|
88
88
|
"""
|
|
89
|
-
gaia_array = np.array(catalogdata_tic['GAIA'])
|
|
89
|
+
gaia_array = np.array([str(item) for item in catalogdata_tic['GAIA']], dtype=object)
|
|
90
90
|
gaia_array = gaia_array[gaia_array != 'None']
|
|
91
91
|
# np.save('gaia_array.npy', gaia_array)
|
|
92
92
|
segment = (len(gaia_array) - 1) // 10000
|
|
@@ -14,8 +14,9 @@ from astroquery.mast import Catalogs
|
|
|
14
14
|
import astropy.units as u
|
|
15
15
|
from astropy.coordinates import SkyCoord
|
|
16
16
|
from astroquery.mast import Tesscut
|
|
17
|
+
import sys
|
|
18
|
+
import warnings
|
|
17
19
|
# Tesscut._service_api_connection.TIMEOUT = 6000
|
|
18
|
-
|
|
19
20
|
# warnings.simplefilter('ignore', UserWarning)
|
|
20
21
|
from threadpoolctl import ThreadpoolController, threadpool_limits
|
|
21
22
|
import numpy as np
|
|
@@ -297,8 +298,7 @@ def plot_pf_lc(local_directory=None, period=None, mid_transit_tbjd=None, kind='c
|
|
|
297
298
|
def plot_contamination(local_directory=None, gaia_dr3=None, ymin=None, ymax=None, pm_years=3000):
|
|
298
299
|
sns.set(rc={'font.family': 'serif', 'font.serif': 'DejaVu Serif', 'font.size': 12,
|
|
299
300
|
'axes.edgecolor': '0.2', 'axes.labelcolor': '0.', 'xtick.color': '0.', 'ytick.color': '0.',
|
|
300
|
-
'axes.facecolor': '0.95',
|
|
301
|
-
|
|
301
|
+
'axes.facecolor': '0.95', 'grid.color': '0.9'})
|
|
302
302
|
files = glob(f'{local_directory}lc/*{gaia_dr3}*.fits')
|
|
303
303
|
os.makedirs(f'{local_directory}plots/', exist_ok=True)
|
|
304
304
|
for i in range(len(files)):
|
|
@@ -307,8 +307,8 @@ def plot_contamination(local_directory=None, gaia_dr3=None, ymin=None, ymax=None
|
|
|
307
307
|
q = [a and b for a, b in
|
|
308
308
|
zip(list(hdul[1].data['TESS_flags'] == 0), list(hdul[1].data['TGLC_flags'] == 0))]
|
|
309
309
|
if ymin is None and ymax is None:
|
|
310
|
-
ymin = np.nanmin(hdul[1].data['cal_aper_flux'][q]) - 0.
|
|
311
|
-
ymax = np.nanmax(hdul[1].data['cal_aper_flux'][q]) + 0.
|
|
310
|
+
ymin = np.nanmin(hdul[1].data['cal_aper_flux'][q]) - 0.01
|
|
311
|
+
ymax = np.nanmax(hdul[1].data['cal_aper_flux'][q]) + 0.01
|
|
312
312
|
with open(glob(f'{local_directory}source/*_{sector}.pkl')[0], 'rb') as input_:
|
|
313
313
|
source = pickle.load(input_)
|
|
314
314
|
source.select_sector(sector=sector)
|
|
@@ -340,7 +340,7 @@ def plot_contamination(local_directory=None, gaia_dr3=None, ymin=None, ymax=None
|
|
|
340
340
|
ax0.scatter(source.gaia[f'sector_{sector}_x'][nearby_stars[nearby_stars != star_num[0][0]]],
|
|
341
341
|
source.gaia[f'sector_{sector}_y'][nearby_stars[nearby_stars != star_num[0][0]]],
|
|
342
342
|
s=30, c='r', edgecolor='black', linewidth=1, label='background stars')
|
|
343
|
-
|
|
343
|
+
ax0.grid(False)
|
|
344
344
|
for l in range(len(nearby_stars)):
|
|
345
345
|
index = np.where(
|
|
346
346
|
source.tic['dr3_source_id'] == int(source.gaia['DESIGNATION'][nearby_stars[l]].split(' ')[-1]))
|
|
@@ -380,12 +380,13 @@ def plot_contamination(local_directory=None, gaia_dr3=None, ymin=None, ymax=None
|
|
|
380
380
|
ax0.vlines(round(star_x) + 2.5, round(star_y) - 2.5, round(star_y) + 2.5, colors='k', lw=1.2)
|
|
381
381
|
ax0.hlines(round(star_y) - 2.5, round(star_x) - 2.5, round(star_x) + 2.5, colors='k', lw=1.2)
|
|
382
382
|
ax0.hlines(round(star_y) + 2.5, round(star_x) - 2.5, round(star_x) + 2.5, colors='k', lw=1.2)
|
|
383
|
-
|
|
383
|
+
try:
|
|
384
|
+
t_, y_, x_ = np.shape(hdul[0].data)
|
|
385
|
+
except ValueError:
|
|
386
|
+
warnings.warn('Light curves need to have the primary hdu. Set save_aperture=True when producing the light curve to enable this plot.')
|
|
387
|
+
sys.exit()
|
|
384
388
|
max_flux = np.max(
|
|
385
389
|
np.median(source.flux[:, int(star_y) - 2:int(star_y) + 3, int(star_x) - 2:int(star_x) + 3], axis=0))
|
|
386
|
-
sns.set(rc={'font.family': 'serif', 'font.serif': 'DejaVu Serif', 'font.size': 12,
|
|
387
|
-
'axes.edgecolor': '0.2', 'axes.labelcolor': '0.', 'xtick.color': '0.', 'ytick.color': '0.',
|
|
388
|
-
'axes.facecolor': '0.95', 'grid.color': '0.9'})
|
|
389
390
|
arrays = []
|
|
390
391
|
for j in range(y_):
|
|
391
392
|
for k in range(x_):
|
|
@@ -461,8 +462,6 @@ def plot_contamination(local_directory=None, gaia_dr3=None, ymin=None, ymax=None
|
|
|
461
462
|
dpi=300)
|
|
462
463
|
# plt.savefig(f'{local_directory}plots/contamination_sector_{hdul[0].header["SECTOR"]:04d}_Gaia_DR3_{gaia_dr3}.png',
|
|
463
464
|
# dpi=600)
|
|
464
|
-
plt.close()
|
|
465
|
-
|
|
466
465
|
|
|
467
466
|
def plot_epsf(local_directory=None):
|
|
468
467
|
files = glob(f'{local_directory}epsf/*.npy')
|
|
@@ -513,7 +512,7 @@ def get_tglc_lc(tics=None, method='query', server=1, directory=None, prior=None)
|
|
|
513
512
|
|
|
514
513
|
if __name__ == '__main__':
|
|
515
514
|
tics = [16005254]
|
|
516
|
-
directory = f'/
|
|
515
|
+
directory = f'/Users/tehan/Downloads/'
|
|
517
516
|
os.makedirs(directory, exist_ok=True)
|
|
518
517
|
get_tglc_lc(tics=tics, method='query', server=1, directory=directory)
|
|
519
518
|
# plot_lc(local_directory=f'{directory}TIC {tics[0]}/', kind='cal_aper_flux')
|
|
@@ -20,7 +20,7 @@ warnings.simplefilter('always', UserWarning)
|
|
|
20
20
|
def lc_output(source, local_directory='', index=0, time=None, psf_lc=None, cal_psf_lc=None, aper_lc=None,
|
|
21
21
|
cal_aper_lc=None, bg=None, tess_flag=None, tglc_flag=None, cadence=None, aperture=None,
|
|
22
22
|
cut_x=None, cut_y=None, star_x=2, star_y=2, x_aperture=None, y_aperture=None, near_edge=False,
|
|
23
|
-
local_bg=None, save_aper=False, portion=1, prior=None, transient=None):
|
|
23
|
+
local_bg=None, save_aper=False, portion=1, prior=None, transient=None, target_5x5=None, field_stars_5x5=None):
|
|
24
24
|
"""
|
|
25
25
|
lc output to .FITS file in MAST HLSP standards
|
|
26
26
|
:param tglc_flag: np.array(), required
|
|
@@ -82,6 +82,13 @@ def lc_output(source, local_directory='', index=0, time=None, psf_lc=None, cal_p
|
|
|
82
82
|
primary_hdu = fits.PrimaryHDU(aperture)
|
|
83
83
|
else:
|
|
84
84
|
primary_hdu = fits.PrimaryHDU()
|
|
85
|
+
# Simulated star images based on ePSF, used to estimate contamination ratio and others
|
|
86
|
+
image_data = np.zeros((3, 5, 5))
|
|
87
|
+
image_data[0] = target_5x5
|
|
88
|
+
image_data[1] = field_stars_5x5
|
|
89
|
+
# This is the pixel-wise contamination ratio
|
|
90
|
+
image_data[2] = field_stars_5x5/target_5x5
|
|
91
|
+
image_hdu = fits.ImageHDU(data=image_data)
|
|
85
92
|
|
|
86
93
|
primary_hdu.header = fits.Header(cards=[
|
|
87
94
|
fits.Card('SIMPLE', True, 'conforms to FITS standard'),
|
|
@@ -116,6 +123,7 @@ def lc_output(source, local_directory='', index=0, time=None, psf_lc=None, cal_p
|
|
|
116
123
|
fits.Card('GAIA_bp', gaia_bp, 'Gaia DR3 bp band magnitude'),
|
|
117
124
|
fits.Card('GAIA_rp', gaia_rp, 'Gaia DR3 rp band magnitude'),
|
|
118
125
|
fits.Card('RAWFLUX', raw_flux, 'median flux of raw FFI'),
|
|
126
|
+
fits.Card('CONTAMRT', round(np.nansum(field_stars_5x5[1:4,1:4])/np.nansum(target_5x5[1:4,1:4]), 9), 'contamination ratio of default 3*3 aperture'),
|
|
119
127
|
fits.Card('CALIB', 'TGLC', 'pipeline used for image calibration')])
|
|
120
128
|
if save_aper:
|
|
121
129
|
primary_hdu.header.comments['NAXIS1'] = "Time (hdul[1].data['time'])"
|
|
@@ -190,13 +198,14 @@ def lc_output(source, local_directory='', index=0, time=None, psf_lc=None, cal_p
|
|
|
190
198
|
if type(prior) == float:
|
|
191
199
|
table_hdu.header.append(('PRIOR', prior, 'prior of field stars'), end=True)
|
|
192
200
|
|
|
193
|
-
hdul = fits.HDUList([primary_hdu, table_hdu])
|
|
201
|
+
hdul = fits.HDUList([primary_hdu, table_hdu, image_hdu])
|
|
194
202
|
hdul.writeto(
|
|
195
|
-
f'{local_directory}hlsp_tglc_tess_ffi_gaiaid-{objid}-s{source.sector:04d}-cam{source.camera}-ccd{source.ccd}
|
|
203
|
+
f'{local_directory}hlsp_tglc_tess_ffi_gaiaid-{objid}-s{source.sector:04d}-cam{source.camera}-ccd{source.ccd}_tess_v2_llc.fits',
|
|
196
204
|
overwrite=True)
|
|
197
205
|
return
|
|
198
206
|
|
|
199
207
|
|
|
208
|
+
|
|
200
209
|
def epsf(source, psf_size=11, factor=2, local_directory='', target=None, cut_x=0, cut_y=0, sector=0,
|
|
201
210
|
limit_mag=16, edge_compression=1e-4, power=1.4, name=None, save_aper=False, no_progress_bar=False, prior=None):
|
|
202
211
|
"""
|
|
@@ -310,7 +319,7 @@ def epsf(source, psf_size=11, factor=2, local_directory='', target=None, cut_x=0
|
|
|
310
319
|
fit_lc_float_field(A, source, star_info=star_info, x=x_round, y=y_round, star_num=i, e_psf=e_psf,
|
|
311
320
|
near_edge=near_edge, prior=prior)
|
|
312
321
|
else:
|
|
313
|
-
aperture, psf_lc, star_y, star_x, portion = \
|
|
322
|
+
aperture, psf_lc, star_y, star_x, portion, target_5x5, field_stars_5x5 = \
|
|
314
323
|
fit_lc(A, source, star_info=star_info, x=x_round[i], y=y_round[i], star_num=i, e_psf=e_psf,
|
|
315
324
|
near_edge=near_edge)
|
|
316
325
|
aper_lc = np.sum(
|
|
@@ -359,4 +368,4 @@ def epsf(source, psf_size=11, factor=2, local_directory='', target=None, cut_x=0
|
|
|
359
368
|
bg=background_, time=source.time, psf_lc=psf_lc, cal_psf_lc=cal_psf_lc, aper_lc=aper_lc,
|
|
360
369
|
cal_aper_lc=cal_aper_lc, local_bg=local_bg, x_aperture=x_aperture[i],
|
|
361
370
|
y_aperture=y_aperture[i], near_edge=near_edge, save_aper=save_aper, portion=portion,
|
|
362
|
-
prior=prior, transient=source.transient)
|
|
371
|
+
prior=prior, transient=source.transient, target_5x5=target_5x5, field_stars_5x5=field_stars_5x5)
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: tglc
|
|
3
|
-
Version: 0.6.
|
|
3
|
+
Version: 0.6.6
|
|
4
4
|
Summary: TESS-Gaia Light Curve
|
|
5
5
|
Home-page: https://github.com/TeHanHunter/TESS_Gaia_Light_Curve
|
|
6
6
|
Author: Te Han
|
|
@@ -8,11 +8,11 @@ Author-email: tehanhunter@gmail.com
|
|
|
8
8
|
Classifier: Programming Language :: Python :: 3
|
|
9
9
|
Classifier: License :: OSI Approved :: MIT License
|
|
10
10
|
Classifier: Operating System :: OS Independent
|
|
11
|
-
Requires-Python: >=3.8
|
|
11
|
+
Requires-Python: >=3.8, <3.13
|
|
12
12
|
Description-Content-Type: text/x-rst
|
|
13
13
|
License-File: LICENSE
|
|
14
14
|
Requires-Dist: astropy>=5.1
|
|
15
|
-
Requires-Dist: astroquery
|
|
15
|
+
Requires-Dist: astroquery==0.4.7
|
|
16
16
|
Requires-Dist: matplotlib
|
|
17
17
|
Requires-Dist: numpy
|
|
18
18
|
Requires-Dist: oauthlib
|
|
@@ -22,6 +22,7 @@ Requires-Dist: threadpoolctl
|
|
|
22
22
|
Requires-Dist: tqdm
|
|
23
23
|
Requires-Dist: wheel
|
|
24
24
|
Requires-Dist: wotan
|
|
25
|
+
Requires-Dist: seaborn
|
|
25
26
|
|
|
26
27
|
==================================
|
|
27
28
|
Introduction
|
|
@@ -29,6 +30,7 @@ Introduction
|
|
|
29
30
|
|
|
30
31
|
TESS-Gaia Light Curve (`TGLC <https://archive.stsci.edu/hlsp/tglc>`_) is a dataset of TESS full-frame image light curves publicly available via the MAST portal. It is fitted with effective PSF and decontaminated with Gaia DR3 and achieved percent-level photometric precision down to 16th TESS magnitude! It unlocks astrophysics to a vast number of dim stars below 12th TESS magnitude. A package called tglc is pip-installable for customized light curve fits.
|
|
31
32
|
|
|
33
|
+
|
|
32
34
|
==================================
|
|
33
35
|
Usage
|
|
34
36
|
==================================
|
tglc-0.6.5/tglc/__init__.py
DELETED
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|