tglc 0.6.4__tar.gz → 0.6.5__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {tglc-0.6.4/tglc.egg-info → tglc-0.6.5}/PKG-INFO +12 -1
- {tglc-0.6.4 → tglc-0.6.5}/setup.py +1 -1
- tglc-0.6.5/tglc/__init__.py +3 -0
- {tglc-0.6.4 → tglc-0.6.5}/tglc/quick_lc.py +117 -62
- {tglc-0.6.4 → tglc-0.6.5/tglc.egg-info}/PKG-INFO +12 -1
- tglc-0.6.4/tglc/__init__.py +0 -3
- {tglc-0.6.4 → tglc-0.6.5}/LICENSE +0 -0
- {tglc-0.6.4 → tglc-0.6.5}/MANIFEST.in +0 -0
- {tglc-0.6.4 → tglc-0.6.5}/README.rst +0 -0
- {tglc-0.6.4 → tglc-0.6.5}/setup.cfg +0 -0
- {tglc-0.6.4 → tglc-0.6.5}/tglc/background_mask/__init__.py +0 -0
- {tglc-0.6.4 → tglc-0.6.5}/tglc/background_mask/median_mask.fits +0 -0
- {tglc-0.6.4 → tglc-0.6.5}/tglc/effective_psf.py +0 -0
- {tglc-0.6.4 → tglc-0.6.5}/tglc/ffi.py +0 -0
- {tglc-0.6.4 → tglc-0.6.5}/tglc/ffi_cut.py +0 -0
- {tglc-0.6.4 → tglc-0.6.5}/tglc/lc_plot.py +0 -0
- {tglc-0.6.4 → tglc-0.6.5}/tglc/mast.py +0 -0
- {tglc-0.6.4 → tglc-0.6.5}/tglc/run.py +0 -0
- {tglc-0.6.4 → tglc-0.6.5}/tglc/source_output.py +0 -0
- {tglc-0.6.4 → tglc-0.6.5}/tglc/target_lightcurve.py +0 -0
- {tglc-0.6.4 → tglc-0.6.5}/tglc.egg-info/SOURCES.txt +0 -0
- {tglc-0.6.4 → tglc-0.6.5}/tglc.egg-info/dependency_links.txt +0 -0
- {tglc-0.6.4 → tglc-0.6.5}/tglc.egg-info/requires.txt +0 -0
- {tglc-0.6.4 → tglc-0.6.5}/tglc.egg-info/top_level.txt +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: tglc
|
|
3
|
-
Version: 0.6.
|
|
3
|
+
Version: 0.6.5
|
|
4
4
|
Summary: TESS-Gaia Light Curve
|
|
5
5
|
Home-page: https://github.com/TeHanHunter/TESS_Gaia_Light_Curve
|
|
6
6
|
Author: Te Han
|
|
@@ -11,6 +11,17 @@ Classifier: Operating System :: OS Independent
|
|
|
11
11
|
Requires-Python: >=3.8
|
|
12
12
|
Description-Content-Type: text/x-rst
|
|
13
13
|
License-File: LICENSE
|
|
14
|
+
Requires-Dist: astropy>=5.1
|
|
15
|
+
Requires-Dist: astroquery
|
|
16
|
+
Requires-Dist: matplotlib
|
|
17
|
+
Requires-Dist: numpy
|
|
18
|
+
Requires-Dist: oauthlib
|
|
19
|
+
Requires-Dist: requests
|
|
20
|
+
Requires-Dist: scipy
|
|
21
|
+
Requires-Dist: threadpoolctl
|
|
22
|
+
Requires-Dist: tqdm
|
|
23
|
+
Requires-Dist: wheel
|
|
24
|
+
Requires-Dist: wotan
|
|
14
25
|
|
|
15
26
|
==================================
|
|
16
27
|
Introduction
|
|
@@ -19,7 +19,8 @@ from astroquery.mast import Tesscut
|
|
|
19
19
|
# warnings.simplefilter('ignore', UserWarning)
|
|
20
20
|
from threadpoolctl import ThreadpoolController, threadpool_limits
|
|
21
21
|
import numpy as np
|
|
22
|
-
|
|
22
|
+
import seaborn as sns
|
|
23
|
+
import itertools
|
|
23
24
|
controller = ThreadpoolController()
|
|
24
25
|
|
|
25
26
|
|
|
@@ -40,10 +41,6 @@ def tglc_lc(target='TIC 264468702', local_directory='', size=90, save_aper=True,
|
|
|
40
41
|
os.makedirs(local_directory + f'lc/', exist_ok=True)
|
|
41
42
|
os.makedirs(local_directory + f'epsf/', exist_ok=True)
|
|
42
43
|
os.makedirs(local_directory + f'source/', exist_ok=True)
|
|
43
|
-
if first_sector_only:
|
|
44
|
-
sector = 'first'
|
|
45
|
-
elif last_sector_only:
|
|
46
|
-
sector = 'last'
|
|
47
44
|
print(f'Target: {target}')
|
|
48
45
|
target_ = Catalogs.query_object(target, radius=42 * 0.707 / 3600, catalog="Gaia", version=2)
|
|
49
46
|
if len(target_) == 0:
|
|
@@ -77,7 +74,7 @@ def tglc_lc(target='TIC 264468702', local_directory='', size=90, save_aper=True,
|
|
|
77
74
|
elif first_sector_only:
|
|
78
75
|
print(f'Only processing the first sector the target is observed in: Sector {sector_table["sector"][0]}.')
|
|
79
76
|
print('Downloading Data from MAST and Gaia ...')
|
|
80
|
-
|
|
77
|
+
sector = sector_table["sector"][0]
|
|
81
78
|
source = ffi_cut(target=target, size=size, local_directory=local_directory, sector=sector,
|
|
82
79
|
limit_mag=limit_mag, transient=transient) # sector
|
|
83
80
|
source.select_sector(sector=source.sector_table['sector'][0])
|
|
@@ -86,6 +83,7 @@ def tglc_lc(target='TIC 264468702', local_directory='', size=90, save_aper=True,
|
|
|
86
83
|
elif last_sector_only:
|
|
87
84
|
print(f'Only processing the last sector the target is observed in: Sector {sector_table["sector"][-1]}.')
|
|
88
85
|
print('Downloading Data from MAST and Gaia ...')
|
|
86
|
+
sector = sector_table["sector"][-1]
|
|
89
87
|
source = ffi_cut(target=target, size=size, local_directory=local_directory, sector=sector,
|
|
90
88
|
limit_mag=limit_mag, transient=transient) # sector
|
|
91
89
|
source.select_sector(sector=source.sector_table['sector'][-1])
|
|
@@ -296,47 +294,59 @@ def plot_pf_lc(local_directory=None, period=None, mid_transit_tbjd=None, kind='c
|
|
|
296
294
|
plt.close(fig)
|
|
297
295
|
|
|
298
296
|
|
|
299
|
-
def plot_contamination(local_directory=None, gaia_dr3=None):
|
|
300
|
-
|
|
297
|
+
def plot_contamination(local_directory=None, gaia_dr3=None, ymin=None, ymax=None, pm_years=3000):
|
|
298
|
+
sns.set(rc={'font.family': 'serif', 'font.serif': 'DejaVu Serif', 'font.size': 12,
|
|
299
|
+
'axes.edgecolor': '0.2', 'axes.labelcolor': '0.', 'xtick.color': '0.', 'ytick.color': '0.',
|
|
300
|
+
'axes.facecolor': '0.95', "axes.grid": False})
|
|
301
|
+
|
|
302
|
+
files = glob(f'{local_directory}lc/*{gaia_dr3}*.fits')
|
|
301
303
|
os.makedirs(f'{local_directory}plots/', exist_ok=True)
|
|
302
304
|
for i in range(len(files)):
|
|
303
305
|
with fits.open(files[i], mode='denywrite') as hdul:
|
|
304
306
|
sector = hdul[0].header['SECTOR']
|
|
307
|
+
q = [a and b for a, b in
|
|
308
|
+
zip(list(hdul[1].data['TESS_flags'] == 0), list(hdul[1].data['TGLC_flags'] == 0))]
|
|
309
|
+
if ymin is None and ymax is None:
|
|
310
|
+
ymin = np.nanmin(hdul[1].data['cal_aper_flux'][q]) - 0.05
|
|
311
|
+
ymax = np.nanmax(hdul[1].data['cal_aper_flux'][q]) + 0.05
|
|
305
312
|
with open(glob(f'{local_directory}source/*_{sector}.pkl')[0], 'rb') as input_:
|
|
306
313
|
source = pickle.load(input_)
|
|
307
314
|
source.select_sector(sector=sector)
|
|
308
315
|
star_num = np.where(source.gaia['DESIGNATION'] == f'Gaia DR3 {gaia_dr3}')
|
|
309
|
-
|
|
310
|
-
|
|
311
|
-
plt.close()
|
|
312
|
-
# print(source.gaia[891])
|
|
313
|
-
# print(source.gaia[star_num])
|
|
314
|
-
nearby_stars = np.argsort(
|
|
316
|
+
|
|
317
|
+
distances = np.sqrt(
|
|
315
318
|
(source.gaia[f'sector_{sector}_x'][:500] - source.gaia[star_num][f'sector_{sector}_x']) ** 2 +
|
|
316
|
-
(source.gaia[f'sector_{sector}_y'][:500] - source.gaia[star_num][f'sector_{sector}_y']) ** 2)
|
|
317
|
-
|
|
319
|
+
(source.gaia[f'sector_{sector}_y'][:500] - source.gaia[star_num][f'sector_{sector}_y']) ** 2)
|
|
320
|
+
|
|
321
|
+
# Find closest 5 stars (6-self) or those within 5 pixels
|
|
322
|
+
nearby_stars = np.argsort(distances)[:6]
|
|
323
|
+
nearby_stars = nearby_stars[distances[nearby_stars] <= 5]
|
|
318
324
|
star_x = source.gaia[star_num][f'sector_{sector}_x'][0]
|
|
319
325
|
star_y = source.gaia[star_num][f'sector_{sector}_y'][0]
|
|
320
326
|
max_flux = np.nanmax(
|
|
321
|
-
np.nanmedian(
|
|
322
|
-
|
|
323
|
-
|
|
324
|
-
|
|
325
|
-
gs.
|
|
326
|
-
|
|
327
|
+
np.nanmedian(
|
|
328
|
+
source.flux[:, round(star_y) - 2:round(star_y) + 3, round(star_x) - 2:round(star_x) + 3],
|
|
329
|
+
axis=0))
|
|
330
|
+
fig = plt.figure(constrained_layout=False, figsize=(20, 12))
|
|
331
|
+
gs = fig.add_gridspec(21, 10)
|
|
332
|
+
gs.update(wspace=0.03, hspace=0.1)
|
|
333
|
+
ax0 = fig.add_subplot(gs[:10, :3])
|
|
327
334
|
ax0.imshow(np.median(source.flux, axis=0), cmap='RdBu', vmin=-max_flux, vmax=max_flux, origin='lower')
|
|
328
|
-
|
|
329
|
-
ax0.
|
|
330
|
-
|
|
331
|
-
ax0.scatter(source.gaia[f'sector_{sector}_x'][
|
|
332
|
-
source.gaia[f'sector_{sector}_y'][nearby_stars], s=50,
|
|
335
|
+
ax0.set_xlabel('x pixel')
|
|
336
|
+
ax0.set_ylabel('y pixel')
|
|
337
|
+
ax0.scatter(star_x, star_y, s=300, c='r', marker='*', label='target star')
|
|
338
|
+
ax0.scatter(source.gaia[f'sector_{sector}_x'][:500], source.gaia[f'sector_{sector}_y'][:500], s=30,
|
|
333
339
|
c='r', label='background stars')
|
|
340
|
+
ax0.scatter(source.gaia[f'sector_{sector}_x'][nearby_stars[nearby_stars != star_num[0][0]]],
|
|
341
|
+
source.gaia[f'sector_{sector}_y'][nearby_stars[nearby_stars != star_num[0][0]]],
|
|
342
|
+
s=30, c='r', edgecolor='black', linewidth=1, label='background stars')
|
|
343
|
+
|
|
334
344
|
for l in range(len(nearby_stars)):
|
|
335
345
|
index = np.where(
|
|
336
346
|
source.tic['dr3_source_id'] == int(source.gaia['DESIGNATION'][nearby_stars[l]].split(' ')[-1]))
|
|
337
347
|
gaia_targets = source.gaia
|
|
338
348
|
median_time = np.median(source.time)
|
|
339
|
-
interval = (median_time - 388.5) / 365.25 +
|
|
349
|
+
interval = (median_time - 388.5) / 365.25 + pm_years
|
|
340
350
|
ra = gaia_targets['ra'][nearby_stars[l]]
|
|
341
351
|
dec = gaia_targets['dec'][nearby_stars[l]]
|
|
342
352
|
if not np.isnan(gaia_targets['pmra'][nearby_stars[l]]):
|
|
@@ -352,43 +362,36 @@ def plot_contamination(local_directory=None, gaia_dr3=None):
|
|
|
352
362
|
y_gaia - source.gaia[f'sector_{sector}_y'][nearby_stars[l]],
|
|
353
363
|
width=0.02, color='r', edgecolor=None, head_width=0.1)
|
|
354
364
|
try:
|
|
355
|
-
ax0.text(source.gaia[f'sector_{sector}_x'][nearby_stars[l]]
|
|
356
|
-
|
|
357
|
-
|
|
358
|
-
|
|
359
|
-
|
|
360
|
-
|
|
361
|
-
|
|
362
|
-
ax0.scatter(star_x, star_y, s=300, c='r', marker='*', label='target star')
|
|
365
|
+
txt = ax0.text(source.gaia[f'sector_{sector}_x'][nearby_stars[l]] + 0.5,
|
|
366
|
+
source.gaia[f'sector_{sector}_y'][nearby_stars[l]] - 0.05,
|
|
367
|
+
f'TIC {int(source.tic["TIC"][index])}', size=7)
|
|
368
|
+
|
|
369
|
+
except TypeError:
|
|
370
|
+
designation = source.gaia[f"DESIGNATION"][nearby_stars[l]]
|
|
371
|
+
formatted_text = '\n'.join([designation[i:i + 15] for i in range(0, len(designation), 15)])
|
|
363
372
|
|
|
364
|
-
|
|
373
|
+
txt = ax0.text(source.gaia[f'sector_{sector}_x'][nearby_stars[l]] + 0.5,
|
|
374
|
+
source.gaia[f'sector_{sector}_y'][nearby_stars[l]] - 0.05,
|
|
375
|
+
formatted_text, size=7)
|
|
365
376
|
ax0.set_xlim(round(star_x) - 5.5, round(star_x) + 5.5)
|
|
366
377
|
ax0.set_ylim(round(star_y) - 5.5, round(star_y) + 5.5)
|
|
367
|
-
ax0.set_title(f'TIC_{hdul[0].header["TICID"]}
|
|
368
|
-
ax0.vlines(round(star_x) - 2.5, round(star_y) - 2.5, round(star_y) + 2.5, colors='k')
|
|
369
|
-
ax0.vlines(round(star_x) + 2.5, round(star_y) - 2.5, round(star_y) + 2.5, colors='k')
|
|
370
|
-
ax0.hlines(round(star_y) - 2.5, round(star_x) - 2.5, round(star_x) + 2.5, colors='k')
|
|
371
|
-
ax0.hlines(round(star_y) + 2.5, round(star_x) - 2.5, round(star_x) + 2.5, colors='k')
|
|
372
|
-
# for j in range(5):
|
|
373
|
-
# for k in range(5):
|
|
374
|
-
# ax_ = fig.add_subplot(gs[(4 - j), (5 + k)])
|
|
375
|
-
# ax_.patch.set_facecolor('C0')
|
|
376
|
-
# ax_.patch.set_alpha(max(0, np.median(source.flux[:, round(star_y) - 2 + j, round(star_x) - 2 + k]) / max_flux))
|
|
377
|
-
# cal_lc, trend = flatten(hdul[1].data['time'],
|
|
378
|
-
# source.flux[:, round(star_y) - 2 + j, round(star_x) - 2 + k],
|
|
379
|
-
# window_length=1, method='biweight', return_trend=True)
|
|
380
|
-
# ax_.plot(hdul[1].data['time'], cal_lc, '.k', ms=1, label='center pixel')
|
|
381
|
-
|
|
378
|
+
ax0.set_title(f'TIC_{hdul[0].header["TICID"]}_Sector_{hdul[0].header["SECTOR"]:04d}')
|
|
379
|
+
ax0.vlines(round(star_x) - 2.5, round(star_y) - 2.5, round(star_y) + 2.5, colors='k', lw=1.2)
|
|
380
|
+
ax0.vlines(round(star_x) + 2.5, round(star_y) - 2.5, round(star_y) + 2.5, colors='k', lw=1.2)
|
|
381
|
+
ax0.hlines(round(star_y) - 2.5, round(star_x) - 2.5, round(star_x) + 2.5, colors='k', lw=1.2)
|
|
382
|
+
ax0.hlines(round(star_y) + 2.5, round(star_x) - 2.5, round(star_x) + 2.5, colors='k', lw=1.2)
|
|
382
383
|
t_, y_, x_ = np.shape(hdul[0].data)
|
|
383
384
|
max_flux = np.max(
|
|
384
385
|
np.median(source.flux[:, int(star_y) - 2:int(star_y) + 3, int(star_x) - 2:int(star_x) + 3], axis=0))
|
|
386
|
+
sns.set(rc={'font.family': 'serif', 'font.serif': 'DejaVu Serif', 'font.size': 12,
|
|
387
|
+
'axes.edgecolor': '0.2', 'axes.labelcolor': '0.', 'xtick.color': '0.', 'ytick.color': '0.',
|
|
388
|
+
'axes.facecolor': '0.95', 'grid.color': '0.9'})
|
|
389
|
+
arrays = []
|
|
385
390
|
for j in range(y_):
|
|
386
391
|
for k in range(x_):
|
|
387
|
-
ax_ = fig.add_subplot(gs[(
|
|
388
|
-
ax_.patch.set_facecolor('
|
|
392
|
+
ax_ = fig.add_subplot(gs[(19 - 2 * j):(21 - 2 * j), (2 * k):(2 + 2 * k)])
|
|
393
|
+
ax_.patch.set_facecolor('#4682B4')
|
|
389
394
|
ax_.patch.set_alpha(min(1, max(0, 5 * np.nanmedian(hdul[0].data[:, j, k]) / max_flux)))
|
|
390
|
-
q = [a and b for a, b in
|
|
391
|
-
zip(list(hdul[1].data['TESS_flags'] == 0), list(hdul[1].data['TGLC_flags'] == 0))]
|
|
392
395
|
|
|
393
396
|
_, trend = flatten(hdul[1].data['time'][q],
|
|
394
397
|
hdul[0].data[:, j, k][q] - np.nanmin(hdul[0].data[:, j, k][q]) + 1000,
|
|
@@ -396,16 +399,68 @@ def plot_contamination(local_directory=None, gaia_dr3=None):
|
|
|
396
399
|
cal_aper = (hdul[0].data[:, j, k][q] - np.nanmin(
|
|
397
400
|
hdul[0].data[:, j, k][q]) + 1000 - trend) / np.nanmedian(
|
|
398
401
|
hdul[0].data[:, j, k][q]) + 1
|
|
399
|
-
|
|
400
|
-
|
|
401
|
-
|
|
402
|
+
if 1 <= j <= 3 and 1 <= k <= 3:
|
|
403
|
+
arrays.append(cal_aper)
|
|
404
|
+
ax_.plot(hdul[1].data['time'][q], cal_aper, '.k', ms=0.5)
|
|
405
|
+
# ax_.plot(hdul[1].data['time'][q], hdul[0].data[:, j, k][q], '.k', ms=0.5)
|
|
406
|
+
ax_.set_ylim(ymin, ymax)
|
|
407
|
+
ax_.set_xlabel('TBJD')
|
|
408
|
+
ax_.set_ylabel('')
|
|
402
409
|
if j != 0:
|
|
403
410
|
ax_.set_xticklabels([])
|
|
411
|
+
ax_.set_xlabel('')
|
|
404
412
|
if k != 0:
|
|
405
413
|
ax_.set_yticklabels([])
|
|
406
|
-
|
|
407
|
-
|
|
408
|
-
|
|
414
|
+
if j == 2 and k == 0:
|
|
415
|
+
ax_.set_ylabel('Normalized and detrended Flux of each pixel')
|
|
416
|
+
|
|
417
|
+
combinations = itertools.combinations(arrays, 2)
|
|
418
|
+
median_abs_diffs = []
|
|
419
|
+
for arr_a, arr_b in combinations:
|
|
420
|
+
abs_diff = np.abs(arr_a - arr_b)
|
|
421
|
+
median_diff = np.median(abs_diff)
|
|
422
|
+
median_abs_diffs.append(median_diff)
|
|
423
|
+
median_abs_diffs = np.array(median_abs_diffs)
|
|
424
|
+
iqr = np.percentile(median_abs_diffs, 75) - np.percentile(median_abs_diffs, 25)
|
|
425
|
+
print(f"Interquartile Range (IQR): {iqr}")
|
|
426
|
+
std_dev = np.std(median_abs_diffs)
|
|
427
|
+
print(f"Standard Deviation: {std_dev}")
|
|
428
|
+
ax1 = fig.add_subplot(gs[:10, 4:7])
|
|
429
|
+
ax1.hist(median_abs_diffs, color='k', edgecolor='k', facecolor='none', rwidth=0.8, linewidth=2)
|
|
430
|
+
ax1.set_box_aspect(1)
|
|
431
|
+
ax1.set_title(f'Distribution of the MADs among combinations of the center 3*3 pixels')
|
|
432
|
+
ax1.set_xlabel('MAD between combinations of center 3*3 pixel fluxes')
|
|
433
|
+
ax1.set_ylabel('Counts')
|
|
434
|
+
text_ax = fig.add_axes([0.71, 0.9, 0.3, 0.3]) # [left, bottom, width, height] in figure coordinates
|
|
435
|
+
text_ax.axis('off') # Turn off axis lines, ticks, etc.
|
|
436
|
+
text_ax.text(0., 0., f"Gaia DR3 {gaia_dr3} \n"
|
|
437
|
+
f" ←← TESS SPOC FFI and TIC/Gaia stars with proper motions. \n"
|
|
438
|
+
f" Arrows show Gaia proper motion after {pm_years} years. \n"
|
|
439
|
+
f" ← Histogram of the MADs between 3*3 pixel fluxes. \n"
|
|
440
|
+
f" ↓ Fluxes of each pixels after contaminations are removed. \n"
|
|
441
|
+
f" The fluxes are normalized and detrended. The background \n"
|
|
442
|
+
f" color shows the pixel brightness after the decontamination. \n"
|
|
443
|
+
f"\n"
|
|
444
|
+
f"How to interpret these plots: \n"
|
|
445
|
+
f" If the signals you are interested in (i.e. transits, \n"
|
|
446
|
+
f" eclipses, variable stars) show similar amplitudes in \n"
|
|
447
|
+
f" all (especially the center 3*3) pixels, then the star \n"
|
|
448
|
+
f" is likely to be the source. The median absolute \n"
|
|
449
|
+
f" differences (MADs) taken between all combinations \n"
|
|
450
|
+
f" of the center pixel fluxes are shown in the histogram \n"
|
|
451
|
+
f" for a quantititive comparison to other possible sources. \n"
|
|
452
|
+
f" The star with smaller distribution width (IQR or \n"
|
|
453
|
+
f" STD) is more likely to be the source of the signal. \n"
|
|
454
|
+
f"\n"
|
|
455
|
+
f"Interquartile Range (IQR): {iqr:05f} \n"
|
|
456
|
+
f"Standard Deviation: {std_dev:05f}", transform=text_ax.transAxes, ha='left',
|
|
457
|
+
va='top')
|
|
458
|
+
plt.subplots_adjust(top=.98, bottom=0.05, left=0.05, right=0.95)
|
|
459
|
+
plt.savefig(
|
|
460
|
+
f'{local_directory}plots/contamination_sector_{hdul[0].header["SECTOR"]:04d}_Gaia_DR3_{gaia_dr3}.pdf',
|
|
461
|
+
dpi=300)
|
|
462
|
+
# plt.savefig(f'{local_directory}plots/contamination_sector_{hdul[0].header["SECTOR"]:04d}_Gaia_DR3_{gaia_dr3}.png',
|
|
463
|
+
# dpi=600)
|
|
409
464
|
plt.close()
|
|
410
465
|
|
|
411
466
|
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: tglc
|
|
3
|
-
Version: 0.6.
|
|
3
|
+
Version: 0.6.5
|
|
4
4
|
Summary: TESS-Gaia Light Curve
|
|
5
5
|
Home-page: https://github.com/TeHanHunter/TESS_Gaia_Light_Curve
|
|
6
6
|
Author: Te Han
|
|
@@ -11,6 +11,17 @@ Classifier: Operating System :: OS Independent
|
|
|
11
11
|
Requires-Python: >=3.8
|
|
12
12
|
Description-Content-Type: text/x-rst
|
|
13
13
|
License-File: LICENSE
|
|
14
|
+
Requires-Dist: astropy>=5.1
|
|
15
|
+
Requires-Dist: astroquery
|
|
16
|
+
Requires-Dist: matplotlib
|
|
17
|
+
Requires-Dist: numpy
|
|
18
|
+
Requires-Dist: oauthlib
|
|
19
|
+
Requires-Dist: requests
|
|
20
|
+
Requires-Dist: scipy
|
|
21
|
+
Requires-Dist: threadpoolctl
|
|
22
|
+
Requires-Dist: tqdm
|
|
23
|
+
Requires-Dist: wheel
|
|
24
|
+
Requires-Dist: wotan
|
|
14
25
|
|
|
15
26
|
==================================
|
|
16
27
|
Introduction
|
tglc-0.6.4/tglc/__init__.py
DELETED
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|