tglc 0.6.3__tar.gz → 0.6.4__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- tglc-0.6.4/PKG-INFO +69 -0
- {tglc-0.6.3 → tglc-0.6.4}/setup.py +1 -1
- tglc-0.6.4/tglc/__init__.py +3 -0
- {tglc-0.6.3 → tglc-0.6.4}/tglc/ffi.py +1 -1
- {tglc-0.6.3 → tglc-0.6.4}/tglc/ffi_cut.py +1 -2
- {tglc-0.6.3 → tglc-0.6.4}/tglc/quick_lc.py +31 -42
- tglc-0.6.4/tglc.egg-info/PKG-INFO +69 -0
- tglc-0.6.3/PKG-INFO +0 -70
- tglc-0.6.3/tglc/__init__.py +0 -3
- tglc-0.6.3/tglc.egg-info/PKG-INFO +0 -70
- {tglc-0.6.3 → tglc-0.6.4}/LICENSE +0 -0
- {tglc-0.6.3 → tglc-0.6.4}/MANIFEST.in +0 -0
- {tglc-0.6.3 → tglc-0.6.4}/README.rst +0 -0
- {tglc-0.6.3 → tglc-0.6.4}/setup.cfg +0 -0
- {tglc-0.6.3 → tglc-0.6.4}/tglc/background_mask/__init__.py +0 -0
- {tglc-0.6.3 → tglc-0.6.4}/tglc/background_mask/median_mask.fits +0 -0
- {tglc-0.6.3 → tglc-0.6.4}/tglc/effective_psf.py +0 -0
- {tglc-0.6.3 → tglc-0.6.4}/tglc/lc_plot.py +0 -0
- {tglc-0.6.3 → tglc-0.6.4}/tglc/mast.py +0 -0
- {tglc-0.6.3 → tglc-0.6.4}/tglc/run.py +0 -0
- {tglc-0.6.3 → tglc-0.6.4}/tglc/source_output.py +0 -0
- {tglc-0.6.3 → tglc-0.6.4}/tglc/target_lightcurve.py +0 -0
- {tglc-0.6.3 → tglc-0.6.4}/tglc.egg-info/SOURCES.txt +0 -0
- {tglc-0.6.3 → tglc-0.6.4}/tglc.egg-info/dependency_links.txt +0 -0
- {tglc-0.6.3 → tglc-0.6.4}/tglc.egg-info/requires.txt +0 -0
- {tglc-0.6.3 → tglc-0.6.4}/tglc.egg-info/top_level.txt +0 -0
tglc-0.6.4/PKG-INFO
ADDED
|
@@ -0,0 +1,69 @@
|
|
|
1
|
+
Metadata-Version: 2.1
|
|
2
|
+
Name: tglc
|
|
3
|
+
Version: 0.6.4
|
|
4
|
+
Summary: TESS-Gaia Light Curve
|
|
5
|
+
Home-page: https://github.com/TeHanHunter/TESS_Gaia_Light_Curve
|
|
6
|
+
Author: Te Han
|
|
7
|
+
Author-email: tehanhunter@gmail.com
|
|
8
|
+
Classifier: Programming Language :: Python :: 3
|
|
9
|
+
Classifier: License :: OSI Approved :: MIT License
|
|
10
|
+
Classifier: Operating System :: OS Independent
|
|
11
|
+
Requires-Python: >=3.8
|
|
12
|
+
Description-Content-Type: text/x-rst
|
|
13
|
+
License-File: LICENSE
|
|
14
|
+
|
|
15
|
+
==================================
|
|
16
|
+
Introduction
|
|
17
|
+
==================================
|
|
18
|
+
|
|
19
|
+
TESS-Gaia Light Curve (`TGLC <https://archive.stsci.edu/hlsp/tglc>`_) is a dataset of TESS full-frame image light curves publicly available via the MAST portal. It is fitted with effective PSF and decontaminated with Gaia DR3 and achieved percent-level photometric precision down to 16th TESS magnitude! It unlocks astrophysics to a vast number of dim stars below 12th TESS magnitude. A package called tglc is pip-installable for customized light curve fits.
|
|
20
|
+
|
|
21
|
+
==================================
|
|
22
|
+
Usage
|
|
23
|
+
==================================
|
|
24
|
+
There are four fluxes in each FITS file: aperture flux, PSF flux, calibrated aperture flux, and calibrated PSF flux.
|
|
25
|
+
If you are uncertain which to use:
|
|
26
|
+
|
|
27
|
+
* Calibrated psf flux is better in **deblending** targets. Use this if you need to deblend a target near a variable source. The best deblending can be achieved with tglc package by setting a non-zero prior. It also gives the more accurate **transit depth** in most cases, especially when fitting with an optimized prior.
|
|
28
|
+
* Calibrated aperture flux usually has slightly **higher SNR**. The transit depth (or variation amplitude), however, can be imperfect since the normalization depends on the PSF fitting which is imperfect. This imperfection can be minimized by using a bigger aperture than the default aperture (3*3). One need to use the tglc package and set tglc_lc(save_aper=True) to access the 5*5 aperture. In the presence of a bright but "constant" contamination (several magnitudes brighter), the calibrated aperture flux is better in removing the constant contamination.
|
|
29
|
+
* The aperture flux and PSF flux are not detrended or normalized. Use this if you are doing stellar variability science with long baseline. Or, if the detrending is not optimal (default detrending has a window length of 1 day; see Known Problems below), start with the aperture flux or PSF flux and detrend carefully!
|
|
30
|
+
* **If you are uncertain, start with calibrated aperture flux!**
|
|
31
|
+
|
|
32
|
+
The `tutorial <tutorial/TGLC_tutorial.ipynb>`_ shows the syntaxes and differences among these light curves in several examples.
|
|
33
|
+
|
|
34
|
+
==================================
|
|
35
|
+
Data Access
|
|
36
|
+
==================================
|
|
37
|
+
There are three data access methods:
|
|
38
|
+
|
|
39
|
+
* MAST Portal: Easiest for acquiring light curves for a few stars. However, new sectors are updated relatively slowly.
|
|
40
|
+
* MAST bulk download: Best for downloading light curves for all stars (<16 TESS magnitude) in a sectors.
|
|
41
|
+
* tglc package: Capable of producing similar quality light curves for any sector and any star with custom options.
|
|
42
|
+
|
|
43
|
+
MAST Portal/bulk download
|
|
44
|
+
----------------------------
|
|
45
|
+
The easiest usage requires no package installation. Simply follow the `TGLC HLSP page <https://archive.stsci.edu/hlsp/tglc>`_ to download light curves from MAST or use `MAST Portal <https://mast.stsci.edu/portal/Mashup/Clients/Mast/Portal.html>`_. Light curves are being fitted sector by sector and will be available on MAST gradually. MAST hosts all Gaia DR3 stars down to 16th magnitude. Each .fits file includes PSF and aperture light curves and their calibrated versions.
|
|
46
|
+
|
|
47
|
+
MAST available sectors: `sector worklist <https://docs.google.com/spreadsheets/d/1FhHElWb1wmx9asWiZecAJ2umN0-P_aXn55OBVB34_rg/edit?usp=sharing>`_
|
|
48
|
+
|
|
49
|
+
|
|
50
|
+
tglc package
|
|
51
|
+
----------------------------
|
|
52
|
+
Users can also fit light curves using the package tglc. Using tglc, one can specify a region, sector(s), and customized aperture shape if needed. It can also allow all field stars to float by assigning Gaussian priors, which can help decontaminate variable field stars. tglc is currently only available for linux. Run::
|
|
53
|
+
|
|
54
|
+
pip install tglc
|
|
55
|
+
|
|
56
|
+
for the latest tglc release. After installation, follow the `tutorial <tutorial/TGLC_tutorial.ipynb>`_ to fit light curves. If there is a problem, please leave a comment in the Issues section to help us improve. Thank you!
|
|
57
|
+
|
|
58
|
+
|
|
59
|
+
==================================
|
|
60
|
+
Known Problems
|
|
61
|
+
==================================
|
|
62
|
+
There are several imperfections we noticed in the MAST TGLC light curves and tglc package:
|
|
63
|
+
|
|
64
|
+
* If the star is very dim (~< 15 Tmag) near a variable source, it can make the aperture and/or PSF light curve negative for some cadences. The detrending algorithm could malfunction and result in bad cal_aper_flux and/or cal_psf_flux. This is now fixed for tglc package, but this problem remains for the primary mission light curves published on MAST. Please detrend again if necessary. The extended mission light curves on MAST will not be affected. This is a very rare scenario, but could be important.
|
|
65
|
+
|
|
66
|
+
==================================
|
|
67
|
+
Reference
|
|
68
|
+
==================================
|
|
69
|
+
If you find the TGLC light curves or the tglc package useful in your research, please cite `our paper <https://iopscience.iop.org/article/10.3847/1538-3881/acaaa7>`_ published on the Astronomical Journal.
|
|
@@ -260,7 +260,7 @@ class Source(object):
|
|
|
260
260
|
attempt = 0
|
|
261
261
|
while attempt < 5:
|
|
262
262
|
try:
|
|
263
|
-
catalogdata = Gaia.cone_search_async(coord, radius,
|
|
263
|
+
catalogdata = Gaia.cone_search_async(coord, radius=radius,
|
|
264
264
|
columns=['DESIGNATION', 'phot_g_mean_mag', 'phot_bp_mean_mag',
|
|
265
265
|
'phot_rp_mean_mag', 'ra', 'dec', 'pmra', 'pmdec']).get_results()
|
|
266
266
|
return catalogdata
|
|
@@ -60,7 +60,7 @@ class Source_cut(object):
|
|
|
60
60
|
coord = SkyCoord(ra=ra, dec=dec, unit=(u.degree, u.degree), frame='icrs')
|
|
61
61
|
radius = u.Quantity((self.size + 6) * 21 * 0.707 / 3600, u.deg)
|
|
62
62
|
print(f'Target Gaia: {target[0]["designation"]}')
|
|
63
|
-
catalogdata = Gaia.cone_search_async(coord, radius,
|
|
63
|
+
catalogdata = Gaia.cone_search_async(coord, radius=radius,
|
|
64
64
|
columns=['DESIGNATION', 'phot_g_mean_mag', 'phot_bp_mean_mag',
|
|
65
65
|
'phot_rp_mean_mag', 'ra', 'dec', 'pmra', 'pmdec']).get_results()
|
|
66
66
|
print(f'Found {len(catalogdata)} Gaia DR3 objects.')
|
|
@@ -94,7 +94,6 @@ class Source_cut(object):
|
|
|
94
94
|
else:
|
|
95
95
|
self.select_sector(sector=sector)
|
|
96
96
|
|
|
97
|
-
|
|
98
97
|
def select_sector(self, sector=1):
|
|
99
98
|
"""
|
|
100
99
|
select sector to use if target is in multi-sectors
|
|
@@ -30,11 +30,11 @@ def tglc_lc(target='TIC 264468702', local_directory='', size=90, save_aper=True,
|
|
|
30
30
|
Generate light curve for a single target.
|
|
31
31
|
|
|
32
32
|
:param target: target identifier
|
|
33
|
-
:
|
|
33
|
+
:kind target: str, required
|
|
34
34
|
:param local_directory: output directory
|
|
35
|
-
:
|
|
35
|
+
:kind local_directory: str, required
|
|
36
36
|
:param size: size of the FFI cut, default size is 90. Recommend large number for better quality. Cannot exceed 100.
|
|
37
|
-
:
|
|
37
|
+
:kind size: int, optional
|
|
38
38
|
'''
|
|
39
39
|
os.makedirs(local_directory + f'logs/', exist_ok=True)
|
|
40
40
|
os.makedirs(local_directory + f'lc/', exist_ok=True)
|
|
@@ -161,27 +161,27 @@ def star_spliter(server=1, # or 2
|
|
|
161
161
|
return
|
|
162
162
|
|
|
163
163
|
|
|
164
|
-
def plot_lc(local_directory=None,
|
|
164
|
+
def plot_lc(local_directory=None, kind='cal_aper_flux', xlow=None, xhigh=None, ylow=None, yhigh=None):
|
|
165
165
|
files = glob(f'{local_directory}lc/*.fits')
|
|
166
166
|
os.makedirs(f'{local_directory}plots/', exist_ok=True)
|
|
167
167
|
for i in range(len(files)):
|
|
168
168
|
with fits.open(files[i], mode='denywrite') as hdul:
|
|
169
169
|
q = [a and b for a, b in zip(list(hdul[1].data['TESS_flags'] == 0), list(hdul[1].data['TGLC_flags'] == 0))]
|
|
170
170
|
plt.figure(constrained_layout=False, figsize=(8, 4))
|
|
171
|
-
plt.plot(hdul[1].data['time'], hdul[1].data[
|
|
172
|
-
plt.plot(hdul[1].data['time'][q], hdul[1].data[
|
|
171
|
+
plt.plot(hdul[1].data['time'], hdul[1].data[kind], '.', c='silver', label=kind)
|
|
172
|
+
plt.plot(hdul[1].data['time'][q], hdul[1].data[kind][q], '.k', label=f'{kind}_flagged')
|
|
173
173
|
plt.xlim(xlow, xhigh)
|
|
174
174
|
plt.ylim(ylow, yhigh)
|
|
175
|
-
plt.title(f'TIC_{hdul[0].header["TICID"]}_sector_{hdul[0].header["SECTOR"]:04d}_{
|
|
175
|
+
plt.title(f'TIC_{hdul[0].header["TICID"]}_sector_{hdul[0].header["SECTOR"]:04d}_{kind}')
|
|
176
176
|
plt.legend()
|
|
177
177
|
# plt.show()
|
|
178
178
|
plt.savefig(
|
|
179
|
-
f'{local_directory}plots/TIC_{hdul[0].header["TICID"]}_sector_{hdul[0].header["SECTOR"]:04d}_{
|
|
179
|
+
f'{local_directory}plots/TIC_{hdul[0].header["TICID"]}_sector_{hdul[0].header["SECTOR"]:04d}_{kind}.png',
|
|
180
180
|
dpi=300)
|
|
181
181
|
plt.close()
|
|
182
182
|
|
|
183
183
|
|
|
184
|
-
def plot_aperture(local_directory=None,
|
|
184
|
+
def plot_aperture(local_directory=None, kind='cal_aper_flux'):
|
|
185
185
|
files = glob(f'{local_directory}*.fits')
|
|
186
186
|
os.makedirs(f'{local_directory}plots/', exist_ok=True)
|
|
187
187
|
portion = [0.9361215204370542, 0.9320709087810205]
|
|
@@ -192,8 +192,8 @@ def plot_aperture(local_directory=None, type='cal_aper_flux'):
|
|
|
192
192
|
print(files[i], portion[i])
|
|
193
193
|
q = [a and b for a, b in zip(list(hdul[1].data['TESS_flags'] == 0), list(hdul[1].data['TGLC_flags'] == 0))]
|
|
194
194
|
plt.figure(constrained_layout=False, figsize=(8, 4))
|
|
195
|
-
plt.plot(hdul[1].data['time'] % 3.79262026, hdul[1].data[
|
|
196
|
-
plt.plot(hdul[1].data['time'][q] % 3.79262026, hdul[1].data[
|
|
195
|
+
plt.plot(hdul[1].data['time'] % 3.79262026, hdul[1].data[kind], '.', c='silver', label=kind)
|
|
196
|
+
plt.plot(hdul[1].data['time'][q] % 3.79262026, hdul[1].data[kind][q], '.k', label=f'{kind}_flagged')
|
|
197
197
|
aperture_bar = 709.5512462444653 * portion[i]
|
|
198
198
|
aper_lc = np.nansum(hdul[0].data, axis=(1, 2))
|
|
199
199
|
local_bg = np.nanmedian(aper_lc) - aperture_bar
|
|
@@ -226,7 +226,7 @@ def plot_aperture(local_directory=None, type='cal_aper_flux'):
|
|
|
226
226
|
np.savetxt(f'{local_directory}TESS_TOI-5344_5_5_aper.csv', data, delimiter=',')
|
|
227
227
|
|
|
228
228
|
|
|
229
|
-
def plot_pf_lc(local_directory=None, period=None, mid_transit_tbjd=None,
|
|
229
|
+
def plot_pf_lc(local_directory=None, period=None, mid_transit_tbjd=None, kind='cal_aper_flux'):
|
|
230
230
|
files = glob(f'{local_directory}*.fits')
|
|
231
231
|
os.makedirs(f'{local_directory}plots/', exist_ok=True)
|
|
232
232
|
fig = plt.figure(figsize=(13, 5))
|
|
@@ -238,27 +238,27 @@ def plot_pf_lc(local_directory=None, period=None, mid_transit_tbjd=None, type='c
|
|
|
238
238
|
with fits.open(files[j], mode='denywrite') as hdul:
|
|
239
239
|
q = [a and b for a, b in
|
|
240
240
|
zip(list(hdul[1].data['TESS_flags'] == 0), list(hdul[1].data['TGLC_flags'] == 0))]
|
|
241
|
-
# q = [a and b for a, b in zip(q, list(hdul[1].data[
|
|
241
|
+
# q = [a and b for a, b in zip(q, list(hdul[1].data[kind] > 0.85))]
|
|
242
242
|
# if hdul[0].header['sector'] == 15:
|
|
243
243
|
# q = [a and b for a, b in zip(q, list(hdul[1].data['time'] < 1736))]
|
|
244
244
|
if len(hdul[1].data['cal_aper_flux']) == len(hdul[1].data['time']):
|
|
245
245
|
if hdul[0].header["SECTOR"] <= 26:
|
|
246
246
|
t = hdul[1].data['time'][q]
|
|
247
|
-
f = hdul[1].data[
|
|
247
|
+
f = hdul[1].data[kind][q]
|
|
248
248
|
elif hdul[0].header["SECTOR"] <= 55:
|
|
249
249
|
t = np.mean(hdul[1].data['time'][q][:len(hdul[1].data['time'][q]) // 3 * 3].reshape(-1, 3), axis=1)
|
|
250
250
|
f = np.mean(
|
|
251
|
-
hdul[1].data[
|
|
251
|
+
hdul[1].data[kind][q][:len(hdul[1].data[kind][q]) // 3 * 3].reshape(-1, 3), axis=1)
|
|
252
252
|
else:
|
|
253
253
|
t = np.mean(hdul[1].data['time'][q][:len(hdul[1].data['time'][q]) // 9 * 9].reshape(-1, 9), axis=1)
|
|
254
254
|
f = np.mean(
|
|
255
|
-
hdul[1].data[
|
|
255
|
+
hdul[1].data[kind][q][:len(hdul[1].data[kind][q]) // 9 * 9].reshape(-1, 9), axis=1)
|
|
256
256
|
t_all = np.append(t_all, t)
|
|
257
257
|
f_all = np.append(f_all, f)
|
|
258
258
|
f_err_all = np.append(f_err_all, np.array([hdul[1].header['CAPE_ERR']] * len(t)))
|
|
259
259
|
|
|
260
|
-
# plt.plot(hdul[1].data['time'] % period / period, hdul[1].data[
|
|
261
|
-
plt.errorbar(t % period / period, f, hdul[1].header['CAPE_ERR'], c='silver', ls='', elinewidth=1
|
|
260
|
+
# plt.plot(hdul[1].data['time'] % period / period, hdul[1].data[kind], '.', c='silver', ms=3)
|
|
261
|
+
plt.errorbar(t % period / period, f, hdul[1].header['CAPE_ERR'], c='silver', ls='', elinewidth=0.1,
|
|
262
262
|
marker='.', ms=3, zorder=2)
|
|
263
263
|
# time_out, meas_out, meas_err_out = timebin(time=t % period, meas=f,
|
|
264
264
|
# meas_err=np.array([hdul[1].header['CAPE_ERR']] * len(t)),
|
|
@@ -267,7 +267,7 @@ def plot_pf_lc(local_directory=None, period=None, mid_transit_tbjd=None, type='c
|
|
|
267
267
|
# marker='.', ms=8, zorder=3, label=f'Sector {hdul[0].header["sector"]}')
|
|
268
268
|
else:
|
|
269
269
|
not_plotted_num += 1
|
|
270
|
-
title = f'TIC_{hdul[0].header["TICID"]} with {len(files) - not_plotted_num} sector(s) of data, {
|
|
270
|
+
title = f'TIC_{hdul[0].header["TICID"]} with {len(files) - not_plotted_num} sector(s) of data, {kind}'
|
|
271
271
|
# PDCSAP_files = glob('/home/tehan/Documents/GEMS/TIC 172370679/PDCSAP/*.txt')
|
|
272
272
|
# for i in range(len(files)):
|
|
273
273
|
# PDCSAP = ascii.read(PDCSAP_files[i])
|
|
@@ -281,11 +281,11 @@ def plot_pf_lc(local_directory=None, period=None, mid_transit_tbjd=None, type='c
|
|
|
281
281
|
plt.errorbar(np.array(time_out) / period, meas_out, meas_err_out, c=f'r', ls='', elinewidth=1.5,
|
|
282
282
|
marker='.', ms=8, zorder=3, label=f'All sectors')
|
|
283
283
|
|
|
284
|
-
plt.ylim(0.
|
|
284
|
+
plt.ylim(0.998, 1.001)
|
|
285
285
|
# plt.xlim(0.3, 0.43)
|
|
286
286
|
plt.legend()
|
|
287
287
|
plt.title(title)
|
|
288
|
-
plt.xlim(mid_transit_tbjd % period - 0.1 * period, mid_transit_tbjd % period + 0.1 * period)
|
|
288
|
+
# plt.xlim(mid_transit_tbjd % period - 0.1 * period, mid_transit_tbjd % period + 0.1 * period)
|
|
289
289
|
# plt.ylim(0.9, 1.1)
|
|
290
290
|
# plt.hlines(y=0.92, xmin=0, xmax=1, ls='dotted', colors='k')
|
|
291
291
|
# plt.hlines(y=0.93, xmin=0, xmax=1, ls='dotted', colors='k')
|
|
@@ -355,7 +355,7 @@ def plot_contamination(local_directory=None, gaia_dr3=None):
|
|
|
355
355
|
ax0.text(source.gaia[f'sector_{sector}_x'][nearby_stars[l]] - 0.1,
|
|
356
356
|
source.gaia[f'sector_{sector}_y'][nearby_stars[l]] + 0.3,
|
|
357
357
|
f'TIC {int(source.tic["TIC"][index])}', rotation=90)
|
|
358
|
-
except
|
|
358
|
+
except kindError:
|
|
359
359
|
ax0.text(source.gaia[f'sector_{sector}_x'][nearby_stars[l]] - 0.1,
|
|
360
360
|
source.gaia[f'sector_{sector}_y'][nearby_stars[l]] + 0.2,
|
|
361
361
|
f'{source.gaia[f"DESIGNATION"][nearby_stars[l]]}', rotation=90)
|
|
@@ -451,32 +451,21 @@ def get_tglc_lc(tics=None, method='query', server=1, directory=None, prior=None)
|
|
|
451
451
|
tglc_lc(target=target, local_directory=local_directory, size=90, save_aper=True, limit_mag=16,
|
|
452
452
|
get_all_lc=False, first_sector_only=False, last_sector_only=False, sector=None, prior=prior,
|
|
453
453
|
transient=None)
|
|
454
|
-
plot_lc(local_directory=f'{directory}TIC {tics[i]}/',
|
|
454
|
+
plot_lc(local_directory=f'{directory}TIC {tics[i]}/', kind='cal_aper_flux')
|
|
455
455
|
if method == 'search':
|
|
456
456
|
star_spliter(server=server, tics=tics, local_directory=directory)
|
|
457
457
|
|
|
458
458
|
|
|
459
459
|
if __name__ == '__main__':
|
|
460
460
|
tics = [16005254]
|
|
461
|
-
directory = f'/home/tehan/
|
|
462
|
-
# directory = f'/home/tehan/data/cosmos/GEMS/'
|
|
461
|
+
directory = f'/home/tehan/data/'
|
|
463
462
|
os.makedirs(directory, exist_ok=True)
|
|
464
|
-
|
|
465
|
-
plot_lc(local_directory=f'
|
|
466
|
-
|
|
463
|
+
get_tglc_lc(tics=tics, method='query', server=1, directory=directory)
|
|
464
|
+
# plot_lc(local_directory=f'{directory}TIC {tics[0]}/', kind='cal_aper_flux')
|
|
465
|
+
# plot_lc(local_directory=f'/home/tehan/Documents/tglc/TIC 16005254/', kind='cal_aper_flux', ylow=0.9, yhigh=1.1)
|
|
466
|
+
# plot_contamination(local_directory=f'{directory}TIC {tics[0]}/', gaia_dr3=5751990597042725632)
|
|
467
467
|
# plot_epsf(local_directory=f'{directory}TIC {tics[0]}/')
|
|
468
468
|
# plot_pf_lc(local_directory=f'{directory}TIC {tics[0]}/lc/', period=0.71912603, mid_transit_tbjd=2790.58344,
|
|
469
|
-
#
|
|
470
|
-
# plot_pf_lc(local_directory=f'{directory}TIC {tics[0]}/lc/', period=0.
|
|
471
|
-
#
|
|
472
|
-
|
|
473
|
-
# target = f'266.489125, -33.8428'
|
|
474
|
-
# directory = f'/home/tehan/data/cosmos/michelle/'
|
|
475
|
-
# local_directory = f'{directory}{target}/'
|
|
476
|
-
# os.makedirs(local_directory, exist_ok=True)
|
|
477
|
-
# tglc_lc(target=target, local_directory=local_directory, size=50, save_aper=True, limit_mag=17,
|
|
478
|
-
# get_all_lc=False, first_sector_only=False, last_sector_only=False, sector=39, prior=None,
|
|
479
|
-
# transient=['266.489125, -33.8428', 266.489125, -33.8428])
|
|
480
|
-
# plot_lc(local_directory=f'{local_directory}', type='cal_aper_flux')
|
|
481
|
-
# plot_lc(local_directory=f'{local_directory}', yhigh=150, type='aperture_flux')
|
|
482
|
-
# plot_contamination(local_directory=f'{local_directory}', gaia_dr3=4041831235071242624)
|
|
469
|
+
# kind='cal_psf_flux')
|
|
470
|
+
# plot_pf_lc(local_directory=f'{directory}TIC {tics[0]}/lc/', period=0.23818244, mid_transit_tbjd=1738.71248,
|
|
471
|
+
# kind='cal_aper_flux')
|
|
@@ -0,0 +1,69 @@
|
|
|
1
|
+
Metadata-Version: 2.1
|
|
2
|
+
Name: tglc
|
|
3
|
+
Version: 0.6.4
|
|
4
|
+
Summary: TESS-Gaia Light Curve
|
|
5
|
+
Home-page: https://github.com/TeHanHunter/TESS_Gaia_Light_Curve
|
|
6
|
+
Author: Te Han
|
|
7
|
+
Author-email: tehanhunter@gmail.com
|
|
8
|
+
Classifier: Programming Language :: Python :: 3
|
|
9
|
+
Classifier: License :: OSI Approved :: MIT License
|
|
10
|
+
Classifier: Operating System :: OS Independent
|
|
11
|
+
Requires-Python: >=3.8
|
|
12
|
+
Description-Content-Type: text/x-rst
|
|
13
|
+
License-File: LICENSE
|
|
14
|
+
|
|
15
|
+
==================================
|
|
16
|
+
Introduction
|
|
17
|
+
==================================
|
|
18
|
+
|
|
19
|
+
TESS-Gaia Light Curve (`TGLC <https://archive.stsci.edu/hlsp/tglc>`_) is a dataset of TESS full-frame image light curves publicly available via the MAST portal. It is fitted with effective PSF and decontaminated with Gaia DR3 and achieved percent-level photometric precision down to 16th TESS magnitude! It unlocks astrophysics to a vast number of dim stars below 12th TESS magnitude. A package called tglc is pip-installable for customized light curve fits.
|
|
20
|
+
|
|
21
|
+
==================================
|
|
22
|
+
Usage
|
|
23
|
+
==================================
|
|
24
|
+
There are four fluxes in each FITS file: aperture flux, PSF flux, calibrated aperture flux, and calibrated PSF flux.
|
|
25
|
+
If you are uncertain which to use:
|
|
26
|
+
|
|
27
|
+
* Calibrated psf flux is better in **deblending** targets. Use this if you need to deblend a target near a variable source. The best deblending can be achieved with tglc package by setting a non-zero prior. It also gives the more accurate **transit depth** in most cases, especially when fitting with an optimized prior.
|
|
28
|
+
* Calibrated aperture flux usually has slightly **higher SNR**. The transit depth (or variation amplitude), however, can be imperfect since the normalization depends on the PSF fitting which is imperfect. This imperfection can be minimized by using a bigger aperture than the default aperture (3*3). One need to use the tglc package and set tglc_lc(save_aper=True) to access the 5*5 aperture. In the presence of a bright but "constant" contamination (several magnitudes brighter), the calibrated aperture flux is better in removing the constant contamination.
|
|
29
|
+
* The aperture flux and PSF flux are not detrended or normalized. Use this if you are doing stellar variability science with long baseline. Or, if the detrending is not optimal (default detrending has a window length of 1 day; see Known Problems below), start with the aperture flux or PSF flux and detrend carefully!
|
|
30
|
+
* **If you are uncertain, start with calibrated aperture flux!**
|
|
31
|
+
|
|
32
|
+
The `tutorial <tutorial/TGLC_tutorial.ipynb>`_ shows the syntaxes and differences among these light curves in several examples.
|
|
33
|
+
|
|
34
|
+
==================================
|
|
35
|
+
Data Access
|
|
36
|
+
==================================
|
|
37
|
+
There are three data access methods:
|
|
38
|
+
|
|
39
|
+
* MAST Portal: Easiest for acquiring light curves for a few stars. However, new sectors are updated relatively slowly.
|
|
40
|
+
* MAST bulk download: Best for downloading light curves for all stars (<16 TESS magnitude) in a sectors.
|
|
41
|
+
* tglc package: Capable of producing similar quality light curves for any sector and any star with custom options.
|
|
42
|
+
|
|
43
|
+
MAST Portal/bulk download
|
|
44
|
+
----------------------------
|
|
45
|
+
The easiest usage requires no package installation. Simply follow the `TGLC HLSP page <https://archive.stsci.edu/hlsp/tglc>`_ to download light curves from MAST or use `MAST Portal <https://mast.stsci.edu/portal/Mashup/Clients/Mast/Portal.html>`_. Light curves are being fitted sector by sector and will be available on MAST gradually. MAST hosts all Gaia DR3 stars down to 16th magnitude. Each .fits file includes PSF and aperture light curves and their calibrated versions.
|
|
46
|
+
|
|
47
|
+
MAST available sectors: `sector worklist <https://docs.google.com/spreadsheets/d/1FhHElWb1wmx9asWiZecAJ2umN0-P_aXn55OBVB34_rg/edit?usp=sharing>`_
|
|
48
|
+
|
|
49
|
+
|
|
50
|
+
tglc package
|
|
51
|
+
----------------------------
|
|
52
|
+
Users can also fit light curves using the package tglc. Using tglc, one can specify a region, sector(s), and customized aperture shape if needed. It can also allow all field stars to float by assigning Gaussian priors, which can help decontaminate variable field stars. tglc is currently only available for linux. Run::
|
|
53
|
+
|
|
54
|
+
pip install tglc
|
|
55
|
+
|
|
56
|
+
for the latest tglc release. After installation, follow the `tutorial <tutorial/TGLC_tutorial.ipynb>`_ to fit light curves. If there is a problem, please leave a comment in the Issues section to help us improve. Thank you!
|
|
57
|
+
|
|
58
|
+
|
|
59
|
+
==================================
|
|
60
|
+
Known Problems
|
|
61
|
+
==================================
|
|
62
|
+
There are several imperfections we noticed in the MAST TGLC light curves and tglc package:
|
|
63
|
+
|
|
64
|
+
* If the star is very dim (~< 15 Tmag) near a variable source, it can make the aperture and/or PSF light curve negative for some cadences. The detrending algorithm could malfunction and result in bad cal_aper_flux and/or cal_psf_flux. This is now fixed for tglc package, but this problem remains for the primary mission light curves published on MAST. Please detrend again if necessary. The extended mission light curves on MAST will not be affected. This is a very rare scenario, but could be important.
|
|
65
|
+
|
|
66
|
+
==================================
|
|
67
|
+
Reference
|
|
68
|
+
==================================
|
|
69
|
+
If you find the TGLC light curves or the tglc package useful in your research, please cite `our paper <https://iopscience.iop.org/article/10.3847/1538-3881/acaaa7>`_ published on the Astronomical Journal.
|
tglc-0.6.3/PKG-INFO
DELETED
|
@@ -1,70 +0,0 @@
|
|
|
1
|
-
Metadata-Version: 2.1
|
|
2
|
-
Name: tglc
|
|
3
|
-
Version: 0.6.3
|
|
4
|
-
Summary: TESS-Gaia Light Curve
|
|
5
|
-
Home-page: https://github.com/TeHanHunter/TESS_Gaia_Light_Curve
|
|
6
|
-
Author: Te Han
|
|
7
|
-
Author-email: tehanhunter@gmail.com
|
|
8
|
-
License: UNKNOWN
|
|
9
|
-
Description: ==================================
|
|
10
|
-
Introduction
|
|
11
|
-
==================================
|
|
12
|
-
|
|
13
|
-
TESS-Gaia Light Curve (`TGLC <https://archive.stsci.edu/hlsp/tglc>`_) is a dataset of TESS full-frame image light curves publicly available via the MAST portal. It is fitted with effective PSF and decontaminated with Gaia DR3 and achieved percent-level photometric precision down to 16th TESS magnitude! It unlocks astrophysics to a vast number of dim stars below 12th TESS magnitude. A package called tglc is pip-installable for customized light curve fits.
|
|
14
|
-
|
|
15
|
-
==================================
|
|
16
|
-
Usage
|
|
17
|
-
==================================
|
|
18
|
-
There are four fluxes in each FITS file: aperture flux, PSF flux, calibrated aperture flux, and calibrated PSF flux.
|
|
19
|
-
If you are uncertain which to use:
|
|
20
|
-
|
|
21
|
-
* Calibrated psf flux is better in **deblending** targets. Use this if you need to deblend a target near a variable source. The best deblending can be achieved with tglc package by setting a non-zero prior. It also gives the more accurate **transit depth** in most cases, especially when fitting with an optimized prior.
|
|
22
|
-
* Calibrated aperture flux usually has slightly **higher SNR**. The transit depth (or variation amplitude), however, can be imperfect since the normalization depends on the PSF fitting which is imperfect. This imperfection can be minimized by using a bigger aperture than the default aperture (3*3). One need to use the tglc package and set tglc_lc(save_aper=True) to access the 5*5 aperture. In the presence of a bright but "constant" contamination (several magnitudes brighter), the calibrated aperture flux is better in removing the constant contamination.
|
|
23
|
-
* The aperture flux and PSF flux are not detrended or normalized. Use this if you are doing stellar variability science with long baseline. Or, if the detrending is not optimal (default detrending has a window length of 1 day; see Known Problems below), start with the aperture flux or PSF flux and detrend carefully!
|
|
24
|
-
* **If you are uncertain, start with calibrated aperture flux!**
|
|
25
|
-
|
|
26
|
-
The `tutorial <tutorial/TGLC_tutorial.ipynb>`_ shows the syntaxes and differences among these light curves in several examples.
|
|
27
|
-
|
|
28
|
-
==================================
|
|
29
|
-
Data Access
|
|
30
|
-
==================================
|
|
31
|
-
There are three data access methods:
|
|
32
|
-
|
|
33
|
-
* MAST Portal: Easiest for acquiring light curves for a few stars. However, new sectors are updated relatively slowly.
|
|
34
|
-
* MAST bulk download: Best for downloading light curves for all stars (<16 TESS magnitude) in a sectors.
|
|
35
|
-
* tglc package: Capable of producing similar quality light curves for any sector and any star with custom options.
|
|
36
|
-
|
|
37
|
-
MAST Portal/bulk download
|
|
38
|
-
----------------------------
|
|
39
|
-
The easiest usage requires no package installation. Simply follow the `TGLC HLSP page <https://archive.stsci.edu/hlsp/tglc>`_ to download light curves from MAST or use `MAST Portal <https://mast.stsci.edu/portal/Mashup/Clients/Mast/Portal.html>`_. Light curves are being fitted sector by sector and will be available on MAST gradually. MAST hosts all Gaia DR3 stars down to 16th magnitude. Each .fits file includes PSF and aperture light curves and their calibrated versions.
|
|
40
|
-
|
|
41
|
-
MAST available sectors: `sector worklist <https://docs.google.com/spreadsheets/d/1FhHElWb1wmx9asWiZecAJ2umN0-P_aXn55OBVB34_rg/edit?usp=sharing>`_
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
tglc package
|
|
45
|
-
----------------------------
|
|
46
|
-
Users can also fit light curves using the package tglc. Using tglc, one can specify a region, sector(s), and customized aperture shape if needed. It can also allow all field stars to float by assigning Gaussian priors, which can help decontaminate variable field stars. tglc is currently only available for linux. Run::
|
|
47
|
-
|
|
48
|
-
pip install tglc
|
|
49
|
-
|
|
50
|
-
for the latest tglc release. After installation, follow the `tutorial <tutorial/TGLC_tutorial.ipynb>`_ to fit light curves. If there is a problem, please leave a comment in the Issues section to help us improve. Thank you!
|
|
51
|
-
|
|
52
|
-
|
|
53
|
-
==================================
|
|
54
|
-
Known Problems
|
|
55
|
-
==================================
|
|
56
|
-
There are several imperfections we noticed in the MAST TGLC light curves and tglc package:
|
|
57
|
-
|
|
58
|
-
* If the star is very dim (~< 15 Tmag) near a variable source, it can make the aperture and/or PSF light curve negative for some cadences. The detrending algorithm could malfunction and result in bad cal_aper_flux and/or cal_psf_flux. This is now fixed for tglc package, but this problem remains for the primary mission light curves published on MAST. Please detrend again if necessary. The extended mission light curves on MAST will not be affected. This is a very rare scenario, but could be important.
|
|
59
|
-
|
|
60
|
-
==================================
|
|
61
|
-
Reference
|
|
62
|
-
==================================
|
|
63
|
-
If you find the TGLC light curves or the tglc package useful in your research, please cite `our paper <https://iopscience.iop.org/article/10.3847/1538-3881/acaaa7>`_ published on the Astronomical Journal.
|
|
64
|
-
|
|
65
|
-
Platform: UNKNOWN
|
|
66
|
-
Classifier: Programming Language :: Python :: 3
|
|
67
|
-
Classifier: License :: OSI Approved :: MIT License
|
|
68
|
-
Classifier: Operating System :: OS Independent
|
|
69
|
-
Requires-Python: >=3.8
|
|
70
|
-
Description-Content-Type: text/x-rst
|
tglc-0.6.3/tglc/__init__.py
DELETED
|
@@ -1,70 +0,0 @@
|
|
|
1
|
-
Metadata-Version: 2.1
|
|
2
|
-
Name: tglc
|
|
3
|
-
Version: 0.6.3
|
|
4
|
-
Summary: TESS-Gaia Light Curve
|
|
5
|
-
Home-page: https://github.com/TeHanHunter/TESS_Gaia_Light_Curve
|
|
6
|
-
Author: Te Han
|
|
7
|
-
Author-email: tehanhunter@gmail.com
|
|
8
|
-
License: UNKNOWN
|
|
9
|
-
Description: ==================================
|
|
10
|
-
Introduction
|
|
11
|
-
==================================
|
|
12
|
-
|
|
13
|
-
TESS-Gaia Light Curve (`TGLC <https://archive.stsci.edu/hlsp/tglc>`_) is a dataset of TESS full-frame image light curves publicly available via the MAST portal. It is fitted with effective PSF and decontaminated with Gaia DR3 and achieved percent-level photometric precision down to 16th TESS magnitude! It unlocks astrophysics to a vast number of dim stars below 12th TESS magnitude. A package called tglc is pip-installable for customized light curve fits.
|
|
14
|
-
|
|
15
|
-
==================================
|
|
16
|
-
Usage
|
|
17
|
-
==================================
|
|
18
|
-
There are four fluxes in each FITS file: aperture flux, PSF flux, calibrated aperture flux, and calibrated PSF flux.
|
|
19
|
-
If you are uncertain which to use:
|
|
20
|
-
|
|
21
|
-
* Calibrated psf flux is better in **deblending** targets. Use this if you need to deblend a target near a variable source. The best deblending can be achieved with tglc package by setting a non-zero prior. It also gives the more accurate **transit depth** in most cases, especially when fitting with an optimized prior.
|
|
22
|
-
* Calibrated aperture flux usually has slightly **higher SNR**. The transit depth (or variation amplitude), however, can be imperfect since the normalization depends on the PSF fitting which is imperfect. This imperfection can be minimized by using a bigger aperture than the default aperture (3*3). One need to use the tglc package and set tglc_lc(save_aper=True) to access the 5*5 aperture. In the presence of a bright but "constant" contamination (several magnitudes brighter), the calibrated aperture flux is better in removing the constant contamination.
|
|
23
|
-
* The aperture flux and PSF flux are not detrended or normalized. Use this if you are doing stellar variability science with long baseline. Or, if the detrending is not optimal (default detrending has a window length of 1 day; see Known Problems below), start with the aperture flux or PSF flux and detrend carefully!
|
|
24
|
-
* **If you are uncertain, start with calibrated aperture flux!**
|
|
25
|
-
|
|
26
|
-
The `tutorial <tutorial/TGLC_tutorial.ipynb>`_ shows the syntaxes and differences among these light curves in several examples.
|
|
27
|
-
|
|
28
|
-
==================================
|
|
29
|
-
Data Access
|
|
30
|
-
==================================
|
|
31
|
-
There are three data access methods:
|
|
32
|
-
|
|
33
|
-
* MAST Portal: Easiest for acquiring light curves for a few stars. However, new sectors are updated relatively slowly.
|
|
34
|
-
* MAST bulk download: Best for downloading light curves for all stars (<16 TESS magnitude) in a sectors.
|
|
35
|
-
* tglc package: Capable of producing similar quality light curves for any sector and any star with custom options.
|
|
36
|
-
|
|
37
|
-
MAST Portal/bulk download
|
|
38
|
-
----------------------------
|
|
39
|
-
The easiest usage requires no package installation. Simply follow the `TGLC HLSP page <https://archive.stsci.edu/hlsp/tglc>`_ to download light curves from MAST or use `MAST Portal <https://mast.stsci.edu/portal/Mashup/Clients/Mast/Portal.html>`_. Light curves are being fitted sector by sector and will be available on MAST gradually. MAST hosts all Gaia DR3 stars down to 16th magnitude. Each .fits file includes PSF and aperture light curves and their calibrated versions.
|
|
40
|
-
|
|
41
|
-
MAST available sectors: `sector worklist <https://docs.google.com/spreadsheets/d/1FhHElWb1wmx9asWiZecAJ2umN0-P_aXn55OBVB34_rg/edit?usp=sharing>`_
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
tglc package
|
|
45
|
-
----------------------------
|
|
46
|
-
Users can also fit light curves using the package tglc. Using tglc, one can specify a region, sector(s), and customized aperture shape if needed. It can also allow all field stars to float by assigning Gaussian priors, which can help decontaminate variable field stars. tglc is currently only available for linux. Run::
|
|
47
|
-
|
|
48
|
-
pip install tglc
|
|
49
|
-
|
|
50
|
-
for the latest tglc release. After installation, follow the `tutorial <tutorial/TGLC_tutorial.ipynb>`_ to fit light curves. If there is a problem, please leave a comment in the Issues section to help us improve. Thank you!
|
|
51
|
-
|
|
52
|
-
|
|
53
|
-
==================================
|
|
54
|
-
Known Problems
|
|
55
|
-
==================================
|
|
56
|
-
There are several imperfections we noticed in the MAST TGLC light curves and tglc package:
|
|
57
|
-
|
|
58
|
-
* If the star is very dim (~< 15 Tmag) near a variable source, it can make the aperture and/or PSF light curve negative for some cadences. The detrending algorithm could malfunction and result in bad cal_aper_flux and/or cal_psf_flux. This is now fixed for tglc package, but this problem remains for the primary mission light curves published on MAST. Please detrend again if necessary. The extended mission light curves on MAST will not be affected. This is a very rare scenario, but could be important.
|
|
59
|
-
|
|
60
|
-
==================================
|
|
61
|
-
Reference
|
|
62
|
-
==================================
|
|
63
|
-
If you find the TGLC light curves or the tglc package useful in your research, please cite `our paper <https://iopscience.iop.org/article/10.3847/1538-3881/acaaa7>`_ published on the Astronomical Journal.
|
|
64
|
-
|
|
65
|
-
Platform: UNKNOWN
|
|
66
|
-
Classifier: Programming Language :: Python :: 3
|
|
67
|
-
Classifier: License :: OSI Approved :: MIT License
|
|
68
|
-
Classifier: Operating System :: OS Independent
|
|
69
|
-
Requires-Python: >=3.8
|
|
70
|
-
Description-Content-Type: text/x-rst
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|