tfduck-bsd 0.16.8__tar.gz → 0.17.0__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of tfduck-bsd might be problematic. Click here for more details.
- {tfduck-bsd-0.16.8/tfduck_bsd.egg-info → tfduck-bsd-0.17.0}/PKG-INFO +1 -1
- {tfduck-bsd-0.16.8 → tfduck-bsd-0.17.0}/setup.py +1 -1
- tfduck-bsd-0.17.0/tfduck/__init__.py +1 -0
- {tfduck-bsd-0.16.8 → tfduck-bsd-0.17.0}/tfduck/tga/train_sql_ltv.py +8 -4
- {tfduck-bsd-0.16.8 → tfduck-bsd-0.17.0}/tfduck/tga/train_sql_retain.py +8 -4
- {tfduck-bsd-0.16.8 → tfduck-bsd-0.17.0}/tfduck/tga/train_sql_yh.py +7 -4
- {tfduck-bsd-0.16.8 → tfduck-bsd-0.17.0/tfduck_bsd.egg-info}/PKG-INFO +1 -1
- tfduck-bsd-0.16.8/tfduck/__init__.py +0 -1
- {tfduck-bsd-0.16.8 → tfduck-bsd-0.17.0}/LICENSE +0 -0
- {tfduck-bsd-0.16.8 → tfduck-bsd-0.17.0}/README.md +0 -0
- {tfduck-bsd-0.16.8 → tfduck-bsd-0.17.0}/bin/tfduck +0 -0
- {tfduck-bsd-0.16.8 → tfduck-bsd-0.17.0}/setup.cfg +0 -0
- {tfduck-bsd-0.16.8 → tfduck-bsd-0.17.0}/tfduck/bdp_sdk_py/__init__.py +0 -0
- {tfduck-bsd-0.16.8 → tfduck-bsd-0.17.0}/tfduck/bdp_sdk_py/config/__init__.py +0 -0
- {tfduck-bsd-0.16.8 → tfduck-bsd-0.17.0}/tfduck/bdp_sdk_py/config/bdpmanager.py +0 -0
- {tfduck-bsd-0.16.8 → tfduck-bsd-0.17.0}/tfduck/bdp_sdk_py/config/table_config.py +0 -0
- {tfduck-bsd-0.16.8 → tfduck-bsd-0.17.0}/tfduck/bdp_sdk_py/example.py +0 -0
- {tfduck-bsd-0.16.8 → tfduck-bsd-0.17.0}/tfduck/bdp_sdk_py/opends/__init__.py +0 -0
- {tfduck-bsd-0.16.8 → tfduck-bsd-0.17.0}/tfduck/bdp_sdk_py/opends/opends.py +0 -0
- {tfduck-bsd-0.16.8 → tfduck-bsd-0.17.0}/tfduck/bdp_sdk_py/opends/sdk.py +0 -0
- {tfduck-bsd-0.16.8 → tfduck-bsd-0.17.0}/tfduck/common/__init__.py +0 -0
- {tfduck-bsd-0.16.8 → tfduck-bsd-0.17.0}/tfduck/common/defines.py +0 -0
- {tfduck-bsd-0.16.8 → tfduck-bsd-0.17.0}/tfduck/common/extendEncoder.py +0 -0
- {tfduck-bsd-0.16.8 → tfduck-bsd-0.17.0}/tfduck/main.py +0 -0
- {tfduck-bsd-0.16.8 → tfduck-bsd-0.17.0}/tfduck/oss/__init__.py +0 -0
- {tfduck-bsd-0.16.8 → tfduck-bsd-0.17.0}/tfduck/oss/oss.py +0 -0
- {tfduck-bsd-0.16.8 → tfduck-bsd-0.17.0}/tfduck/pyspark_k8s/__init__.py +0 -0
- {tfduck-bsd-0.16.8 → tfduck-bsd-0.17.0}/tfduck/pyspark_k8s/k8s_manage.py +0 -0
- {tfduck-bsd-0.16.8 → tfduck-bsd-0.17.0}/tfduck/pyspark_k8s/spark_manage.py +0 -0
- {tfduck-bsd-0.16.8 → tfduck-bsd-0.17.0}/tfduck/s3/__init__.py +0 -0
- {tfduck-bsd-0.16.8 → tfduck-bsd-0.17.0}/tfduck/s3/s3oper.py +0 -0
- {tfduck-bsd-0.16.8 → tfduck-bsd-0.17.0}/tfduck/sagemaker/__init__.py +0 -0
- {tfduck-bsd-0.16.8 → tfduck-bsd-0.17.0}/tfduck/sagemaker/saoper.py +0 -0
- {tfduck-bsd-0.16.8 → tfduck-bsd-0.17.0}/tfduck/tga/__init__.py +0 -0
- {tfduck-bsd-0.16.8 → tfduck-bsd-0.17.0}/tfduck/tga/base_tga.py +0 -0
- {tfduck-bsd-0.16.8 → tfduck-bsd-0.17.0}/tfduck/tga/predict_sql_ltv.py +0 -0
- {tfduck-bsd-0.16.8 → tfduck-bsd-0.17.0}/tfduck/tga/predict_sql_retain.py +0 -0
- {tfduck-bsd-0.16.8 → tfduck-bsd-0.17.0}/tfduck/tga/predict_sql_yh.py +0 -0
- {tfduck-bsd-0.16.8 → tfduck-bsd-0.17.0}/tfduck/tga/tga.py +0 -0
- {tfduck-bsd-0.16.8 → tfduck-bsd-0.17.0}/tfduck/tga/tga_test.py +0 -0
- {tfduck-bsd-0.16.8 → tfduck-bsd-0.17.0}/tfduck/thinkdata/__init__.py +0 -0
- {tfduck-bsd-0.16.8 → tfduck-bsd-0.17.0}/tfduck/thinkdata/query.py +0 -0
- {tfduck-bsd-0.16.8 → tfduck-bsd-0.17.0}/tfduck_bsd.egg-info/SOURCES.txt +0 -0
- {tfduck-bsd-0.16.8 → tfduck-bsd-0.17.0}/tfduck_bsd.egg-info/dependency_links.txt +0 -0
- {tfduck-bsd-0.16.8 → tfduck-bsd-0.17.0}/tfduck_bsd.egg-info/requires.txt +0 -0
- {tfduck-bsd-0.16.8 → tfduck-bsd-0.17.0}/tfduck_bsd.egg-info/top_level.txt +0 -0
|
@@ -0,0 +1 @@
|
|
|
1
|
+
__version__="0.17.0"
|
|
@@ -243,6 +243,7 @@ class TrainFeatureSql(BaseTga):
|
|
|
243
243
|
SELECT
|
|
244
244
|
a1.user_register_time as user_register_time,
|
|
245
245
|
a1."#user_id" as user_user_id,
|
|
246
|
+
a1."#distinct_id" as user_distinct_id,
|
|
246
247
|
b1."#user_id" as event_user_id,
|
|
247
248
|
CASE WHEN b1."yiap__itemrevenue" is NULL THEN 0 ELSE b1."yiap__itemrevenue" END yiap__itemrevenue,
|
|
248
249
|
CASE WHEN b1."sdk_ad_price" is NULL THEN 0 ELSE b1."sdk_ad_price" END sdk_ad_price,
|
|
@@ -260,11 +261,11 @@ class TrainFeatureSql(BaseTga):
|
|
|
260
261
|
FROM
|
|
261
262
|
(
|
|
262
263
|
SELECT
|
|
263
|
-
b.event_time_utc as user_register_time, a."#user_id"
|
|
264
|
+
b.event_time_utc as user_register_time, a."#user_id", a."#distinct_id"
|
|
264
265
|
FROM
|
|
265
266
|
(
|
|
266
267
|
SELECT
|
|
267
|
-
"#user_id"
|
|
268
|
+
"#user_id","#distinct_id"
|
|
268
269
|
FROM
|
|
269
270
|
{gconf.tga_user_table}
|
|
270
271
|
WHERE
|
|
@@ -333,13 +334,15 @@ class TrainFeatureSql(BaseTga):
|
|
|
333
334
|
-- (abs(from_ieee754_64(xxhash64(cast(cast(user_user_id as varchar) as varbinary)))) % 100) / 100. as tt_stable_rand
|
|
334
335
|
-- 直接用user_user_id作为排序值,排序的必须是唯一的,否则下面会对不上,会产生很多null的数据
|
|
335
336
|
-- user_user_id as tt_stable_rand -- 这种方式最保险,但是不能乱序,这样采样的数据就不是随机分布在每天的
|
|
336
|
-
bitwise_xor(user_user_id, 906867964886667264) as tt_stable_rand -- 这种方式可能会产生left null的情况,但是是少数,过滤掉就行,不影响结果,但支持乱序采样
|
|
337
|
+
-- bitwise_xor(user_user_id, 906867964886667264) as tt_stable_rand -- 这种方式可能会产生left null的情况,但是是少数,过滤掉就行,不影响结果,但支持乱序采样
|
|
338
|
+
a3.user_distinct_id as tt_stable_rand -- 这种方式最保险,即是乱序也是唯一
|
|
337
339
|
|
|
338
340
|
FROM
|
|
339
341
|
(
|
|
340
342
|
-- 获取指定日期的注册用户 连接 这些用户在7-10天后的触发的事件 的 数量
|
|
341
343
|
SELECT
|
|
342
344
|
a2_1.user_user_id,
|
|
345
|
+
a2_1.user_distinct_id,
|
|
343
346
|
a2_1.user_register_time,
|
|
344
347
|
{
|
|
345
348
|
[
|
|
@@ -351,6 +354,7 @@ class TrainFeatureSql(BaseTga):
|
|
|
351
354
|
FROM (
|
|
352
355
|
SELECT
|
|
353
356
|
a2.user_user_id as user_user_id,
|
|
357
|
+
a2.user_distinct_id as user_distinct_id,
|
|
354
358
|
a2.user_register_time as user_register_time,
|
|
355
359
|
SUM(
|
|
356
360
|
CASE
|
|
@@ -370,7 +374,7 @@ class TrainFeatureSql(BaseTga):
|
|
|
370
374
|
(
|
|
371
375
|
new_user
|
|
372
376
|
) a2
|
|
373
|
-
GROUP BY a2.user_user_id, a2.user_register_time
|
|
377
|
+
GROUP BY a2.user_user_id, a2.user_distinct_id, a2.user_register_time
|
|
374
378
|
) a2_1
|
|
375
379
|
) a3
|
|
376
380
|
)
|
|
@@ -232,6 +232,7 @@ class TrainFeatureSql(BaseTga):
|
|
|
232
232
|
SELECT
|
|
233
233
|
a1.user_register_time as user_register_time,
|
|
234
234
|
a1."#user_id" as user_user_id,
|
|
235
|
+
a1."#distinct_id" as user_distinct_id,
|
|
235
236
|
b1."#user_id" as event_user_id,
|
|
236
237
|
-- b1."event_time_utc" as pd_event_time_utc,
|
|
237
238
|
floor(to_unixtime(b1.event_time_utc))-floor(to_unixtime(a1.user_register_time)) as pd_rt_dur
|
|
@@ -248,11 +249,12 @@ class TrainFeatureSql(BaseTga):
|
|
|
248
249
|
FROM
|
|
249
250
|
(
|
|
250
251
|
SELECT
|
|
251
|
-
b.event_time_utc as user_register_time, a."#user_id"
|
|
252
|
+
b.event_time_utc as user_register_time, a."#user_id", a."#distinct_id"
|
|
252
253
|
FROM
|
|
253
254
|
(
|
|
254
255
|
SELECT
|
|
255
|
-
"#user_id"
|
|
256
|
+
"#user_id",
|
|
257
|
+
"#distinct_id"
|
|
256
258
|
FROM
|
|
257
259
|
{gconf.tga_user_table}
|
|
258
260
|
WHERE
|
|
@@ -318,12 +320,14 @@ class TrainFeatureSql(BaseTga):
|
|
|
318
320
|
-- (abs(from_ieee754_64(xxhash64(cast(cast(user_user_id as varchar) as varbinary)))) % 100) / 100. as tt_stable_rand
|
|
319
321
|
-- 直接用user_user_id作为排序值,排序的必须是唯一的,否则下面会对不上,会产生很多null的数据
|
|
320
322
|
-- user_user_id as tt_stable_rand -- 这种方式最保险,但是不能乱序,这样采样的数据就不是随机分布在每天的
|
|
321
|
-
bitwise_xor(user_user_id, 906867964886667264) as tt_stable_rand --
|
|
323
|
+
-- bitwise_xor(user_user_id, 906867964886667264) as tt_stable_rand -- 这种方式也不太行,数据会几种在某一天
|
|
324
|
+
a3.user_distinct_id as tt_stable_rand -- 这种方式最保险,即是乱序也是唯一
|
|
322
325
|
FROM
|
|
323
326
|
(
|
|
324
327
|
-- 获取指定日期的注册用户 连接 这些用户在7-10天后的触发的事件 的 数量
|
|
325
328
|
SELECT
|
|
326
329
|
a2.user_user_id as user_user_id,
|
|
330
|
+
a2.user_distinct_id as user_distinct_id,
|
|
327
331
|
a2.user_register_time as user_register_time,
|
|
328
332
|
SUM(
|
|
329
333
|
CASE
|
|
@@ -336,7 +340,7 @@ class TrainFeatureSql(BaseTga):
|
|
|
336
340
|
(
|
|
337
341
|
new_user
|
|
338
342
|
) a2
|
|
339
|
-
GROUP BY a2.user_user_id, a2.user_register_time
|
|
343
|
+
GROUP BY a2.user_user_id, a2.user_distinct_id, a2.user_register_time
|
|
340
344
|
) a3
|
|
341
345
|
)
|
|
342
346
|
, nav_table as (
|
|
@@ -232,6 +232,7 @@ class TrainFeatureSql(BaseTga):
|
|
|
232
232
|
SELECT
|
|
233
233
|
a1.user_register_time as user_register_time,
|
|
234
234
|
a1."#user_id" as user_user_id,
|
|
235
|
+
a1."#distinct_id" as user_distinct_id,
|
|
235
236
|
b1."#user_id" as event_user_id,
|
|
236
237
|
-- b1."event_time_utc" as pd_event_time_utc,
|
|
237
238
|
floor(to_unixtime(b1.event_time_utc))-floor(to_unixtime(a1.user_register_time)) as pd_rt_dur
|
|
@@ -248,11 +249,11 @@ class TrainFeatureSql(BaseTga):
|
|
|
248
249
|
FROM
|
|
249
250
|
(
|
|
250
251
|
SELECT
|
|
251
|
-
b.event_time_utc as user_register_time, a."#user_id"
|
|
252
|
+
b.event_time_utc as user_register_time, a."#user_id", a."#distinct_id"
|
|
252
253
|
FROM
|
|
253
254
|
(
|
|
254
255
|
SELECT
|
|
255
|
-
"#user_id"
|
|
256
|
+
"#user_id","#distinct_id"
|
|
256
257
|
FROM
|
|
257
258
|
{gconf.tga_user_table}
|
|
258
259
|
WHERE
|
|
@@ -322,19 +323,21 @@ class TrainFeatureSql(BaseTga):
|
|
|
322
323
|
-- (abs(from_ieee754_64(xxhash64(cast(cast(user_user_id as varchar) as varbinary)))) % 100) / 100. as tt_stable_rand
|
|
323
324
|
-- 直接用user_user_id作为排序值,排序的必须是唯一的,否则下面会对不上,会产生很多null的数据
|
|
324
325
|
-- user_user_id as tt_stable_rand -- 这种方式最保险,但是不能乱序,这样采样的数据就不是随机分布在每天的
|
|
325
|
-
bitwise_xor(user_user_id, 906867964886667264) as tt_stable_rand -- 这种方式可能会产生left null的情况,但是是少数,过滤掉就行,不影响结果,但支持乱序采样
|
|
326
|
+
--bitwise_xor(user_user_id, 906867964886667264) as tt_stable_rand -- 这种方式可能会产生left null的情况,但是是少数,过滤掉就行,不影响结果,但支持乱序采样
|
|
327
|
+
a3.user_distinct_id as tt_stable_rand -- 这种方式最保险,即是乱序也是唯一
|
|
326
328
|
FROM
|
|
327
329
|
(
|
|
328
330
|
-- 获取指定日期的注册用户 连接 这些用户在7-10天后的触发的事件 的 数量
|
|
329
331
|
SELECT
|
|
330
332
|
a2.user_user_id as user_user_id,
|
|
333
|
+
a2.user_distinct_id as user_distinct_id,
|
|
331
334
|
a2.user_register_time as user_register_time,
|
|
332
335
|
SUM(CASE WHEN a2.event_user_id IS NULL THEN 0 ELSE 1 END) AS event_count
|
|
333
336
|
FROM
|
|
334
337
|
(
|
|
335
338
|
new_user
|
|
336
339
|
) a2
|
|
337
|
-
GROUP BY a2.user_user_id, a2.user_register_time
|
|
340
|
+
GROUP BY a2.user_user_id, a2.user_distinct_id, a2.user_register_time
|
|
338
341
|
) a3
|
|
339
342
|
)
|
|
340
343
|
, nav_table as (
|
|
@@ -1 +0,0 @@
|
|
|
1
|
-
__version__="0.16.8"
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|