tfduck-bsd 0.16.7__tar.gz → 0.17.0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of tfduck-bsd might be problematic. Click here for more details.

Files changed (46) hide show
  1. {tfduck-bsd-0.16.7/tfduck_bsd.egg-info → tfduck-bsd-0.17.0}/PKG-INFO +1 -1
  2. {tfduck-bsd-0.16.7 → tfduck-bsd-0.17.0}/setup.py +1 -1
  3. tfduck-bsd-0.17.0/tfduck/__init__.py +1 -0
  4. {tfduck-bsd-0.16.7 → tfduck-bsd-0.17.0}/tfduck/tga/train_sql_ltv.py +11 -4
  5. {tfduck-bsd-0.16.7 → tfduck-bsd-0.17.0}/tfduck/tga/train_sql_retain.py +10 -4
  6. {tfduck-bsd-0.16.7 → tfduck-bsd-0.17.0}/tfduck/tga/train_sql_yh.py +9 -4
  7. {tfduck-bsd-0.16.7 → tfduck-bsd-0.17.0/tfduck_bsd.egg-info}/PKG-INFO +1 -1
  8. tfduck-bsd-0.16.7/tfduck/__init__.py +0 -1
  9. {tfduck-bsd-0.16.7 → tfduck-bsd-0.17.0}/LICENSE +0 -0
  10. {tfduck-bsd-0.16.7 → tfduck-bsd-0.17.0}/README.md +0 -0
  11. {tfduck-bsd-0.16.7 → tfduck-bsd-0.17.0}/bin/tfduck +0 -0
  12. {tfduck-bsd-0.16.7 → tfduck-bsd-0.17.0}/setup.cfg +0 -0
  13. {tfduck-bsd-0.16.7 → tfduck-bsd-0.17.0}/tfduck/bdp_sdk_py/__init__.py +0 -0
  14. {tfduck-bsd-0.16.7 → tfduck-bsd-0.17.0}/tfduck/bdp_sdk_py/config/__init__.py +0 -0
  15. {tfduck-bsd-0.16.7 → tfduck-bsd-0.17.0}/tfduck/bdp_sdk_py/config/bdpmanager.py +0 -0
  16. {tfduck-bsd-0.16.7 → tfduck-bsd-0.17.0}/tfduck/bdp_sdk_py/config/table_config.py +0 -0
  17. {tfduck-bsd-0.16.7 → tfduck-bsd-0.17.0}/tfduck/bdp_sdk_py/example.py +0 -0
  18. {tfduck-bsd-0.16.7 → tfduck-bsd-0.17.0}/tfduck/bdp_sdk_py/opends/__init__.py +0 -0
  19. {tfduck-bsd-0.16.7 → tfduck-bsd-0.17.0}/tfduck/bdp_sdk_py/opends/opends.py +0 -0
  20. {tfduck-bsd-0.16.7 → tfduck-bsd-0.17.0}/tfduck/bdp_sdk_py/opends/sdk.py +0 -0
  21. {tfduck-bsd-0.16.7 → tfduck-bsd-0.17.0}/tfduck/common/__init__.py +0 -0
  22. {tfduck-bsd-0.16.7 → tfduck-bsd-0.17.0}/tfduck/common/defines.py +0 -0
  23. {tfduck-bsd-0.16.7 → tfduck-bsd-0.17.0}/tfduck/common/extendEncoder.py +0 -0
  24. {tfduck-bsd-0.16.7 → tfduck-bsd-0.17.0}/tfduck/main.py +0 -0
  25. {tfduck-bsd-0.16.7 → tfduck-bsd-0.17.0}/tfduck/oss/__init__.py +0 -0
  26. {tfduck-bsd-0.16.7 → tfduck-bsd-0.17.0}/tfduck/oss/oss.py +0 -0
  27. {tfduck-bsd-0.16.7 → tfduck-bsd-0.17.0}/tfduck/pyspark_k8s/__init__.py +0 -0
  28. {tfduck-bsd-0.16.7 → tfduck-bsd-0.17.0}/tfduck/pyspark_k8s/k8s_manage.py +0 -0
  29. {tfduck-bsd-0.16.7 → tfduck-bsd-0.17.0}/tfduck/pyspark_k8s/spark_manage.py +0 -0
  30. {tfduck-bsd-0.16.7 → tfduck-bsd-0.17.0}/tfduck/s3/__init__.py +0 -0
  31. {tfduck-bsd-0.16.7 → tfduck-bsd-0.17.0}/tfduck/s3/s3oper.py +0 -0
  32. {tfduck-bsd-0.16.7 → tfduck-bsd-0.17.0}/tfduck/sagemaker/__init__.py +0 -0
  33. {tfduck-bsd-0.16.7 → tfduck-bsd-0.17.0}/tfduck/sagemaker/saoper.py +0 -0
  34. {tfduck-bsd-0.16.7 → tfduck-bsd-0.17.0}/tfduck/tga/__init__.py +0 -0
  35. {tfduck-bsd-0.16.7 → tfduck-bsd-0.17.0}/tfduck/tga/base_tga.py +0 -0
  36. {tfduck-bsd-0.16.7 → tfduck-bsd-0.17.0}/tfduck/tga/predict_sql_ltv.py +0 -0
  37. {tfduck-bsd-0.16.7 → tfduck-bsd-0.17.0}/tfduck/tga/predict_sql_retain.py +0 -0
  38. {tfduck-bsd-0.16.7 → tfduck-bsd-0.17.0}/tfduck/tga/predict_sql_yh.py +0 -0
  39. {tfduck-bsd-0.16.7 → tfduck-bsd-0.17.0}/tfduck/tga/tga.py +0 -0
  40. {tfduck-bsd-0.16.7 → tfduck-bsd-0.17.0}/tfduck/tga/tga_test.py +0 -0
  41. {tfduck-bsd-0.16.7 → tfduck-bsd-0.17.0}/tfduck/thinkdata/__init__.py +0 -0
  42. {tfduck-bsd-0.16.7 → tfduck-bsd-0.17.0}/tfduck/thinkdata/query.py +0 -0
  43. {tfduck-bsd-0.16.7 → tfduck-bsd-0.17.0}/tfduck_bsd.egg-info/SOURCES.txt +0 -0
  44. {tfduck-bsd-0.16.7 → tfduck-bsd-0.17.0}/tfduck_bsd.egg-info/dependency_links.txt +0 -0
  45. {tfduck-bsd-0.16.7 → tfduck-bsd-0.17.0}/tfduck_bsd.egg-info/requires.txt +0 -0
  46. {tfduck-bsd-0.16.7 → tfduck-bsd-0.17.0}/tfduck_bsd.egg-info/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: tfduck-bsd
3
- Version: 0.16.7
3
+ Version: 0.17.0
4
4
  Summary: A small example package
5
5
  Home-page: UNKNOWN
6
6
  Author: yuanxiao
@@ -8,7 +8,7 @@ with open("README.md", "r") as fh:
8
8
 
9
9
  setuptools.setup(
10
10
  name="tfduck-bsd",
11
- version="0.16.7",
11
+ version="0.17.0",
12
12
  author="yuanxiao",
13
13
  author_email="yuan6785@163.com",
14
14
  description="A small example package",
@@ -0,0 +1 @@
1
+ __version__="0.17.0"
@@ -243,6 +243,7 @@ class TrainFeatureSql(BaseTga):
243
243
  SELECT
244
244
  a1.user_register_time as user_register_time,
245
245
  a1."#user_id" as user_user_id,
246
+ a1."#distinct_id" as user_distinct_id,
246
247
  b1."#user_id" as event_user_id,
247
248
  CASE WHEN b1."yiap__itemrevenue" is NULL THEN 0 ELSE b1."yiap__itemrevenue" END yiap__itemrevenue,
248
249
  CASE WHEN b1."sdk_ad_price" is NULL THEN 0 ELSE b1."sdk_ad_price" END sdk_ad_price,
@@ -260,11 +261,11 @@ class TrainFeatureSql(BaseTga):
260
261
  FROM
261
262
  (
262
263
  SELECT
263
- b.event_time_utc as user_register_time, a."#user_id"
264
+ b.event_time_utc as user_register_time, a."#user_id", a."#distinct_id"
264
265
  FROM
265
266
  (
266
267
  SELECT
267
- "#user_id"
268
+ "#user_id","#distinct_id"
268
269
  FROM
269
270
  {gconf.tga_user_table}
270
271
  WHERE
@@ -332,12 +333,16 @@ class TrainFeatureSql(BaseTga):
332
333
  -- 计算固定随机值,打乱顺序(废弃)--计算一个固定的采样值--现在也失效了,因为tga上云到k8s,不同节点计算,这个值也会变, 而且不同的id生成的数字可能一样,这样就不能达到目的了
333
334
  -- (abs(from_ieee754_64(xxhash64(cast(cast(user_user_id as varchar) as varbinary)))) % 100) / 100. as tt_stable_rand
334
335
  -- 直接用user_user_id作为排序值,排序的必须是唯一的,否则下面会对不上,会产生很多null的数据
335
- user_user_id as tt_stable_rand
336
+ -- user_user_id as tt_stable_rand -- 这种方式最保险,但是不能乱序,这样采样的数据就不是随机分布在每天的
337
+ -- bitwise_xor(user_user_id, 906867964886667264) as tt_stable_rand -- 这种方式可能会产生left null的情况,但是是少数,过滤掉就行,不影响结果,但支持乱序采样
338
+ a3.user_distinct_id as tt_stable_rand -- 这种方式最保险,即是乱序也是唯一
339
+
336
340
  FROM
337
341
  (
338
342
  -- 获取指定日期的注册用户 连接 这些用户在7-10天后的触发的事件 的 数量
339
343
  SELECT
340
344
  a2_1.user_user_id,
345
+ a2_1.user_distinct_id,
341
346
  a2_1.user_register_time,
342
347
  {
343
348
  [
@@ -349,6 +354,7 @@ class TrainFeatureSql(BaseTga):
349
354
  FROM (
350
355
  SELECT
351
356
  a2.user_user_id as user_user_id,
357
+ a2.user_distinct_id as user_distinct_id,
352
358
  a2.user_register_time as user_register_time,
353
359
  SUM(
354
360
  CASE
@@ -368,7 +374,7 @@ class TrainFeatureSql(BaseTga):
368
374
  (
369
375
  new_user
370
376
  ) a2
371
- GROUP BY a2.user_user_id, a2.user_register_time
377
+ GROUP BY a2.user_user_id, a2.user_distinct_id, a2.user_register_time
372
378
  ) a2_1
373
379
  ) a3
374
380
  )
@@ -591,6 +597,7 @@ class TrainFeatureSql(BaseTga):
591
597
  on {base_user_table}.user_user_id={base_feature_table}.user_user_id
592
598
  )
593
599
  -- with结束没有逗号, 过滤左连接没有特征值的行,调试的时候取消where条件
600
+ -- 出现null过滤掉就行,少量的不管,因为tt_stable_rand的构建方法会有较小影响s
594
601
  select * from user_tzz where {self.get_first_col_name()} is not NULL
595
602
  """
596
603
  return sql
@@ -232,6 +232,7 @@ class TrainFeatureSql(BaseTga):
232
232
  SELECT
233
233
  a1.user_register_time as user_register_time,
234
234
  a1."#user_id" as user_user_id,
235
+ a1."#distinct_id" as user_distinct_id,
235
236
  b1."#user_id" as event_user_id,
236
237
  -- b1."event_time_utc" as pd_event_time_utc,
237
238
  floor(to_unixtime(b1.event_time_utc))-floor(to_unixtime(a1.user_register_time)) as pd_rt_dur
@@ -248,11 +249,12 @@ class TrainFeatureSql(BaseTga):
248
249
  FROM
249
250
  (
250
251
  SELECT
251
- b.event_time_utc as user_register_time, a."#user_id"
252
+ b.event_time_utc as user_register_time, a."#user_id", a."#distinct_id"
252
253
  FROM
253
254
  (
254
255
  SELECT
255
- "#user_id"
256
+ "#user_id",
257
+ "#distinct_id"
256
258
  FROM
257
259
  {gconf.tga_user_table}
258
260
  WHERE
@@ -317,12 +319,15 @@ class TrainFeatureSql(BaseTga):
317
319
  -- 计算固定随机值,打乱顺序(废弃)--计算一个固定的采样值--现在也失效了,因为tga上云到k8s,不同节点计算,这个值也会变, 而且不同的id生成的数字可能一样,这样就不能达到目的了
318
320
  -- (abs(from_ieee754_64(xxhash64(cast(cast(user_user_id as varchar) as varbinary)))) % 100) / 100. as tt_stable_rand
319
321
  -- 直接用user_user_id作为排序值,排序的必须是唯一的,否则下面会对不上,会产生很多null的数据
320
- user_user_id as tt_stable_rand
322
+ -- user_user_id as tt_stable_rand -- 这种方式最保险,但是不能乱序,这样采样的数据就不是随机分布在每天的
323
+ -- bitwise_xor(user_user_id, 906867964886667264) as tt_stable_rand -- 这种方式也不太行,数据会几种在某一天
324
+ a3.user_distinct_id as tt_stable_rand -- 这种方式最保险,即是乱序也是唯一
321
325
  FROM
322
326
  (
323
327
  -- 获取指定日期的注册用户 连接 这些用户在7-10天后的触发的事件 的 数量
324
328
  SELECT
325
329
  a2.user_user_id as user_user_id,
330
+ a2.user_distinct_id as user_distinct_id,
326
331
  a2.user_register_time as user_register_time,
327
332
  SUM(
328
333
  CASE
@@ -335,7 +340,7 @@ class TrainFeatureSql(BaseTga):
335
340
  (
336
341
  new_user
337
342
  ) a2
338
- GROUP BY a2.user_user_id, a2.user_register_time
343
+ GROUP BY a2.user_user_id, a2.user_distinct_id, a2.user_register_time
339
344
  ) a3
340
345
  )
341
346
  , nav_table as (
@@ -557,6 +562,7 @@ class TrainFeatureSql(BaseTga):
557
562
  on {base_user_table}.user_user_id={base_feature_table}.user_user_id
558
563
  )
559
564
  -- with结束没有逗号, 过滤左连接没有特征值的行,调试的时候取消where条件
565
+ -- 出现null过滤掉就行,少量的不管,因为tt_stable_rand的构建方法会有较小影响
560
566
  select * from user_tzz where {self.get_first_col_name()} is not NULL
561
567
  """
562
568
  return sql
@@ -232,6 +232,7 @@ class TrainFeatureSql(BaseTga):
232
232
  SELECT
233
233
  a1.user_register_time as user_register_time,
234
234
  a1."#user_id" as user_user_id,
235
+ a1."#distinct_id" as user_distinct_id,
235
236
  b1."#user_id" as event_user_id,
236
237
  -- b1."event_time_utc" as pd_event_time_utc,
237
238
  floor(to_unixtime(b1.event_time_utc))-floor(to_unixtime(a1.user_register_time)) as pd_rt_dur
@@ -248,11 +249,11 @@ class TrainFeatureSql(BaseTga):
248
249
  FROM
249
250
  (
250
251
  SELECT
251
- b.event_time_utc as user_register_time, a."#user_id"
252
+ b.event_time_utc as user_register_time, a."#user_id", a."#distinct_id"
252
253
  FROM
253
254
  (
254
255
  SELECT
255
- "#user_id"
256
+ "#user_id","#distinct_id"
256
257
  FROM
257
258
  {gconf.tga_user_table}
258
259
  WHERE
@@ -321,19 +322,22 @@ class TrainFeatureSql(BaseTga):
321
322
  -- 计算固定随机值,打乱顺序(废弃)--计算一个固定的采样值--现在也失效了,因为tga上云到k8s,不同节点计算,这个值也会变, 而且不同的id生成的数字可能一样,这样就不能达到目的了
322
323
  -- (abs(from_ieee754_64(xxhash64(cast(cast(user_user_id as varchar) as varbinary)))) % 100) / 100. as tt_stable_rand
323
324
  -- 直接用user_user_id作为排序值,排序的必须是唯一的,否则下面会对不上,会产生很多null的数据
324
- user_user_id as tt_stable_rand
325
+ -- user_user_id as tt_stable_rand -- 这种方式最保险,但是不能乱序,这样采样的数据就不是随机分布在每天的
326
+ --bitwise_xor(user_user_id, 906867964886667264) as tt_stable_rand -- 这种方式可能会产生left null的情况,但是是少数,过滤掉就行,不影响结果,但支持乱序采样
327
+ a3.user_distinct_id as tt_stable_rand -- 这种方式最保险,即是乱序也是唯一
325
328
  FROM
326
329
  (
327
330
  -- 获取指定日期的注册用户 连接 这些用户在7-10天后的触发的事件 的 数量
328
331
  SELECT
329
332
  a2.user_user_id as user_user_id,
333
+ a2.user_distinct_id as user_distinct_id,
330
334
  a2.user_register_time as user_register_time,
331
335
  SUM(CASE WHEN a2.event_user_id IS NULL THEN 0 ELSE 1 END) AS event_count
332
336
  FROM
333
337
  (
334
338
  new_user
335
339
  ) a2
336
- GROUP BY a2.user_user_id, a2.user_register_time
340
+ GROUP BY a2.user_user_id, a2.user_distinct_id, a2.user_register_time
337
341
  ) a3
338
342
  )
339
343
  , nav_table as (
@@ -555,6 +559,7 @@ class TrainFeatureSql(BaseTga):
555
559
  on {base_user_table}.user_user_id={base_feature_table}.user_user_id
556
560
  )
557
561
  -- with结束没有逗号, 过滤左连接没有特征值的行,调试的时候取消where条件
562
+ -- 出现null过滤掉就行,少量的不管,因为tt_stable_rand的构建方法会有较小影响
558
563
  select * from user_tzz where {self.get_first_col_name()} is not NULL
559
564
  """
560
565
  return sql
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: tfduck-bsd
3
- Version: 0.16.7
3
+ Version: 0.17.0
4
4
  Summary: A small example package
5
5
  Home-page: UNKNOWN
6
6
  Author: yuanxiao
@@ -1 +0,0 @@
1
- __version__="0.16.7"
File without changes
File without changes
File without changes
File without changes
File without changes