tensorguard 0.1.2__tar.gz → 1.0.1__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- tensorguard-1.0.1/LICENSE +202 -0
- tensorguard-1.0.1/PKG-INFO +96 -0
- {tensorguard-0.1.2 → tensorguard-1.0.1}/README.md +3 -0
- {tensorguard-0.1.2 → tensorguard-1.0.1}/setup.py +9 -3
- tensorguard-1.0.1/tensorguard/__init__.py +189 -0
- {tensorguard-0.1.2 → tensorguard-1.0.1}/tensorguard/tools.py +8 -3
- tensorguard-1.0.1/tensorguard.egg-info/PKG-INFO +96 -0
- {tensorguard-0.1.2 → tensorguard-1.0.1}/tensorguard.egg-info/SOURCES.txt +1 -1
- tensorguard-1.0.1/test-requirements.txt +4 -0
- {tensorguard-0.1.2 → tensorguard-1.0.1}/tests/test_global_accessors.py +10 -5
- {tensorguard-0.1.2 → tensorguard-1.0.1}/tests/test_guard.py +14 -1
- {tensorguard-0.1.2 → tensorguard-1.0.1}/tests/test_match.py +10 -1
- tensorguard-0.1.2/PKG-INFO +0 -76
- tensorguard-0.1.2/tensorguard/__init__.py +0 -105
- tensorguard-0.1.2/tensorguard.egg-info/PKG-INFO +0 -76
- tensorguard-0.1.2/test-requirements.txt +0 -4
- tensorguard-0.1.2/tests/__init__.py +0 -11
- {tensorguard-0.1.2 → tensorguard-1.0.1}/MANIFEST.in +0 -0
- {tensorguard-0.1.2 → tensorguard-1.0.1}/requirements.txt +0 -0
- {tensorguard-0.1.2 → tensorguard-1.0.1}/setup.cfg +0 -0
- {tensorguard-0.1.2 → tensorguard-1.0.1}/tensorguard/dim_specs.py +0 -0
- {tensorguard-0.1.2 → tensorguard-1.0.1}/tensorguard/exception.py +0 -0
- {tensorguard-0.1.2 → tensorguard-1.0.1}/tensorguard/guard.py +0 -0
- {tensorguard-0.1.2 → tensorguard-1.0.1}/tensorguard/parser.py +0 -0
- {tensorguard-0.1.2 → tensorguard-1.0.1}/tensorguard/shape_spec.py +0 -0
- {tensorguard-0.1.2 → tensorguard-1.0.1}/tensorguard/shape_spec_parser.py +0 -0
- {tensorguard-0.1.2 → tensorguard-1.0.1}/tensorguard.egg-info/dependency_links.txt +0 -0
- {tensorguard-0.1.2 → tensorguard-1.0.1}/tensorguard.egg-info/requires.txt +0 -0
- {tensorguard-0.1.2 → tensorguard-1.0.1}/tensorguard.egg-info/top_level.txt +0 -0
|
@@ -0,0 +1,202 @@
|
|
|
1
|
+
|
|
2
|
+
Apache License
|
|
3
|
+
Version 2.0, January 2004
|
|
4
|
+
http://www.apache.org/licenses/
|
|
5
|
+
|
|
6
|
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
|
7
|
+
|
|
8
|
+
1. Definitions.
|
|
9
|
+
|
|
10
|
+
"License" shall mean the terms and conditions for use, reproduction,
|
|
11
|
+
and distribution as defined by Sections 1 through 9 of this document.
|
|
12
|
+
|
|
13
|
+
"Licensor" shall mean the copyright owner or entity authorized by
|
|
14
|
+
the copyright owner that is granting the License.
|
|
15
|
+
|
|
16
|
+
"Legal Entity" shall mean the union of the acting entity and all
|
|
17
|
+
other entities that control, are controlled by, or are under common
|
|
18
|
+
control with that entity. For the purposes of this definition,
|
|
19
|
+
"control" means (i) the power, direct or indirect, to cause the
|
|
20
|
+
direction or management of such entity, whether by contract or
|
|
21
|
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
|
22
|
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
|
23
|
+
|
|
24
|
+
"You" (or "Your") shall mean an individual or Legal Entity
|
|
25
|
+
exercising permissions granted by this License.
|
|
26
|
+
|
|
27
|
+
"Source" form shall mean the preferred form for making modifications,
|
|
28
|
+
including but not limited to software source code, documentation
|
|
29
|
+
source, and configuration files.
|
|
30
|
+
|
|
31
|
+
"Object" form shall mean any form resulting from mechanical
|
|
32
|
+
transformation or translation of a Source form, including but
|
|
33
|
+
not limited to compiled object code, generated documentation,
|
|
34
|
+
and conversions to other media types.
|
|
35
|
+
|
|
36
|
+
"Work" shall mean the work of authorship, whether in Source or
|
|
37
|
+
Object form, made available under the License, as indicated by a
|
|
38
|
+
copyright notice that is included in or attached to the work
|
|
39
|
+
(an example is provided in the Appendix below).
|
|
40
|
+
|
|
41
|
+
"Derivative Works" shall mean any work, whether in Source or Object
|
|
42
|
+
form, that is based on (or derived from) the Work and for which the
|
|
43
|
+
editorial revisions, annotations, elaborations, or other modifications
|
|
44
|
+
represent, as a whole, an original work of authorship. For the purposes
|
|
45
|
+
of this License, Derivative Works shall not include works that remain
|
|
46
|
+
separable from, or merely link (or bind by name) to the interfaces of,
|
|
47
|
+
the Work and Derivative Works thereof.
|
|
48
|
+
|
|
49
|
+
"Contribution" shall mean any work of authorship, including
|
|
50
|
+
the original version of the Work and any modifications or additions
|
|
51
|
+
to that Work or Derivative Works thereof, that is intentionally
|
|
52
|
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
|
53
|
+
or by an individual or Legal Entity authorized to submit on behalf of
|
|
54
|
+
the copyright owner. For the purposes of this definition, "submitted"
|
|
55
|
+
means any form of electronic, verbal, or written communication sent
|
|
56
|
+
to the Licensor or its representatives, including but not limited to
|
|
57
|
+
communication on electronic mailing lists, source code control systems,
|
|
58
|
+
and issue tracking systems that are managed by, or on behalf of, the
|
|
59
|
+
Licensor for the purpose of discussing and improving the Work, but
|
|
60
|
+
excluding communication that is conspicuously marked or otherwise
|
|
61
|
+
designated in writing by the copyright owner as "Not a Contribution."
|
|
62
|
+
|
|
63
|
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
|
64
|
+
on behalf of whom a Contribution has been received by Licensor and
|
|
65
|
+
subsequently incorporated within the Work.
|
|
66
|
+
|
|
67
|
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
|
68
|
+
this License, each Contributor hereby grants to You a perpetual,
|
|
69
|
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
|
70
|
+
copyright license to reproduce, prepare Derivative Works of,
|
|
71
|
+
publicly display, publicly perform, sublicense, and distribute the
|
|
72
|
+
Work and such Derivative Works in Source or Object form.
|
|
73
|
+
|
|
74
|
+
3. Grant of Patent License. Subject to the terms and conditions of
|
|
75
|
+
this License, each Contributor hereby grants to You a perpetual,
|
|
76
|
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
|
77
|
+
(except as stated in this section) patent license to make, have made,
|
|
78
|
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
|
79
|
+
where such license applies only to those patent claims licensable
|
|
80
|
+
by such Contributor that are necessarily infringed by their
|
|
81
|
+
Contribution(s) alone or by combination of their Contribution(s)
|
|
82
|
+
with the Work to which such Contribution(s) was submitted. If You
|
|
83
|
+
institute patent litigation against any entity (including a
|
|
84
|
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
|
85
|
+
or a Contribution incorporated within the Work constitutes direct
|
|
86
|
+
or contributory patent infringement, then any patent licenses
|
|
87
|
+
granted to You under this License for that Work shall terminate
|
|
88
|
+
as of the date such litigation is filed.
|
|
89
|
+
|
|
90
|
+
4. Redistribution. You may reproduce and distribute copies of the
|
|
91
|
+
Work or Derivative Works thereof in any medium, with or without
|
|
92
|
+
modifications, and in Source or Object form, provided that You
|
|
93
|
+
meet the following conditions:
|
|
94
|
+
|
|
95
|
+
(a) You must give any other recipients of the Work or
|
|
96
|
+
Derivative Works a copy of this License; and
|
|
97
|
+
|
|
98
|
+
(b) You must cause any modified files to carry prominent notices
|
|
99
|
+
stating that You changed the files; and
|
|
100
|
+
|
|
101
|
+
(c) You must retain, in the Source form of any Derivative Works
|
|
102
|
+
that You distribute, all copyright, patent, trademark, and
|
|
103
|
+
attribution notices from the Source form of the Work,
|
|
104
|
+
excluding those notices that do not pertain to any part of
|
|
105
|
+
the Derivative Works; and
|
|
106
|
+
|
|
107
|
+
(d) If the Work includes a "NOTICE" text file as part of its
|
|
108
|
+
distribution, then any Derivative Works that You distribute must
|
|
109
|
+
include a readable copy of the attribution notices contained
|
|
110
|
+
within such NOTICE file, excluding those notices that do not
|
|
111
|
+
pertain to any part of the Derivative Works, in at least one
|
|
112
|
+
of the following places: within a NOTICE text file distributed
|
|
113
|
+
as part of the Derivative Works; within the Source form or
|
|
114
|
+
documentation, if provided along with the Derivative Works; or,
|
|
115
|
+
within a display generated by the Derivative Works, if and
|
|
116
|
+
wherever such third-party notices normally appear. The contents
|
|
117
|
+
of the NOTICE file are for informational purposes only and
|
|
118
|
+
do not modify the License. You may add Your own attribution
|
|
119
|
+
notices within Derivative Works that You distribute, alongside
|
|
120
|
+
or as an addendum to the NOTICE text from the Work, provided
|
|
121
|
+
that such additional attribution notices cannot be construed
|
|
122
|
+
as modifying the License.
|
|
123
|
+
|
|
124
|
+
You may add Your own copyright statement to Your modifications and
|
|
125
|
+
may provide additional or different license terms and conditions
|
|
126
|
+
for use, reproduction, or distribution of Your modifications, or
|
|
127
|
+
for any such Derivative Works as a whole, provided Your use,
|
|
128
|
+
reproduction, and distribution of the Work otherwise complies with
|
|
129
|
+
the conditions stated in this License.
|
|
130
|
+
|
|
131
|
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
|
132
|
+
any Contribution intentionally submitted for inclusion in the Work
|
|
133
|
+
by You to the Licensor shall be under the terms and conditions of
|
|
134
|
+
this License, without any additional terms or conditions.
|
|
135
|
+
Notwithstanding the above, nothing herein shall supersede or modify
|
|
136
|
+
the terms of any separate license agreement you may have executed
|
|
137
|
+
with Licensor regarding such Contributions.
|
|
138
|
+
|
|
139
|
+
6. Trademarks. This License does not grant permission to use the trade
|
|
140
|
+
names, trademarks, service marks, or product names of the Licensor,
|
|
141
|
+
except as required for reasonable and customary use in describing the
|
|
142
|
+
origin of the Work and reproducing the content of the NOTICE file.
|
|
143
|
+
|
|
144
|
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
|
145
|
+
agreed to in writing, Licensor provides the Work (and each
|
|
146
|
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
|
147
|
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
|
148
|
+
implied, including, without limitation, any warranties or conditions
|
|
149
|
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
|
150
|
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
|
151
|
+
appropriateness of using or redistributing the Work and assume any
|
|
152
|
+
risks associated with Your exercise of permissions under this License.
|
|
153
|
+
|
|
154
|
+
8. Limitation of Liability. In no event and under no legal theory,
|
|
155
|
+
whether in tort (including negligence), contract, or otherwise,
|
|
156
|
+
unless required by applicable law (such as deliberate and grossly
|
|
157
|
+
negligent acts) or agreed to in writing, shall any Contributor be
|
|
158
|
+
liable to You for damages, including any direct, indirect, special,
|
|
159
|
+
incidental, or consequential damages of any character arising as a
|
|
160
|
+
result of this License or out of the use or inability to use the
|
|
161
|
+
Work (including but not limited to damages for loss of goodwill,
|
|
162
|
+
work stoppage, computer failure or malfunction, or any and all
|
|
163
|
+
other commercial damages or losses), even if such Contributor
|
|
164
|
+
has been advised of the possibility of such damages.
|
|
165
|
+
|
|
166
|
+
9. Accepting Warranty or Additional Liability. While redistributing
|
|
167
|
+
the Work or Derivative Works thereof, You may choose to offer,
|
|
168
|
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
|
169
|
+
or other liability obligations and/or rights consistent with this
|
|
170
|
+
License. However, in accepting such obligations, You may act only
|
|
171
|
+
on Your own behalf and on Your sole responsibility, not on behalf
|
|
172
|
+
of any other Contributor, and only if You agree to indemnify,
|
|
173
|
+
defend, and hold each Contributor harmless for any liability
|
|
174
|
+
incurred by, or claims asserted against, such Contributor by reason
|
|
175
|
+
of your accepting any such warranty or additional liability.
|
|
176
|
+
|
|
177
|
+
END OF TERMS AND CONDITIONS
|
|
178
|
+
|
|
179
|
+
APPENDIX: How to apply the Apache License to your work.
|
|
180
|
+
|
|
181
|
+
To apply the Apache License to your work, attach the following
|
|
182
|
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
|
183
|
+
replaced with your own identifying information. (Don't include
|
|
184
|
+
the brackets!) The text should be enclosed in the appropriate
|
|
185
|
+
comment syntax for the file format. We also recommend that a
|
|
186
|
+
file or class name and description of purpose be included on the
|
|
187
|
+
same "printed page" as the copyright notice for easier
|
|
188
|
+
identification within third-party archives.
|
|
189
|
+
|
|
190
|
+
Copyright [yyyy] [name of copyright owner]
|
|
191
|
+
|
|
192
|
+
Licensed under the Apache License, Version 2.0 (the "License");
|
|
193
|
+
you may not use this file except in compliance with the License.
|
|
194
|
+
You may obtain a copy of the License at
|
|
195
|
+
|
|
196
|
+
http://www.apache.org/licenses/LICENSE-2.0
|
|
197
|
+
|
|
198
|
+
Unless required by applicable law or agreed to in writing, software
|
|
199
|
+
distributed under the License is distributed on an "AS IS" BASIS,
|
|
200
|
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
201
|
+
See the License for the specific language governing permissions and
|
|
202
|
+
limitations under the License.
|
|
@@ -0,0 +1,96 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: tensorguard
|
|
3
|
+
Version: 1.0.1
|
|
4
|
+
Summary: TensorGuard helps to guard against bad Tensor Shapes
|
|
5
|
+
Home-page: https://github.com/Michedev/tensorguard
|
|
6
|
+
Author: mikedev
|
|
7
|
+
Author-email: mik3dev@gmail.com
|
|
8
|
+
License: Apache-2.0
|
|
9
|
+
Classifier: License :: OSI Approved :: Apache Software License
|
|
10
|
+
Classifier: Intended Audience :: Developers
|
|
11
|
+
Classifier: Intended Audience :: Science/Research
|
|
12
|
+
Classifier: Operating System :: OS Independent
|
|
13
|
+
Classifier: Programming Language :: Python
|
|
14
|
+
Classifier: Programming Language :: Python :: 3
|
|
15
|
+
Classifier: Programming Language :: Python :: 3.6
|
|
16
|
+
Classifier: Programming Language :: Python :: 3.7
|
|
17
|
+
Classifier: Programming Language :: Python :: 3.8
|
|
18
|
+
Classifier: Programming Language :: Python :: 3.9
|
|
19
|
+
Classifier: Programming Language :: Python :: 3.10
|
|
20
|
+
Classifier: Programming Language :: Python :: 3.11
|
|
21
|
+
Classifier: Programming Language :: Python :: 3.12
|
|
22
|
+
Classifier: Programming Language :: Python :: 3.13
|
|
23
|
+
Classifier: Programming Language :: Python :: Implementation :: CPython
|
|
24
|
+
Requires-Python: >=3.6
|
|
25
|
+
Description-Content-Type: text/markdown
|
|
26
|
+
License-File: LICENSE
|
|
27
|
+
Requires-Dist: typing_extensions>=3.7.4.3
|
|
28
|
+
Dynamic: author
|
|
29
|
+
Dynamic: author-email
|
|
30
|
+
Dynamic: classifier
|
|
31
|
+
Dynamic: description
|
|
32
|
+
Dynamic: description-content-type
|
|
33
|
+
Dynamic: home-page
|
|
34
|
+
Dynamic: license
|
|
35
|
+
Dynamic: license-file
|
|
36
|
+
Dynamic: requires-dist
|
|
37
|
+
Dynamic: requires-python
|
|
38
|
+
Dynamic: summary
|
|
39
|
+
|
|
40
|
+
# Tensor Guard
|
|
41
|
+
<img src="https://github.com/user-attachments/assets/dfddbe05-87e5-48df-8608-e25bf6087044" alt="tensorguard logo" width="300">
|
|
42
|
+
|
|
43
|
+
[](https://pypi.python.org/pypi/tensorguard/)
|
|
44
|
+
[](https://pypi.python.org/pypi/tensorguard/)
|
|
45
|
+
[](https://pypi.python.org/pypi/tensorguard/)
|
|
46
|
+
[](https://github.com/Michedev?tab=followers)
|
|
47
|
+
|
|
48
|
+
---
|
|
49
|
+
|
|
50
|
+
TensorGuard helps to guard against bad Tensor shapes in any tensor based library (e.g. Numpy, Pytorch, Tensorflow) using an intuitive symbolic-based syntax
|
|
51
|
+
|
|
52
|
+
### Installation
|
|
53
|
+
`pip install tensorguard`
|
|
54
|
+
|
|
55
|
+
|
|
56
|
+
## Basic Usage
|
|
57
|
+
|
|
58
|
+
```python
|
|
59
|
+
import numpy as np # could be tensorflow or torch as well
|
|
60
|
+
import tensorguard as tg
|
|
61
|
+
|
|
62
|
+
# tensorguard = tg.TensorGuard() #could be done in a OOP fashion
|
|
63
|
+
img = np.ones([64, 32, 32, 3])
|
|
64
|
+
flat_img = np.ones([64, 1024])
|
|
65
|
+
labels = np.ones([64])
|
|
66
|
+
|
|
67
|
+
# check shape consistency
|
|
68
|
+
tg.guard(img, "B, H, W, C")
|
|
69
|
+
tg.guard(labels, "B, 1") # raises error because of rank mismatch
|
|
70
|
+
tg.guard(flat_img, "B, H*W*C") # raises error because 1024 != 32*32*3
|
|
71
|
+
|
|
72
|
+
# guard also returns the tensor, so it can be inlined
|
|
73
|
+
mean_img = tg.guard(np.mean(img, axis=0), "H, W, C")
|
|
74
|
+
|
|
75
|
+
# more readable reshapes
|
|
76
|
+
flat_img = tg.reshape(img, 'B, H*W*C')
|
|
77
|
+
|
|
78
|
+
# evaluate templates
|
|
79
|
+
assert tg.get_dims('H, W*C+1') == [32, 97]
|
|
80
|
+
|
|
81
|
+
```
|
|
82
|
+
|
|
83
|
+
|
|
84
|
+
## Shape Template Syntax
|
|
85
|
+
The shape template mini-DSL supports many different ways of specifying shapes:
|
|
86
|
+
|
|
87
|
+
* numbers: `"64, 32, 32, 3"`
|
|
88
|
+
* named dimensions: `"B, width, height2, channels"`
|
|
89
|
+
* wildcards: `"B, *, *, *"`
|
|
90
|
+
* ellipsis: `"B, ..., 3"`
|
|
91
|
+
* addition, subtraction, multiplication, division: `"B*N, W/2, H*(C+1)"`
|
|
92
|
+
* dynamic dimensions: `"?, H, W, C"` *(only matches `[None, H, W, C]`)*
|
|
93
|
+
|
|
94
|
+
|
|
95
|
+
|
|
96
|
+
### Original Repo link: https://github.com/Qwlouse/shapeguard
|
|
@@ -1,10 +1,13 @@
|
|
|
1
1
|
# Tensor Guard
|
|
2
|
+
<img src="https://github.com/user-attachments/assets/dfddbe05-87e5-48df-8608-e25bf6087044" alt="tensorguard logo" width="300">
|
|
2
3
|
|
|
3
4
|
[](https://pypi.python.org/pypi/tensorguard/)
|
|
4
5
|
[](https://pypi.python.org/pypi/tensorguard/)
|
|
5
6
|
[](https://pypi.python.org/pypi/tensorguard/)
|
|
6
7
|
[](https://github.com/Michedev?tab=followers)
|
|
7
8
|
|
|
9
|
+
---
|
|
10
|
+
|
|
8
11
|
TensorGuard helps to guard against bad Tensor shapes in any tensor based library (e.g. Numpy, Pytorch, Tensorflow) using an intuitive symbolic-based syntax
|
|
9
12
|
|
|
10
13
|
### Installation
|
|
@@ -12,8 +12,8 @@ with open(ROOT / 'requirements.txt') as f:
|
|
|
12
12
|
with open(ROOT / 'README.md') as f:
|
|
13
13
|
readme = f.read()
|
|
14
14
|
|
|
15
|
-
class PytestCmd(cmd.Command):
|
|
16
15
|
|
|
16
|
+
class PytestCmd(cmd.Command):
|
|
17
17
|
user_options = []
|
|
18
18
|
description = 'run pytest on this project'
|
|
19
19
|
|
|
@@ -26,9 +26,10 @@ class PytestCmd(cmd.Command):
|
|
|
26
26
|
def run(self) -> None:
|
|
27
27
|
os.system(f'cd {ROOT.absolute()} && pytest')
|
|
28
28
|
|
|
29
|
+
|
|
29
30
|
setup(
|
|
30
31
|
name='tensorguard',
|
|
31
|
-
version='0.1
|
|
32
|
+
version='1.0.1',
|
|
32
33
|
packages=['tensorguard'],
|
|
33
34
|
url='https://github.com/Michedev/tensorguard',
|
|
34
35
|
license='Apache-2.0',
|
|
@@ -40,7 +41,7 @@ setup(
|
|
|
40
41
|
install_requires=install_requirements,
|
|
41
42
|
long_description=readme,
|
|
42
43
|
long_description_content_type='text/markdown',
|
|
43
|
-
python_requires='>=3.6
|
|
44
|
+
python_requires='>=3.6',
|
|
44
45
|
classifiers=[
|
|
45
46
|
# Trove classifiers
|
|
46
47
|
# Full list: https://pypi.python.org/pypi?%3Aaction=list_classifiers
|
|
@@ -53,6 +54,11 @@ setup(
|
|
|
53
54
|
'Programming Language :: Python :: 3.6',
|
|
54
55
|
'Programming Language :: Python :: 3.7',
|
|
55
56
|
'Programming Language :: Python :: 3.8',
|
|
57
|
+
'Programming Language :: Python :: 3.9',
|
|
58
|
+
'Programming Language :: Python :: 3.10',
|
|
59
|
+
'Programming Language :: Python :: 3.11',
|
|
60
|
+
'Programming Language :: Python :: 3.12',
|
|
61
|
+
'Programming Language :: Python :: 3.13',
|
|
56
62
|
'Programming Language :: Python :: Implementation :: CPython',
|
|
57
63
|
],
|
|
58
64
|
cmdclass={
|
|
@@ -0,0 +1,189 @@
|
|
|
1
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
2
|
+
# you may not use this file except in compliance with the License.
|
|
3
|
+
# You may obtain a copy of the License at
|
|
4
|
+
#
|
|
5
|
+
# https://www.apache.org/licenses/LICENSE-2.0
|
|
6
|
+
#
|
|
7
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
8
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
9
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
10
|
+
# See the License for the specific language governing permissions and
|
|
11
|
+
# limitations under the License.
|
|
12
|
+
|
|
13
|
+
"""This python module contains ShapeGuard."""
|
|
14
|
+
from copy import copy
|
|
15
|
+
from typing import Optional, List, Any, Union, Dict
|
|
16
|
+
|
|
17
|
+
from tensorguard import tools
|
|
18
|
+
from tensorguard.exception import ShapeError
|
|
19
|
+
from tensorguard.guard import TensorGuard
|
|
20
|
+
|
|
21
|
+
__version__ = "1.0.0"
|
|
22
|
+
|
|
23
|
+
__author__ = "Michele De Vita"
|
|
24
|
+
__author_email__ = "mik3dev@gmail.com"
|
|
25
|
+
|
|
26
|
+
__url__ = "https://github.com/Michedev/shapeguard"
|
|
27
|
+
|
|
28
|
+
from tensorguard.tools import ShapedTensor
|
|
29
|
+
|
|
30
|
+
__tg = TensorGuard()
|
|
31
|
+
|
|
32
|
+
|
|
33
|
+
def reset():
|
|
34
|
+
"""
|
|
35
|
+
Reset global tensorguard
|
|
36
|
+
"""
|
|
37
|
+
global __tg
|
|
38
|
+
__tg = TensorGuard()
|
|
39
|
+
|
|
40
|
+
|
|
41
|
+
def matches(tensor: Union[ShapedTensor, List[int]], template: str) -> bool:
|
|
42
|
+
"""
|
|
43
|
+
Return True if tensor shape matches template
|
|
44
|
+
"""
|
|
45
|
+
return tools.matches(tensor, template, __tg.dims)
|
|
46
|
+
|
|
47
|
+
|
|
48
|
+
def guard(tensor: Union[ShapedTensor, List[int]], template: str) -> Union[ShapedTensor, List[int]]:
|
|
49
|
+
"""
|
|
50
|
+
Check if tensor shape matches template. If not, raise ShapeError
|
|
51
|
+
:param tensor: Tensor or list of integers
|
|
52
|
+
:param template: Template string that should match tensor shape
|
|
53
|
+
:type template: str
|
|
54
|
+
:return: input tensor
|
|
55
|
+
"""
|
|
56
|
+
inferred_dims = tools.guard(tensor, template, __tg.dims)
|
|
57
|
+
__tg.dims.update(inferred_dims)
|
|
58
|
+
return tensor
|
|
59
|
+
|
|
60
|
+
|
|
61
|
+
def reshape(tensor: Union[ShapedTensor, List[int]], template: str):
|
|
62
|
+
return tools.reshape(tensor, template, __tg.dims)
|
|
63
|
+
|
|
64
|
+
|
|
65
|
+
def evaluate(template: str, **kwargs) -> List[Optional[int]]:
|
|
66
|
+
local_dims = copy(__tg.dims)
|
|
67
|
+
local_dims.update(kwargs)
|
|
68
|
+
return tools.evaluate(template, local_dims)
|
|
69
|
+
|
|
70
|
+
|
|
71
|
+
def get_dims(template: Optional[str] = None) -> Union[Dict[str, int], List[Optional[int]]]:
|
|
72
|
+
"""
|
|
73
|
+
If template is None return dictionary of all {token_shape: token_value}.
|
|
74
|
+
If token template is provided returns the corresponding list of token values.
|
|
75
|
+
|
|
76
|
+
Example:
|
|
77
|
+
|
|
78
|
+
>>> import tensorguard as tg
|
|
79
|
+
>>> tg.get_dims("B, C, H, W")
|
|
80
|
+
[16, 3, 224, 224]
|
|
81
|
+
>>> tg.get_dims()
|
|
82
|
+
{'B': 32, 'C': 3, 'H': 224, 'W': 224}
|
|
83
|
+
|
|
84
|
+
:param template: Optional template value
|
|
85
|
+
:type template:
|
|
86
|
+
:return:
|
|
87
|
+
:rtype:
|
|
88
|
+
"""
|
|
89
|
+
if template is None:
|
|
90
|
+
return __tg.dims
|
|
91
|
+
else:
|
|
92
|
+
return tools.evaluate(template, __tg.dims)
|
|
93
|
+
|
|
94
|
+
|
|
95
|
+
def get_dim(item: str) -> Any:
|
|
96
|
+
"""
|
|
97
|
+
Return corresponding value to shape token. If not exists, raise KeyError.
|
|
98
|
+
:param item:
|
|
99
|
+
:type item:
|
|
100
|
+
:return:
|
|
101
|
+
:rtype:
|
|
102
|
+
"""
|
|
103
|
+
try:
|
|
104
|
+
return __tg.dims[item]
|
|
105
|
+
except KeyError:
|
|
106
|
+
raise KeyError(item)
|
|
107
|
+
|
|
108
|
+
|
|
109
|
+
def safe_get_dim(item: str) -> Any:
|
|
110
|
+
"""
|
|
111
|
+
Return corresponding value to shape token. If not exists doesn't raise an Exception
|
|
112
|
+
:param item: the shape token
|
|
113
|
+
:type item: str
|
|
114
|
+
:return: shape token value
|
|
115
|
+
"""
|
|
116
|
+
if has_dim(item):
|
|
117
|
+
return get_dim(item)
|
|
118
|
+
|
|
119
|
+
|
|
120
|
+
def has_dim(key: str) -> bool:
|
|
121
|
+
return key in __tg.dims
|
|
122
|
+
|
|
123
|
+
|
|
124
|
+
def set_dim(key: str, value: Any):
|
|
125
|
+
"""
|
|
126
|
+
Set dimension in the global tensorguard guardian.
|
|
127
|
+
:param key: the key to set
|
|
128
|
+
:type key: str
|
|
129
|
+
:param value: the value corresponding to the key
|
|
130
|
+
:type value:
|
|
131
|
+
:return: None
|
|
132
|
+
"""
|
|
133
|
+
__tg.dims[key] = value
|
|
134
|
+
|
|
135
|
+
def set_dims(**kwargs):
|
|
136
|
+
"""
|
|
137
|
+
Set multiple dimensions in the global tensorguard guardian.
|
|
138
|
+
|
|
139
|
+
Example:
|
|
140
|
+
|
|
141
|
+
>>> import tensorguard as tg
|
|
142
|
+
>>> tg.set_dims(B=16, W=32, H=32, C=3)
|
|
143
|
+
"""
|
|
144
|
+
for key, value in kwargs.items():
|
|
145
|
+
set_dim(key, value)
|
|
146
|
+
|
|
147
|
+
def del_dim(item: str):
|
|
148
|
+
"""
|
|
149
|
+
Delete a shape token. If not exists, raise KeyError.
|
|
150
|
+
:param key:
|
|
151
|
+
:type key: str
|
|
152
|
+
:return: None
|
|
153
|
+
"""
|
|
154
|
+
try:
|
|
155
|
+
del __tg.dims[item]
|
|
156
|
+
except KeyError:
|
|
157
|
+
raise KeyError(item)
|
|
158
|
+
|
|
159
|
+
|
|
160
|
+
def safe_del_dim(key: str):
|
|
161
|
+
"""
|
|
162
|
+
Delete a key only if exists. If not exists does not raise exceptions.
|
|
163
|
+
:param key:
|
|
164
|
+
:type key: str
|
|
165
|
+
:return: None
|
|
166
|
+
"""
|
|
167
|
+
if has_dim(key):
|
|
168
|
+
del_dim(key)
|
|
169
|
+
|
|
170
|
+
|
|
171
|
+
__all__ = (
|
|
172
|
+
"TensorGuard",
|
|
173
|
+
"__version__",
|
|
174
|
+
"__author__",
|
|
175
|
+
"__author_email__",
|
|
176
|
+
"ShapeError",
|
|
177
|
+
"guard",
|
|
178
|
+
"matches",
|
|
179
|
+
"reshape",
|
|
180
|
+
"evaluate",
|
|
181
|
+
"get_dim",
|
|
182
|
+
"set_dim",
|
|
183
|
+
"set_dims",
|
|
184
|
+
"safe_get_dim",
|
|
185
|
+
"has_dim",
|
|
186
|
+
"del_dim",
|
|
187
|
+
"safe_del_dim",
|
|
188
|
+
"get_dims"
|
|
189
|
+
)
|
|
@@ -20,11 +20,16 @@ from typing_extensions import Protocol
|
|
|
20
20
|
from tensorguard import exception
|
|
21
21
|
from tensorguard import parser
|
|
22
22
|
|
|
23
|
+
try:
|
|
24
|
+
import torch
|
|
25
|
+
except ImportError:
|
|
26
|
+
pass
|
|
27
|
+
|
|
23
28
|
|
|
24
29
|
class ShapedTensor(Protocol):
|
|
25
|
-
shape: Sequence[int]
|
|
30
|
+
shape: Union[Sequence[int], 'torch.Size']
|
|
26
31
|
|
|
27
|
-
def reshape(self, shape: Sequence[int]) -> 'ShapedTensor':
|
|
32
|
+
def reshape(self, shape: Union[Sequence[int], 'torch.Size']) -> 'ShapedTensor':
|
|
28
33
|
pass
|
|
29
34
|
|
|
30
35
|
|
|
@@ -73,7 +78,7 @@ def guard(tensor: ShapedTensor, template: str, dims: Dict[str, int]):
|
|
|
73
78
|
return {k: v for k, v in inferred_dims.items() if not k.startswith("_")}
|
|
74
79
|
|
|
75
80
|
|
|
76
|
-
def get_shape(tensor_or_shape: Union[Sequence[int], ShapedTensor]) -> List[int]:
|
|
81
|
+
def get_shape(tensor_or_shape: Union[Sequence[int], 'torch.Size', ShapedTensor]) -> List[int]:
|
|
77
82
|
if isinstance(tensor_or_shape, (list, tuple)):
|
|
78
83
|
return list(tensor_or_shape)
|
|
79
84
|
elif hasattr(tensor_or_shape, 'shape') and hasattr(tensor_or_shape.shape, '__iter__'):
|
|
@@ -0,0 +1,96 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: tensorguard
|
|
3
|
+
Version: 1.0.1
|
|
4
|
+
Summary: TensorGuard helps to guard against bad Tensor Shapes
|
|
5
|
+
Home-page: https://github.com/Michedev/tensorguard
|
|
6
|
+
Author: mikedev
|
|
7
|
+
Author-email: mik3dev@gmail.com
|
|
8
|
+
License: Apache-2.0
|
|
9
|
+
Classifier: License :: OSI Approved :: Apache Software License
|
|
10
|
+
Classifier: Intended Audience :: Developers
|
|
11
|
+
Classifier: Intended Audience :: Science/Research
|
|
12
|
+
Classifier: Operating System :: OS Independent
|
|
13
|
+
Classifier: Programming Language :: Python
|
|
14
|
+
Classifier: Programming Language :: Python :: 3
|
|
15
|
+
Classifier: Programming Language :: Python :: 3.6
|
|
16
|
+
Classifier: Programming Language :: Python :: 3.7
|
|
17
|
+
Classifier: Programming Language :: Python :: 3.8
|
|
18
|
+
Classifier: Programming Language :: Python :: 3.9
|
|
19
|
+
Classifier: Programming Language :: Python :: 3.10
|
|
20
|
+
Classifier: Programming Language :: Python :: 3.11
|
|
21
|
+
Classifier: Programming Language :: Python :: 3.12
|
|
22
|
+
Classifier: Programming Language :: Python :: 3.13
|
|
23
|
+
Classifier: Programming Language :: Python :: Implementation :: CPython
|
|
24
|
+
Requires-Python: >=3.6
|
|
25
|
+
Description-Content-Type: text/markdown
|
|
26
|
+
License-File: LICENSE
|
|
27
|
+
Requires-Dist: typing_extensions>=3.7.4.3
|
|
28
|
+
Dynamic: author
|
|
29
|
+
Dynamic: author-email
|
|
30
|
+
Dynamic: classifier
|
|
31
|
+
Dynamic: description
|
|
32
|
+
Dynamic: description-content-type
|
|
33
|
+
Dynamic: home-page
|
|
34
|
+
Dynamic: license
|
|
35
|
+
Dynamic: license-file
|
|
36
|
+
Dynamic: requires-dist
|
|
37
|
+
Dynamic: requires-python
|
|
38
|
+
Dynamic: summary
|
|
39
|
+
|
|
40
|
+
# Tensor Guard
|
|
41
|
+
<img src="https://github.com/user-attachments/assets/dfddbe05-87e5-48df-8608-e25bf6087044" alt="tensorguard logo" width="300">
|
|
42
|
+
|
|
43
|
+
[](https://pypi.python.org/pypi/tensorguard/)
|
|
44
|
+
[](https://pypi.python.org/pypi/tensorguard/)
|
|
45
|
+
[](https://pypi.python.org/pypi/tensorguard/)
|
|
46
|
+
[](https://github.com/Michedev?tab=followers)
|
|
47
|
+
|
|
48
|
+
---
|
|
49
|
+
|
|
50
|
+
TensorGuard helps to guard against bad Tensor shapes in any tensor based library (e.g. Numpy, Pytorch, Tensorflow) using an intuitive symbolic-based syntax
|
|
51
|
+
|
|
52
|
+
### Installation
|
|
53
|
+
`pip install tensorguard`
|
|
54
|
+
|
|
55
|
+
|
|
56
|
+
## Basic Usage
|
|
57
|
+
|
|
58
|
+
```python
|
|
59
|
+
import numpy as np # could be tensorflow or torch as well
|
|
60
|
+
import tensorguard as tg
|
|
61
|
+
|
|
62
|
+
# tensorguard = tg.TensorGuard() #could be done in a OOP fashion
|
|
63
|
+
img = np.ones([64, 32, 32, 3])
|
|
64
|
+
flat_img = np.ones([64, 1024])
|
|
65
|
+
labels = np.ones([64])
|
|
66
|
+
|
|
67
|
+
# check shape consistency
|
|
68
|
+
tg.guard(img, "B, H, W, C")
|
|
69
|
+
tg.guard(labels, "B, 1") # raises error because of rank mismatch
|
|
70
|
+
tg.guard(flat_img, "B, H*W*C") # raises error because 1024 != 32*32*3
|
|
71
|
+
|
|
72
|
+
# guard also returns the tensor, so it can be inlined
|
|
73
|
+
mean_img = tg.guard(np.mean(img, axis=0), "H, W, C")
|
|
74
|
+
|
|
75
|
+
# more readable reshapes
|
|
76
|
+
flat_img = tg.reshape(img, 'B, H*W*C')
|
|
77
|
+
|
|
78
|
+
# evaluate templates
|
|
79
|
+
assert tg.get_dims('H, W*C+1') == [32, 97]
|
|
80
|
+
|
|
81
|
+
```
|
|
82
|
+
|
|
83
|
+
|
|
84
|
+
## Shape Template Syntax
|
|
85
|
+
The shape template mini-DSL supports many different ways of specifying shapes:
|
|
86
|
+
|
|
87
|
+
* numbers: `"64, 32, 32, 3"`
|
|
88
|
+
* named dimensions: `"B, width, height2, channels"`
|
|
89
|
+
* wildcards: `"B, *, *, *"`
|
|
90
|
+
* ellipsis: `"B, ..., 3"`
|
|
91
|
+
* addition, subtraction, multiplication, division: `"B*N, W/2, H*(C+1)"`
|
|
92
|
+
* dynamic dimensions: `"?, H, W, C"` *(only matches `[None, H, W, C]`)*
|
|
93
|
+
|
|
94
|
+
|
|
95
|
+
|
|
96
|
+
### Original Repo link: https://github.com/Qwlouse/shapeguard
|
|
@@ -1,3 +1,4 @@
|
|
|
1
|
+
LICENSE
|
|
1
2
|
MANIFEST.in
|
|
2
3
|
README.md
|
|
3
4
|
requirements.txt
|
|
@@ -16,7 +17,6 @@ tensorguard.egg-info/SOURCES.txt
|
|
|
16
17
|
tensorguard.egg-info/dependency_links.txt
|
|
17
18
|
tensorguard.egg-info/requires.txt
|
|
18
19
|
tensorguard.egg-info/top_level.txt
|
|
19
|
-
tests/__init__.py
|
|
20
20
|
tests/test_global_accessors.py
|
|
21
21
|
tests/test_guard.py
|
|
22
22
|
tests/test_match.py
|
|
@@ -26,8 +26,9 @@ def test_get_dim():
|
|
|
26
26
|
x = np.zeros([32, 2, 5])
|
|
27
27
|
tg.guard(x, "B, C, W")
|
|
28
28
|
assert tg.get_dim("W") == 5
|
|
29
|
-
with pytest.raises(
|
|
30
|
-
tg.get_dim("
|
|
29
|
+
with pytest.raises(KeyError):
|
|
30
|
+
tg.get_dim("W_FAKE")
|
|
31
|
+
assert tg.safe_get_dim("W_FAKE") is None
|
|
31
32
|
|
|
32
33
|
|
|
33
34
|
def test_set_dim():
|
|
@@ -40,6 +41,10 @@ def test_set_dim():
|
|
|
40
41
|
assert tg.get_dim("W") == 10
|
|
41
42
|
tg.set_dim("WF", 40)
|
|
42
43
|
assert tg.get_dim("WF") == 40
|
|
44
|
+
assert tg.safe_get_dim("W_FAKE") is None
|
|
45
|
+
tg.set_dims(WW=32, HH=55)
|
|
46
|
+
assert tg.get_dim("WW") == 32
|
|
47
|
+
assert tg.safe_get_dim("HH") == 55
|
|
43
48
|
|
|
44
49
|
|
|
45
50
|
def test_del_dim():
|
|
@@ -49,6 +54,6 @@ def test_del_dim():
|
|
|
49
54
|
tg.guard(x, "B, C, W")
|
|
50
55
|
assert tg.get_dim("W") == 5
|
|
51
56
|
tg.del_dim("W")
|
|
52
|
-
with pytest.raises(
|
|
53
|
-
tg.
|
|
54
|
-
|
|
57
|
+
with pytest.raises(KeyError):
|
|
58
|
+
tg.del_dim("W")
|
|
59
|
+
tg.safe_del_dim("W")
|
|
@@ -12,14 +12,18 @@
|
|
|
12
12
|
|
|
13
13
|
import pytest
|
|
14
14
|
import torch
|
|
15
|
-
import tensorflow as tf
|
|
16
15
|
import numpy as np
|
|
17
16
|
|
|
18
17
|
from tensorguard import ShapeError
|
|
19
18
|
from tensorguard import TensorGuard
|
|
20
19
|
|
|
20
|
+
try:
|
|
21
|
+
import tensorflow as tf
|
|
22
|
+
except ImportError:
|
|
23
|
+
tf = None
|
|
21
24
|
|
|
22
25
|
|
|
26
|
+
@pytest.mark.skipif(tf is None, reason="TensorFlow not installed")
|
|
23
27
|
def test_guard_raises_tensorflow():
|
|
24
28
|
tg = TensorGuard()
|
|
25
29
|
a = tf.ones([1, 2, 3])
|
|
@@ -27,6 +31,7 @@ def test_guard_raises_tensorflow():
|
|
|
27
31
|
tg.guard(a, "3, 2, 1")
|
|
28
32
|
|
|
29
33
|
|
|
34
|
+
@pytest.mark.skipif(tf is None, reason="TensorFlow not installed")
|
|
30
35
|
def test_guard_infers_dimensions_tensorflow():
|
|
31
36
|
tg = TensorGuard()
|
|
32
37
|
a = tf.ones([1, 2, 3])
|
|
@@ -34,6 +39,7 @@ def test_guard_infers_dimensions_tensorflow():
|
|
|
34
39
|
assert tg.dims == {"A": 1, "B": 2, "C": 3}
|
|
35
40
|
|
|
36
41
|
|
|
42
|
+
@pytest.mark.skipif(tf is None, reason="TensorFlow not installed")
|
|
37
43
|
def test_guard_infers_dimensions_complex_tensorflow():
|
|
38
44
|
tg = TensorGuard()
|
|
39
45
|
a = tf.ones([1, 2, 3])
|
|
@@ -41,6 +47,7 @@ def test_guard_infers_dimensions_complex_tensorflow():
|
|
|
41
47
|
assert tg.dims == {"A": 1, "B": 1, "C": 2}
|
|
42
48
|
|
|
43
49
|
|
|
50
|
+
@pytest.mark.skipif(tf is None, reason="TensorFlow not installed")
|
|
44
51
|
def test_guard_infers_dimensions_operator_priority_tensorflow():
|
|
45
52
|
tg = TensorGuard()
|
|
46
53
|
a = tf.ones([1, 2, 8])
|
|
@@ -48,6 +55,7 @@ def test_guard_infers_dimensions_operator_priority_tensorflow():
|
|
|
48
55
|
assert tg.dims == {"A": 1, "B": 2, "C": 3}
|
|
49
56
|
|
|
50
57
|
|
|
58
|
+
@pytest.mark.skipif(tf is None, reason="TensorFlow not installed")
|
|
51
59
|
def test_guard_raises_complex_tensorflow():
|
|
52
60
|
tg = TensorGuard()
|
|
53
61
|
a = tf.ones([1, 2, 3])
|
|
@@ -55,6 +63,7 @@ def test_guard_raises_complex_tensorflow():
|
|
|
55
63
|
tg.guard(a, "A, B, B")
|
|
56
64
|
|
|
57
65
|
|
|
66
|
+
@pytest.mark.skipif(tf is None, reason="TensorFlow not installed")
|
|
58
67
|
def test_guard_raises_inferred_tensorflow():
|
|
59
68
|
tg = TensorGuard()
|
|
60
69
|
a = tf.ones([1, 2, 3])
|
|
@@ -64,6 +73,7 @@ def test_guard_raises_inferred_tensorflow():
|
|
|
64
73
|
tg.guard(b, "C, B, A")
|
|
65
74
|
|
|
66
75
|
|
|
76
|
+
@pytest.mark.skipif(tf is None, reason="TensorFlow not installed")
|
|
67
77
|
def test_guard_ignores_wildcard_tensorflow():
|
|
68
78
|
tg = TensorGuard()
|
|
69
79
|
a = tf.ones([1, 2, 3])
|
|
@@ -71,6 +81,7 @@ def test_guard_ignores_wildcard_tensorflow():
|
|
|
71
81
|
assert tg.dims == {}
|
|
72
82
|
|
|
73
83
|
|
|
84
|
+
@pytest.mark.skipif(tf is None, reason="TensorFlow not installed")
|
|
74
85
|
def test_guard_dynamic_shape_tensorflow():
|
|
75
86
|
tg = TensorGuard()
|
|
76
87
|
with pytest.raises(ShapeError):
|
|
@@ -81,6 +92,7 @@ def test_guard_dynamic_shape_tensorflow():
|
|
|
81
92
|
tg.guard([None, 2, 3], "C?, B, A")
|
|
82
93
|
|
|
83
94
|
|
|
95
|
+
@pytest.mark.skipif(tf is None, reason="TensorFlow not installed")
|
|
84
96
|
def test_guard_ellipsis_tensorflow():
|
|
85
97
|
tg = TensorGuard()
|
|
86
98
|
a = tf.ones([1, 2, 3, 4, 5])
|
|
@@ -99,6 +111,7 @@ def test_guard_ellipsis_tensorflow():
|
|
|
99
111
|
tg.guard(a, "..., 1, 2, 3, 4, 5, 6")
|
|
100
112
|
|
|
101
113
|
|
|
114
|
+
@pytest.mark.skipif(tf is None, reason="TensorFlow not installed")
|
|
102
115
|
def test_guard_ellipsis_infer_dims_tensorflow():
|
|
103
116
|
tg = TensorGuard()
|
|
104
117
|
a = tf.ones([1, 2, 3, 4, 5])
|
|
@@ -10,14 +10,20 @@
|
|
|
10
10
|
# See the License for the specific language governing permissions and
|
|
11
11
|
# limitations under the License.
|
|
12
12
|
|
|
13
|
-
import tensorflow as tf
|
|
14
13
|
import torch
|
|
15
14
|
import numpy as np
|
|
16
15
|
from tensorguard.guard import TensorGuard
|
|
16
|
+
import pytest
|
|
17
17
|
|
|
18
18
|
# ======== tensorflow =================
|
|
19
19
|
|
|
20
|
+
try:
|
|
21
|
+
import tensorflow as tf
|
|
22
|
+
except ImportError:
|
|
23
|
+
tf = None
|
|
20
24
|
|
|
25
|
+
|
|
26
|
+
@pytest.mark.skipif(tf is None, reason="TensorFlow not installed")
|
|
21
27
|
def test_matches_basic_numerical_tensorflow():
|
|
22
28
|
tg = TensorGuard()
|
|
23
29
|
a = tf.ones([1, 2, 3])
|
|
@@ -27,6 +33,7 @@ def test_matches_basic_numerical_tensorflow():
|
|
|
27
33
|
assert not tg.matches(a, "1, 2")
|
|
28
34
|
|
|
29
35
|
|
|
36
|
+
@pytest.mark.skipif(tf is None, reason="TensorFlow not installed")
|
|
30
37
|
def test_matches_ignores_spaces_tensorflow():
|
|
31
38
|
tg = TensorGuard()
|
|
32
39
|
a = tf.ones([1, 2, 3])
|
|
@@ -35,6 +42,7 @@ def test_matches_ignores_spaces_tensorflow():
|
|
|
35
42
|
assert tg.matches(a, "1, 2,3 ")
|
|
36
43
|
|
|
37
44
|
|
|
45
|
+
@pytest.mark.skipif(tf is None, reason="TensorFlow not installed")
|
|
38
46
|
def test_matches_named_dims_tensorflow():
|
|
39
47
|
tg = TensorGuard(dims={"N": 24, "Z": 16})
|
|
40
48
|
z = tf.ones([24, 16])
|
|
@@ -43,6 +51,7 @@ def test_matches_named_dims_tensorflow():
|
|
|
43
51
|
assert not tg.matches(z, "N, N")
|
|
44
52
|
|
|
45
53
|
|
|
54
|
+
@pytest.mark.skipif(tf is None, reason="TensorFlow not installed")
|
|
46
55
|
def test_matches_wildcards_tensorflow():
|
|
47
56
|
tg = TensorGuard()
|
|
48
57
|
z = tf.ones([1, 2, 4, 8])
|
tensorguard-0.1.2/PKG-INFO
DELETED
|
@@ -1,76 +0,0 @@
|
|
|
1
|
-
Metadata-Version: 2.1
|
|
2
|
-
Name: tensorguard
|
|
3
|
-
Version: 0.1.2
|
|
4
|
-
Summary: TensorGuard helps to guard against bad Tensor Shapes
|
|
5
|
-
Home-page: https://github.com/Michedev/tensorguard
|
|
6
|
-
Author: mikedev
|
|
7
|
-
Author-email: mik3dev@gmail.com
|
|
8
|
-
License: Apache-2.0
|
|
9
|
-
Description: # Tensor Guard
|
|
10
|
-
|
|
11
|
-
[](https://pypi.python.org/pypi/tensorguard/)
|
|
12
|
-
[](https://pypi.python.org/pypi/tensorguard/)
|
|
13
|
-
[](https://pypi.python.org/pypi/tensorguard/)
|
|
14
|
-
[](https://github.com/Michedev?tab=followers)
|
|
15
|
-
|
|
16
|
-
TensorGuard helps to guard against bad Tensor shapes in any tensor based library (e.g. Numpy, Pytorch, Tensorflow) using an intuitive symbolic-based syntax
|
|
17
|
-
|
|
18
|
-
### Installation
|
|
19
|
-
`pip install tensorguard`
|
|
20
|
-
|
|
21
|
-
|
|
22
|
-
## Basic Usage
|
|
23
|
-
|
|
24
|
-
```python
|
|
25
|
-
import numpy as np # could be tensorflow or torch as well
|
|
26
|
-
import tensorguard as tg
|
|
27
|
-
|
|
28
|
-
# tensorguard = tg.TensorGuard() #could be done in a OOP fashion
|
|
29
|
-
img = np.ones([64, 32, 32, 3])
|
|
30
|
-
flat_img = np.ones([64, 1024])
|
|
31
|
-
labels = np.ones([64])
|
|
32
|
-
|
|
33
|
-
# check shape consistency
|
|
34
|
-
tg.guard(img, "B, H, W, C")
|
|
35
|
-
tg.guard(labels, "B, 1") # raises error because of rank mismatch
|
|
36
|
-
tg.guard(flat_img, "B, H*W*C") # raises error because 1024 != 32*32*3
|
|
37
|
-
|
|
38
|
-
# guard also returns the tensor, so it can be inlined
|
|
39
|
-
mean_img = tg.guard(np.mean(img, axis=0), "H, W, C")
|
|
40
|
-
|
|
41
|
-
# more readable reshapes
|
|
42
|
-
flat_img = tg.reshape(img, 'B, H*W*C')
|
|
43
|
-
|
|
44
|
-
# evaluate templates
|
|
45
|
-
assert tg.get_dims('H, W*C+1') == [32, 97]
|
|
46
|
-
|
|
47
|
-
```
|
|
48
|
-
|
|
49
|
-
|
|
50
|
-
## Shape Template Syntax
|
|
51
|
-
The shape template mini-DSL supports many different ways of specifying shapes:
|
|
52
|
-
|
|
53
|
-
* numbers: `"64, 32, 32, 3"`
|
|
54
|
-
* named dimensions: `"B, width, height2, channels"`
|
|
55
|
-
* wildcards: `"B, *, *, *"`
|
|
56
|
-
* ellipsis: `"B, ..., 3"`
|
|
57
|
-
* addition, subtraction, multiplication, division: `"B*N, W/2, H*(C+1)"`
|
|
58
|
-
* dynamic dimensions: `"?, H, W, C"` *(only matches `[None, H, W, C]`)*
|
|
59
|
-
|
|
60
|
-
|
|
61
|
-
|
|
62
|
-
### Original Repo link: https://github.com/Qwlouse/shapeguard
|
|
63
|
-
|
|
64
|
-
Platform: UNKNOWN
|
|
65
|
-
Classifier: License :: OSI Approved :: Apache Software License
|
|
66
|
-
Classifier: Intended Audience :: Developers
|
|
67
|
-
Classifier: Intended Audience :: Science/Research
|
|
68
|
-
Classifier: Operating System :: OS Independent
|
|
69
|
-
Classifier: Programming Language :: Python
|
|
70
|
-
Classifier: Programming Language :: Python :: 3
|
|
71
|
-
Classifier: Programming Language :: Python :: 3.6
|
|
72
|
-
Classifier: Programming Language :: Python :: 3.7
|
|
73
|
-
Classifier: Programming Language :: Python :: 3.8
|
|
74
|
-
Classifier: Programming Language :: Python :: Implementation :: CPython
|
|
75
|
-
Requires-Python: >=3.6.0
|
|
76
|
-
Description-Content-Type: text/markdown
|
|
@@ -1,105 +0,0 @@
|
|
|
1
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
2
|
-
# you may not use this file except in compliance with the License.
|
|
3
|
-
# You may obtain a copy of the License at
|
|
4
|
-
#
|
|
5
|
-
# https://www.apache.org/licenses/LICENSE-2.0
|
|
6
|
-
#
|
|
7
|
-
# Unless required by applicable law or agreed to in writing, software
|
|
8
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
9
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
10
|
-
# See the License for the specific language governing permissions and
|
|
11
|
-
# limitations under the License.
|
|
12
|
-
|
|
13
|
-
"""This python module contains ShapeGuard."""
|
|
14
|
-
from copy import copy
|
|
15
|
-
from typing import Optional, List, Any, Union, Dict
|
|
16
|
-
|
|
17
|
-
from tensorguard import tools
|
|
18
|
-
from tensorguard.exception import ShapeError
|
|
19
|
-
from tensorguard.guard import TensorGuard
|
|
20
|
-
|
|
21
|
-
__version__ = "0.1.1"
|
|
22
|
-
|
|
23
|
-
__author__ = "Michele De Vita"
|
|
24
|
-
__author_email__ = "mik3dev@gmail.com"
|
|
25
|
-
|
|
26
|
-
__url__ = "https://github.com/Michedev/shapeguard"
|
|
27
|
-
|
|
28
|
-
from tensorguard.tools import ShapedTensor
|
|
29
|
-
|
|
30
|
-
__tg = TensorGuard()
|
|
31
|
-
|
|
32
|
-
|
|
33
|
-
def reset():
|
|
34
|
-
"""
|
|
35
|
-
Reset global tensorguard
|
|
36
|
-
"""
|
|
37
|
-
global __tg
|
|
38
|
-
__tg = TensorGuard()
|
|
39
|
-
|
|
40
|
-
|
|
41
|
-
def matches(tensor: Union[ShapedTensor, List[int]], template: str) -> bool:
|
|
42
|
-
"""
|
|
43
|
-
Return True if tensor shape matches template
|
|
44
|
-
"""
|
|
45
|
-
return tools.matches(tensor, template, __tg.dims)
|
|
46
|
-
|
|
47
|
-
|
|
48
|
-
def guard(tensor: Union[ShapedTensor, List[int]], template: str):
|
|
49
|
-
inferred_dims = tools.guard(tensor, template, __tg.dims)
|
|
50
|
-
__tg.dims.update(inferred_dims)
|
|
51
|
-
return tensor
|
|
52
|
-
|
|
53
|
-
|
|
54
|
-
def reshape(tensor: Union[ShapedTensor, List[int]], template: str):
|
|
55
|
-
return tools.reshape(tensor, template, __tg.dims)
|
|
56
|
-
|
|
57
|
-
|
|
58
|
-
def evaluate(template: str, **kwargs) -> List[Optional[int]]:
|
|
59
|
-
local_dims = copy(__tg.dims)
|
|
60
|
-
local_dims.update(kwargs)
|
|
61
|
-
return tools.evaluate(template, local_dims)
|
|
62
|
-
|
|
63
|
-
|
|
64
|
-
def get_dims(item: Optional[str] = None) -> Union[Dict[str, int], List[Optional[int]]]:
|
|
65
|
-
if item is None:
|
|
66
|
-
return __tg.dims
|
|
67
|
-
else:
|
|
68
|
-
return tools.evaluate(item, __tg.dims)
|
|
69
|
-
|
|
70
|
-
|
|
71
|
-
def get_dim(item: str) -> Any:
|
|
72
|
-
try:
|
|
73
|
-
return __tg.dims[item]
|
|
74
|
-
except KeyError:
|
|
75
|
-
raise AttributeError(item)
|
|
76
|
-
|
|
77
|
-
|
|
78
|
-
def set_dim(key: str, value: Any):
|
|
79
|
-
try:
|
|
80
|
-
__tg.dims[key] = value
|
|
81
|
-
except KeyError:
|
|
82
|
-
raise AttributeError(key)
|
|
83
|
-
|
|
84
|
-
|
|
85
|
-
def del_dim(item: str):
|
|
86
|
-
try:
|
|
87
|
-
del __tg.dims[item]
|
|
88
|
-
except KeyError:
|
|
89
|
-
raise AttributeError(item)
|
|
90
|
-
|
|
91
|
-
|
|
92
|
-
__all__ = (
|
|
93
|
-
"TensorGuard",
|
|
94
|
-
"__version__",
|
|
95
|
-
"__author__",
|
|
96
|
-
"__author_email__",
|
|
97
|
-
"ShapeError",
|
|
98
|
-
"guard",
|
|
99
|
-
"matches",
|
|
100
|
-
"reshape",
|
|
101
|
-
"evaluate",
|
|
102
|
-
"get_dim",
|
|
103
|
-
"del_dim",
|
|
104
|
-
"get_dims"
|
|
105
|
-
)
|
|
@@ -1,76 +0,0 @@
|
|
|
1
|
-
Metadata-Version: 2.1
|
|
2
|
-
Name: tensorguard
|
|
3
|
-
Version: 0.1.2
|
|
4
|
-
Summary: TensorGuard helps to guard against bad Tensor Shapes
|
|
5
|
-
Home-page: https://github.com/Michedev/tensorguard
|
|
6
|
-
Author: mikedev
|
|
7
|
-
Author-email: mik3dev@gmail.com
|
|
8
|
-
License: Apache-2.0
|
|
9
|
-
Description: # Tensor Guard
|
|
10
|
-
|
|
11
|
-
[](https://pypi.python.org/pypi/tensorguard/)
|
|
12
|
-
[](https://pypi.python.org/pypi/tensorguard/)
|
|
13
|
-
[](https://pypi.python.org/pypi/tensorguard/)
|
|
14
|
-
[](https://github.com/Michedev?tab=followers)
|
|
15
|
-
|
|
16
|
-
TensorGuard helps to guard against bad Tensor shapes in any tensor based library (e.g. Numpy, Pytorch, Tensorflow) using an intuitive symbolic-based syntax
|
|
17
|
-
|
|
18
|
-
### Installation
|
|
19
|
-
`pip install tensorguard`
|
|
20
|
-
|
|
21
|
-
|
|
22
|
-
## Basic Usage
|
|
23
|
-
|
|
24
|
-
```python
|
|
25
|
-
import numpy as np # could be tensorflow or torch as well
|
|
26
|
-
import tensorguard as tg
|
|
27
|
-
|
|
28
|
-
# tensorguard = tg.TensorGuard() #could be done in a OOP fashion
|
|
29
|
-
img = np.ones([64, 32, 32, 3])
|
|
30
|
-
flat_img = np.ones([64, 1024])
|
|
31
|
-
labels = np.ones([64])
|
|
32
|
-
|
|
33
|
-
# check shape consistency
|
|
34
|
-
tg.guard(img, "B, H, W, C")
|
|
35
|
-
tg.guard(labels, "B, 1") # raises error because of rank mismatch
|
|
36
|
-
tg.guard(flat_img, "B, H*W*C") # raises error because 1024 != 32*32*3
|
|
37
|
-
|
|
38
|
-
# guard also returns the tensor, so it can be inlined
|
|
39
|
-
mean_img = tg.guard(np.mean(img, axis=0), "H, W, C")
|
|
40
|
-
|
|
41
|
-
# more readable reshapes
|
|
42
|
-
flat_img = tg.reshape(img, 'B, H*W*C')
|
|
43
|
-
|
|
44
|
-
# evaluate templates
|
|
45
|
-
assert tg.get_dims('H, W*C+1') == [32, 97]
|
|
46
|
-
|
|
47
|
-
```
|
|
48
|
-
|
|
49
|
-
|
|
50
|
-
## Shape Template Syntax
|
|
51
|
-
The shape template mini-DSL supports many different ways of specifying shapes:
|
|
52
|
-
|
|
53
|
-
* numbers: `"64, 32, 32, 3"`
|
|
54
|
-
* named dimensions: `"B, width, height2, channels"`
|
|
55
|
-
* wildcards: `"B, *, *, *"`
|
|
56
|
-
* ellipsis: `"B, ..., 3"`
|
|
57
|
-
* addition, subtraction, multiplication, division: `"B*N, W/2, H*(C+1)"`
|
|
58
|
-
* dynamic dimensions: `"?, H, W, C"` *(only matches `[None, H, W, C]`)*
|
|
59
|
-
|
|
60
|
-
|
|
61
|
-
|
|
62
|
-
### Original Repo link: https://github.com/Qwlouse/shapeguard
|
|
63
|
-
|
|
64
|
-
Platform: UNKNOWN
|
|
65
|
-
Classifier: License :: OSI Approved :: Apache Software License
|
|
66
|
-
Classifier: Intended Audience :: Developers
|
|
67
|
-
Classifier: Intended Audience :: Science/Research
|
|
68
|
-
Classifier: Operating System :: OS Independent
|
|
69
|
-
Classifier: Programming Language :: Python
|
|
70
|
-
Classifier: Programming Language :: Python :: 3
|
|
71
|
-
Classifier: Programming Language :: Python :: 3.6
|
|
72
|
-
Classifier: Programming Language :: Python :: 3.7
|
|
73
|
-
Classifier: Programming Language :: Python :: 3.8
|
|
74
|
-
Classifier: Programming Language :: Python :: Implementation :: CPython
|
|
75
|
-
Requires-Python: >=3.6.0
|
|
76
|
-
Description-Content-Type: text/markdown
|
|
@@ -1,11 +0,0 @@
|
|
|
1
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
2
|
-
# you may not use this file except in compliance with the License.
|
|
3
|
-
# You may obtain a copy of the License at
|
|
4
|
-
#
|
|
5
|
-
# https://www.apache.org/licenses/LICENSE-2.0
|
|
6
|
-
#
|
|
7
|
-
# Unless required by applicable law or agreed to in writing, software
|
|
8
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
9
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
10
|
-
# See the License for the specific language governing permissions and
|
|
11
|
-
# limitations under the License.
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|