tensorcircuit-nightly 1.3.0.dev20250814__tar.gz → 1.4.0.dev20260114__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/CHANGELOG.md +28 -0
- {tensorcircuit_nightly-1.3.0.dev20250814/tensorcircuit_nightly.egg-info → tensorcircuit_nightly-1.4.0.dev20260114}/PKG-INFO +54 -13
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/README.md +53 -12
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/README_cn.md +2 -2
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/__init__.py +4 -1
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/abstractcircuit.py +4 -0
- tensorcircuit_nightly-1.4.0.dev20260114/tensorcircuit/analogcircuit.py +413 -0
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/applications/layers.py +1 -1
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/backends/abstract_backend.py +217 -2
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/backends/cupy_backend.py +3 -1
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/backends/jax_backend.py +69 -2
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/backends/numpy_backend.py +37 -1
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/backends/pytorch_backend.py +91 -2
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/backends/tensorflow_backend.py +49 -0
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/basecircuit.py +107 -71
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/circuit.py +67 -57
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/cons.py +1 -0
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/densitymatrix.py +15 -10
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/experimental.py +448 -66
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/gates.py +66 -22
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/interfaces/tensortrans.py +6 -2
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/interfaces/torch.py +14 -4
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/mpscircuit.py +89 -59
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/quantum.py +282 -113
- tensorcircuit_nightly-1.4.0.dev20260114/tensorcircuit/quditcircuit.py +733 -0
- tensorcircuit_nightly-1.4.0.dev20260114/tensorcircuit/quditgates.py +618 -0
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/results/counts.py +45 -31
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/shadows.py +1 -1
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/simplify.py +3 -1
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/templates/hamiltonians.py +29 -8
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/templates/lattice.py +624 -335
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/timeevol.py +166 -81
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114/tensorcircuit_nightly.egg-info}/PKG-INFO +54 -13
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit_nightly.egg-info/SOURCES.txt +3 -0
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/HISTORY.md +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/LICENSE +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/MANIFEST.in +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/pyproject.toml +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/setup.cfg +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/setup.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/about.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/applications/__init__.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/applications/ai/__init__.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/applications/ai/ensemble.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/applications/dqas.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/applications/finance/__init__.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/applications/finance/portfolio.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/applications/graphdata.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/applications/optimization.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/applications/physics/__init__.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/applications/physics/baseline.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/applications/physics/fss.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/applications/utils.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/applications/vags.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/applications/van.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/applications/vqes.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/asciiart.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/backends/__init__.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/backends/backend_factory.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/backends/jax_ops.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/backends/pytorch_ops.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/backends/tf_ops.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/channels.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/cloud/__init__.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/cloud/abstraction.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/cloud/apis.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/cloud/config.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/cloud/local.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/cloud/quafu_provider.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/cloud/tencent.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/cloud/utils.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/cloud/wrapper.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/compiler/__init__.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/compiler/composed_compiler.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/compiler/qiskit_compiler.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/compiler/simple_compiler.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/fgs.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/interfaces/__init__.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/interfaces/jax.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/interfaces/numpy.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/interfaces/scipy.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/interfaces/tensorflow.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/keras.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/mps_base.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/noisemodel.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/results/__init__.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/results/qem/__init__.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/results/qem/benchmark_circuits.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/results/qem/qem_methods.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/results/readout_mitigation.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/stabilizercircuit.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/templates/__init__.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/templates/ansatz.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/templates/blocks.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/templates/chems.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/templates/conversions.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/templates/dataset.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/templates/graphs.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/templates/measurements.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/torchnn.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/translation.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/utils.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit/vis.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit_nightly.egg-info/dependency_links.txt +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit_nightly.egg-info/requires.txt +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/tensorcircuit_nightly.egg-info/top_level.txt +0 -0
{tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/CHANGELOG.md
RENAMED
|
@@ -4,8 +4,30 @@
|
|
|
4
4
|
|
|
5
5
|
### Added
|
|
6
6
|
|
|
7
|
+
- Add `tc.AnalogCircuit` for digital-analog hybrid simulation.
|
|
8
|
+
|
|
9
|
+
- Add sparse matrix related methods for pytorch backend.
|
|
10
|
+
|
|
11
|
+
- Add exp and expm for torch backend.
|
|
12
|
+
|
|
13
|
+
- Add `su4` as a generic parameterized two-qubit gates.
|
|
14
|
+
|
|
15
|
+
- Add multi controller jax support for distrubuted contraction.
|
|
16
|
+
|
|
17
|
+
### Fixed
|
|
18
|
+
|
|
19
|
+
- Fix the breaking logic change in jax from dlpack API, dlcapsule -> tensor.
|
|
20
|
+
|
|
21
|
+
- Better torch interface for dlpack translation.
|
|
22
|
+
|
|
23
|
+
## v1.4.0
|
|
24
|
+
|
|
25
|
+
### Added
|
|
26
|
+
|
|
7
27
|
- Add new module `tc.timeevol` for different types of time evolution solvers.
|
|
8
28
|
|
|
29
|
+
- Add qudit circuit support with `tc.QuditCircuit` class.
|
|
30
|
+
|
|
9
31
|
- Add `special_jv` for numpy and jax backends.
|
|
10
32
|
|
|
11
33
|
- Add `jaxy_scan` for numpy and jax backends, contrasting to the tf style original backend scan method.
|
|
@@ -24,6 +46,10 @@
|
|
|
24
46
|
|
|
25
47
|
- Add transformation method between tensornetwork, quimb, tenpy and QuOperator in tc-ng including `qop2tenpy`, `qop2quimb`, `qop2tn`, `tenpy2qop`, support both MPS and MPO formats.
|
|
26
48
|
|
|
49
|
+
- Make the lattice module backend agnostic, now the lattice follows `tc.set_backend`.
|
|
50
|
+
|
|
51
|
+
- Add diffrax backend for ode solver in timeevol module.
|
|
52
|
+
|
|
27
53
|
### Fixed
|
|
28
54
|
|
|
29
55
|
- Fixed `one_hot` in numpy backend.
|
|
@@ -36,6 +62,8 @@
|
|
|
36
62
|
|
|
37
63
|
- Fix to use `status` for `circuit.sample` when `allow_state=True`.
|
|
38
64
|
|
|
65
|
+
- Fix sample bug when number of qubit exceeding 32.
|
|
66
|
+
|
|
39
67
|
### Changed
|
|
40
68
|
|
|
41
69
|
- The order of arguments of `tc.timeevol.ed_evol` are changed for consistent interface with other evolution methods.
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: tensorcircuit-nightly
|
|
3
|
-
Version: 1.
|
|
3
|
+
Version: 1.4.0.dev20260114
|
|
4
4
|
Summary: High performance unified quantum computing framework for the NISQ era
|
|
5
5
|
Author-email: TensorCircuit Authors <znfesnpbh@gmail.com>
|
|
6
6
|
License-Expression: Apache-2.0
|
|
@@ -62,15 +62,15 @@ Dynamic: license-file
|
|
|
62
62
|
|
|
63
63
|
TensorCircuit-NG is the next-generation open-source high-performance quantum software framework, built upon tensornetwork engines, supporting for automatic differentiation, just-in-time compiling, hardware acceleration, vectorized parallelism and distributed training, providing unified infrastructures and interfaces for quantum programming. It can compose quantum circuits, neural networks and tensor networks seamlessly with high simulation efficiency and flexibility.
|
|
64
64
|
|
|
65
|
-
TensorCircuit-NG is built on top of modern machine learning frameworks: Jax, TensorFlow, and PyTorch. It is specifically suitable for large-scale simulations of quantum-classical hybrid paradigm and variational quantum algorithms in ideal, noisy, Clifford, approximate, analog and fermionic cases. It also supports quantum hardware access and provides CPU/GPU/QPU hybrid deployment solutions.
|
|
65
|
+
TensorCircuit-NG is built on top of modern machine learning frameworks: Jax, TensorFlow, and PyTorch. It is specifically suitable for large-scale simulations of quantum-classical hybrid paradigm and variational quantum algorithms in ideal (`Circuit`), noisy (`DMCircuit`), Clifford (`StabilizerCircuit`), qudit (`QuditCircuit`), approximate (`MPSCircuit`), analog (`AnalogCircuit`), and fermionic (`FGSCircuit`) cases. It also supports quantum hardware access and provides CPU/GPU/QPU hybrid deployment solutions.
|
|
66
66
|
|
|
67
|
-
TensorCircuit-NG is the actively maintained official version and a [fully compatible](https://tensorcircuit-ng.readthedocs.io/en/latest/faq.html#what-is-the-relation-between-tensorcircuit-and-tensorcircuit-ng) successor to TensorCircuit with more new features (stabilizer circuit, multi-
|
|
67
|
+
TensorCircuit-NG is the only actively maintained official version and a [fully compatible](https://tensorcircuit-ng.readthedocs.io/en/latest/faq.html#what-is-the-relation-between-tensorcircuit-and-tensorcircuit-ng) successor to TensorCircuit with more new features (stabilizer circuit, qudit circuit, analog circuit, multi-GPU distributed simulation, etc.) and bug fixes (support latest `numpy>2` and `qiskit>1`).
|
|
68
68
|
|
|
69
69
|
## Getting Started
|
|
70
70
|
|
|
71
71
|
Please begin with [Quick Start](/docs/source/quickstart.rst) in the [full documentation](https://tensorcircuit-ng.readthedocs.io/).
|
|
72
72
|
|
|
73
|
-
For more information on software usage, sota algorithm implementation and engineer paradigm demonstration, please refer to
|
|
73
|
+
For more information on software usage, sota algorithm implementation and engineer paradigm demonstration, please refer to 100+ [example scripts](/examples) and 40+ [tutorial notebooks](https://tensorcircuit-ng.readthedocs.io/en/latest/#tutorials). API docstrings and test cases in [tests](/tests) are also informative. One can also refer to AI-native docs for tensorcircuit-ng: [Devin Deepwiki](https://deepwiki.com/tensorcircuit/tensorcircuit-ng) and [Context7 MCP](https://context7.com/tensorcircuit/tensorcircuit-ng).
|
|
74
74
|
|
|
75
75
|
For beginners, please refer to [quantum computing lectures with TC-NG](https://github.com/sxzgroup/qc_lecture) to learn both quantum computing basics and representative usage of TensorCircuit-NG.
|
|
76
76
|
|
|
@@ -225,7 +225,7 @@ We also have [Docker support](/docker).
|
|
|
225
225
|
|
|
226
226
|
- Support **Fermion Gaussian state** simulation with expectation, entanglement, measurement, ground state, real and imaginary time evolution.
|
|
227
227
|
|
|
228
|
-
- Support **qudits simulation
|
|
228
|
+
- Support **qudits simulation** for tensor network and MPS approximation modes.
|
|
229
229
|
|
|
230
230
|
- Support **parallel** quantum circuit evaluation across **multiple GPUs**.
|
|
231
231
|
|
|
@@ -247,6 +247,8 @@ We also have [Docker support](/docker).
|
|
|
247
247
|
|
|
248
248
|
- **Machine learning interface/layer/model** abstraction in both TensorFlow, PyTorch and Jax for both numerical simulation and real QPU experiments.
|
|
249
249
|
|
|
250
|
+
- Support time evolution simulation with **exact, ODE, Krylov, Trotter, Chebyshev solvers**.
|
|
251
|
+
|
|
250
252
|
- Circuit sampling supports both final state sampling and perfect sampling from tensor networks.
|
|
251
253
|
|
|
252
254
|
- Light cone reduction support for local expectation calculation.
|
|
@@ -281,7 +283,7 @@ If this project helps in your research, please cite our software whitepaper to a
|
|
|
281
283
|
|
|
282
284
|
which is also a good introduction to the software.
|
|
283
285
|
|
|
284
|
-
Research works citing TensorCircuit can be highlighted in [Research and Applications section](https://github.com/tensorcircuit/tensorcircuit-ng#research-and-applications).
|
|
286
|
+
Research works citing TensorCircuit-NG can be highlighted in [Research and Applications section](https://github.com/tensorcircuit/tensorcircuit-ng#research-and-applications).
|
|
285
287
|
|
|
286
288
|
### Guidelines
|
|
287
289
|
|
|
@@ -341,8 +343,11 @@ TensorCircuit-NG is open source, released under the Apache License, Version 2.0.
|
|
|
341
343
|
<td align="center" valign="top" width="16.66%"><a href="https://adeshpande.gitlab.io"><img src="https://avatars.githubusercontent.com/u/6169877?v=4?s=100" width="100px;" alt="Abhinav Deshpande"/><br /><sub><b>Abhinav Deshpande</b></sub></a><br /><a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=abhinavd" title="Code">💻</a></td>
|
|
342
344
|
</tr>
|
|
343
345
|
<tr>
|
|
344
|
-
<td align="center" valign="top" width="16.66%"><a href="https://github.com/Stellogic"><img src="https://avatars.githubusercontent.com/u/186928579?v=4?s=100" width="100px;" alt="Stellogic"/><br /><sub><b>Stellogic</b></sub></a><br /><a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=Stellogic" title="Code">💻</a> <a href="#example-Stellogic" title="Examples">💡</a> <a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=Stellogic" title="Tests">⚠️</a></td>
|
|
346
|
+
<td align="center" valign="top" width="16.66%"><a href="https://github.com/Stellogic"><img src="https://avatars.githubusercontent.com/u/186928579?v=4?s=100" width="100px;" alt="Stellogic"/><br /><sub><b>Stellogic</b></sub></a><br /><a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=Stellogic" title="Code">💻</a> <a href="#example-Stellogic" title="Examples">💡</a> <a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=Stellogic" title="Tests">⚠️</a> <a href="#tutorial-Stellogic" title="Tutorials">✅</a></td>
|
|
345
347
|
<td align="center" valign="top" width="16.66%"><a href="https://github.com/Charlespkuer"><img src="https://avatars.githubusercontent.com/u/112697147?v=4?s=100" width="100px;" alt="Huang"/><br /><sub><b>Huang</b></sub></a><br /><a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=Charlespkuer" title="Code">💻</a> <a href="#example-Charlespkuer" title="Examples">💡</a> <a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=Charlespkuer" title="Tests">⚠️</a></td>
|
|
348
|
+
<td align="center" valign="top" width="16.66%"><a href="https://github.com/Huang-Xu-Yang"><img src="https://avatars.githubusercontent.com/u/227286661?v=4?s=100" width="100px;" alt="Huang-Xu-Yang"/><br /><sub><b>Huang-Xu-Yang</b></sub></a><br /><a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=Huang-Xu-Yang" title="Code">💻</a> <a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=Huang-Xu-Yang" title="Tests">⚠️</a></td>
|
|
349
|
+
<td align="center" valign="top" width="16.66%"><a href="https://github.com/WeiguoMa"><img src="https://avatars.githubusercontent.com/u/108172530?v=4?s=100" width="100px;" alt="Weiguo_M"/><br /><sub><b>Weiguo_M</b></sub></a><br /><a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=WeiguoMa" title="Code">💻</a> <a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=WeiguoMa" title="Tests">⚠️</a> <a href="#example-WeiguoMa" title="Examples">💡</a> <a href="#tutorial-WeiguoMa" title="Tutorials">✅</a></td>
|
|
350
|
+
<td align="center" valign="top" width="16.66%"><a href="https://github.com/QuiXamii"><img src="https://avatars.githubusercontent.com/u/136054857?v=4?s=100" width="100px;" alt="Qixiang WANG"/><br /><sub><b>Qixiang WANG</b></sub></a><br /><a href="#example-QuiXamii" title="Examples">💡</a></td>
|
|
346
351
|
</tr>
|
|
347
352
|
</tbody>
|
|
348
353
|
</table>
|
|
@@ -361,7 +366,7 @@ TensorCircuit-NG is open source, released under the Apache License, Version 2.0.
|
|
|
361
366
|
|
|
362
367
|
## Research and Applications
|
|
363
368
|
|
|
364
|
-
TensorCircuit-NG is a powerful framework for driving research and applications in quantum computing. Below are examples of published academic works and open-source projects that utilize TensorCircuit-NG.
|
|
369
|
+
TensorCircuit-NG is a powerful framework for driving research and applications in quantum computing. Below are examples of published academic works (100+ in total) and open-source projects that utilize TensorCircuit-NG.
|
|
365
370
|
|
|
366
371
|
### DQAS
|
|
367
372
|
|
|
@@ -411,6 +416,12 @@ For the setup and simulation code of neural network encoded variational quantum
|
|
|
411
416
|
|
|
412
417
|
Reference paper: https://arxiv.org/abs/2308.01068 (published in PRApplied).
|
|
413
418
|
|
|
419
|
+
### FLDC
|
|
420
|
+
|
|
421
|
+
Absence of barren plateaus in finite local-depth circuits with long-range entanglement, see the [demo](/examples/vqe_toric_code.py).
|
|
422
|
+
|
|
423
|
+
Reference paper: https://arxiv.org/abs/2311.01393 (published in PRL).
|
|
424
|
+
|
|
414
425
|
### Effective temperature in ansatzes
|
|
415
426
|
|
|
416
427
|
For the simulation implementation of quantum states based on neural networks, tensor networs and quantum circuits using TensorCircuit-NG, see the [project repo](https://github.com/sxzgroup/et).
|
|
@@ -423,6 +434,24 @@ For the simulation code and data for variational optimization of simutaneous exc
|
|
|
423
434
|
|
|
424
435
|
Reference paper: https://arxiv.org/abs/2504.21459.
|
|
425
436
|
|
|
437
|
+
### Quantum Machine Unlearning
|
|
438
|
+
|
|
439
|
+
For the simulation code for the work "superior resilience to poisoning and amenability to unlearning in quantum machine learning", see the [project repo](https://github.com/yutuer21/quantum-machine-unlearning).
|
|
440
|
+
|
|
441
|
+
Reference paper: https://arxiv.org/abs/2508.02422.
|
|
442
|
+
|
|
443
|
+
### Low Weight Pauli Propagation Simulation
|
|
444
|
+
|
|
445
|
+
For the simulation code and data for the work on low weight Pauli propagation in the context of variational quantum algorithms, see the [project repo](https://github.com/ZongliangLi/lwpp_init).
|
|
446
|
+
|
|
447
|
+
Reference paper: https://arxiv.org/abs/2508.06358.
|
|
448
|
+
|
|
449
|
+
### Quantum Continual Learning
|
|
450
|
+
|
|
451
|
+
For the code implementation on the work of demonstrating plasticity in quantum continual learning, see the [project repo](https://github.com/sxzgroup/quantum-plasticity).
|
|
452
|
+
|
|
453
|
+
Reference paper: https://arxiv.org/abs/2511.17228.
|
|
454
|
+
|
|
426
455
|
### More works
|
|
427
456
|
|
|
428
457
|
<details>
|
|
@@ -462,26 +491,38 @@ Reference paper: https://arxiv.org/abs/2504.21459.
|
|
|
462
491
|
|
|
463
492
|
- Universal imaginary-time critical dynamics on a quantum computer: https://arxiv.org/abs/2308.05408 (published in PRB).
|
|
464
493
|
|
|
465
|
-
- Absence of barren plateaus in finite local-depth circuits with long-range entanglement: https://arxiv.org/abs/2311.01393 (published in PRL).
|
|
466
|
-
|
|
467
494
|
- Non-Markovianity benefits quantum dynamics simulation: https://arxiv.org/abs/2311.17622.
|
|
468
495
|
|
|
469
496
|
- Variational post-selection for ground states and thermal states simulation: https://arxiv.org/abs/2402.07605 (published in QST).
|
|
470
497
|
|
|
471
|
-
- Subsystem information capacity in random circuits and Hamiltonian dynamics: https://arxiv.org/abs/2405.05076. Code implementation: https://github.com/sxzgroup/subsystem_information_capacity.
|
|
498
|
+
- Subsystem information capacity in random circuits and Hamiltonian dynamics: https://arxiv.org/abs/2405.05076 (published in Quantum). Code implementation: https://github.com/sxzgroup/subsystem_information_capacity.
|
|
472
499
|
|
|
473
500
|
- Symmetry restoration and quantum Mpemba effect in symmetric random circuits: https://arxiv.org/abs/2403.08459 (published in PRL).
|
|
474
501
|
|
|
475
502
|
- Quantum Mpemba effects in many-body localization systems: https://arxiv.org/abs/2408.07750.
|
|
476
503
|
|
|
477
|
-
- Supersymmetry dynamics on Rydberg atom arrays: https://arxiv.org/abs/2410.21386.
|
|
504
|
+
- Supersymmetry dynamics on Rydberg atom arrays: https://arxiv.org/abs/2410.21386 (published in PRB).
|
|
478
505
|
|
|
479
506
|
- Dynamic parameterized quantum circuits: expressive and barren-plateau free: https://arxiv.org/abs/2411.05760.
|
|
480
507
|
|
|
481
|
-
- Holographic deep thermalization: https://arxiv.org/abs/2411.03587.
|
|
508
|
+
- Holographic deep thermalization: https://arxiv.org/abs/2411.03587 (published in Nature Communications).
|
|
482
509
|
|
|
483
510
|
- Quantum deep generative prior with programmable quantum circuits: https://www.nature.com/articles/s42005-024-01765-9 (published in Communications Physics).
|
|
484
511
|
|
|
512
|
+
- Symmetry Breaking Dynamics in Quantum Many-Body Systems: https://arxiv.org/abs/2501.13459.
|
|
513
|
+
|
|
514
|
+
- Entanglement growth and information capacity in a quasiperiodic system with a single-particle mobility edge: https://arxiv.org/abs/2506.18076.
|
|
515
|
+
|
|
516
|
+
- Hilbert subspace imprint: a new mechanism for non-thermalization: https://arxiv.org/abs/2506.11922.
|
|
517
|
+
|
|
518
|
+
- A Neural-Guided Variational Quantum Algorithm for Efficient Sign Structure Learning in Hybrid Architectures: https://arxiv.org/abs/2507.07555.
|
|
519
|
+
|
|
520
|
+
- Quantum Pontus-Mpemba Effects in Real and Imaginary-time Dynamics: https://arxiv.org/abs/2509.01960.
|
|
521
|
+
|
|
522
|
+
- Quantum Mpemba effect in long-ranged U(1)-symmetric random circuits: https://arxiv.org/abs/2512.06775.
|
|
523
|
+
|
|
524
|
+
- A Qudit-native Framework for Discrete Time Crystals: https://arxiv.org/abs/2512.04577.
|
|
525
|
+
|
|
485
526
|
</details>
|
|
486
527
|
|
|
487
528
|
If you want to highlight your research work or projects here, feel free to add by opening PR.
|
{tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/README.md
RENAMED
|
@@ -27,15 +27,15 @@
|
|
|
27
27
|
|
|
28
28
|
TensorCircuit-NG is the next-generation open-source high-performance quantum software framework, built upon tensornetwork engines, supporting for automatic differentiation, just-in-time compiling, hardware acceleration, vectorized parallelism and distributed training, providing unified infrastructures and interfaces for quantum programming. It can compose quantum circuits, neural networks and tensor networks seamlessly with high simulation efficiency and flexibility.
|
|
29
29
|
|
|
30
|
-
TensorCircuit-NG is built on top of modern machine learning frameworks: Jax, TensorFlow, and PyTorch. It is specifically suitable for large-scale simulations of quantum-classical hybrid paradigm and variational quantum algorithms in ideal, noisy, Clifford, approximate, analog and fermionic cases. It also supports quantum hardware access and provides CPU/GPU/QPU hybrid deployment solutions.
|
|
30
|
+
TensorCircuit-NG is built on top of modern machine learning frameworks: Jax, TensorFlow, and PyTorch. It is specifically suitable for large-scale simulations of quantum-classical hybrid paradigm and variational quantum algorithms in ideal (`Circuit`), noisy (`DMCircuit`), Clifford (`StabilizerCircuit`), qudit (`QuditCircuit`), approximate (`MPSCircuit`), analog (`AnalogCircuit`), and fermionic (`FGSCircuit`) cases. It also supports quantum hardware access and provides CPU/GPU/QPU hybrid deployment solutions.
|
|
31
31
|
|
|
32
|
-
TensorCircuit-NG is the actively maintained official version and a [fully compatible](https://tensorcircuit-ng.readthedocs.io/en/latest/faq.html#what-is-the-relation-between-tensorcircuit-and-tensorcircuit-ng) successor to TensorCircuit with more new features (stabilizer circuit, multi-
|
|
32
|
+
TensorCircuit-NG is the only actively maintained official version and a [fully compatible](https://tensorcircuit-ng.readthedocs.io/en/latest/faq.html#what-is-the-relation-between-tensorcircuit-and-tensorcircuit-ng) successor to TensorCircuit with more new features (stabilizer circuit, qudit circuit, analog circuit, multi-GPU distributed simulation, etc.) and bug fixes (support latest `numpy>2` and `qiskit>1`).
|
|
33
33
|
|
|
34
34
|
## Getting Started
|
|
35
35
|
|
|
36
36
|
Please begin with [Quick Start](/docs/source/quickstart.rst) in the [full documentation](https://tensorcircuit-ng.readthedocs.io/).
|
|
37
37
|
|
|
38
|
-
For more information on software usage, sota algorithm implementation and engineer paradigm demonstration, please refer to
|
|
38
|
+
For more information on software usage, sota algorithm implementation and engineer paradigm demonstration, please refer to 100+ [example scripts](/examples) and 40+ [tutorial notebooks](https://tensorcircuit-ng.readthedocs.io/en/latest/#tutorials). API docstrings and test cases in [tests](/tests) are also informative. One can also refer to AI-native docs for tensorcircuit-ng: [Devin Deepwiki](https://deepwiki.com/tensorcircuit/tensorcircuit-ng) and [Context7 MCP](https://context7.com/tensorcircuit/tensorcircuit-ng).
|
|
39
39
|
|
|
40
40
|
For beginners, please refer to [quantum computing lectures with TC-NG](https://github.com/sxzgroup/qc_lecture) to learn both quantum computing basics and representative usage of TensorCircuit-NG.
|
|
41
41
|
|
|
@@ -190,7 +190,7 @@ We also have [Docker support](/docker).
|
|
|
190
190
|
|
|
191
191
|
- Support **Fermion Gaussian state** simulation with expectation, entanglement, measurement, ground state, real and imaginary time evolution.
|
|
192
192
|
|
|
193
|
-
- Support **qudits simulation
|
|
193
|
+
- Support **qudits simulation** for tensor network and MPS approximation modes.
|
|
194
194
|
|
|
195
195
|
- Support **parallel** quantum circuit evaluation across **multiple GPUs**.
|
|
196
196
|
|
|
@@ -212,6 +212,8 @@ We also have [Docker support](/docker).
|
|
|
212
212
|
|
|
213
213
|
- **Machine learning interface/layer/model** abstraction in both TensorFlow, PyTorch and Jax for both numerical simulation and real QPU experiments.
|
|
214
214
|
|
|
215
|
+
- Support time evolution simulation with **exact, ODE, Krylov, Trotter, Chebyshev solvers**.
|
|
216
|
+
|
|
215
217
|
- Circuit sampling supports both final state sampling and perfect sampling from tensor networks.
|
|
216
218
|
|
|
217
219
|
- Light cone reduction support for local expectation calculation.
|
|
@@ -246,7 +248,7 @@ If this project helps in your research, please cite our software whitepaper to a
|
|
|
246
248
|
|
|
247
249
|
which is also a good introduction to the software.
|
|
248
250
|
|
|
249
|
-
Research works citing TensorCircuit can be highlighted in [Research and Applications section](https://github.com/tensorcircuit/tensorcircuit-ng#research-and-applications).
|
|
251
|
+
Research works citing TensorCircuit-NG can be highlighted in [Research and Applications section](https://github.com/tensorcircuit/tensorcircuit-ng#research-and-applications).
|
|
250
252
|
|
|
251
253
|
### Guidelines
|
|
252
254
|
|
|
@@ -306,8 +308,11 @@ TensorCircuit-NG is open source, released under the Apache License, Version 2.0.
|
|
|
306
308
|
<td align="center" valign="top" width="16.66%"><a href="https://adeshpande.gitlab.io"><img src="https://avatars.githubusercontent.com/u/6169877?v=4?s=100" width="100px;" alt="Abhinav Deshpande"/><br /><sub><b>Abhinav Deshpande</b></sub></a><br /><a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=abhinavd" title="Code">💻</a></td>
|
|
307
309
|
</tr>
|
|
308
310
|
<tr>
|
|
309
|
-
<td align="center" valign="top" width="16.66%"><a href="https://github.com/Stellogic"><img src="https://avatars.githubusercontent.com/u/186928579?v=4?s=100" width="100px;" alt="Stellogic"/><br /><sub><b>Stellogic</b></sub></a><br /><a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=Stellogic" title="Code">💻</a> <a href="#example-Stellogic" title="Examples">💡</a> <a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=Stellogic" title="Tests">⚠️</a></td>
|
|
311
|
+
<td align="center" valign="top" width="16.66%"><a href="https://github.com/Stellogic"><img src="https://avatars.githubusercontent.com/u/186928579?v=4?s=100" width="100px;" alt="Stellogic"/><br /><sub><b>Stellogic</b></sub></a><br /><a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=Stellogic" title="Code">💻</a> <a href="#example-Stellogic" title="Examples">💡</a> <a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=Stellogic" title="Tests">⚠️</a> <a href="#tutorial-Stellogic" title="Tutorials">✅</a></td>
|
|
310
312
|
<td align="center" valign="top" width="16.66%"><a href="https://github.com/Charlespkuer"><img src="https://avatars.githubusercontent.com/u/112697147?v=4?s=100" width="100px;" alt="Huang"/><br /><sub><b>Huang</b></sub></a><br /><a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=Charlespkuer" title="Code">💻</a> <a href="#example-Charlespkuer" title="Examples">💡</a> <a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=Charlespkuer" title="Tests">⚠️</a></td>
|
|
313
|
+
<td align="center" valign="top" width="16.66%"><a href="https://github.com/Huang-Xu-Yang"><img src="https://avatars.githubusercontent.com/u/227286661?v=4?s=100" width="100px;" alt="Huang-Xu-Yang"/><br /><sub><b>Huang-Xu-Yang</b></sub></a><br /><a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=Huang-Xu-Yang" title="Code">💻</a> <a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=Huang-Xu-Yang" title="Tests">⚠️</a></td>
|
|
314
|
+
<td align="center" valign="top" width="16.66%"><a href="https://github.com/WeiguoMa"><img src="https://avatars.githubusercontent.com/u/108172530?v=4?s=100" width="100px;" alt="Weiguo_M"/><br /><sub><b>Weiguo_M</b></sub></a><br /><a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=WeiguoMa" title="Code">💻</a> <a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=WeiguoMa" title="Tests">⚠️</a> <a href="#example-WeiguoMa" title="Examples">💡</a> <a href="#tutorial-WeiguoMa" title="Tutorials">✅</a></td>
|
|
315
|
+
<td align="center" valign="top" width="16.66%"><a href="https://github.com/QuiXamii"><img src="https://avatars.githubusercontent.com/u/136054857?v=4?s=100" width="100px;" alt="Qixiang WANG"/><br /><sub><b>Qixiang WANG</b></sub></a><br /><a href="#example-QuiXamii" title="Examples">💡</a></td>
|
|
311
316
|
</tr>
|
|
312
317
|
</tbody>
|
|
313
318
|
</table>
|
|
@@ -326,7 +331,7 @@ TensorCircuit-NG is open source, released under the Apache License, Version 2.0.
|
|
|
326
331
|
|
|
327
332
|
## Research and Applications
|
|
328
333
|
|
|
329
|
-
TensorCircuit-NG is a powerful framework for driving research and applications in quantum computing. Below are examples of published academic works and open-source projects that utilize TensorCircuit-NG.
|
|
334
|
+
TensorCircuit-NG is a powerful framework for driving research and applications in quantum computing. Below are examples of published academic works (100+ in total) and open-source projects that utilize TensorCircuit-NG.
|
|
330
335
|
|
|
331
336
|
### DQAS
|
|
332
337
|
|
|
@@ -376,6 +381,12 @@ For the setup and simulation code of neural network encoded variational quantum
|
|
|
376
381
|
|
|
377
382
|
Reference paper: https://arxiv.org/abs/2308.01068 (published in PRApplied).
|
|
378
383
|
|
|
384
|
+
### FLDC
|
|
385
|
+
|
|
386
|
+
Absence of barren plateaus in finite local-depth circuits with long-range entanglement, see the [demo](/examples/vqe_toric_code.py).
|
|
387
|
+
|
|
388
|
+
Reference paper: https://arxiv.org/abs/2311.01393 (published in PRL).
|
|
389
|
+
|
|
379
390
|
### Effective temperature in ansatzes
|
|
380
391
|
|
|
381
392
|
For the simulation implementation of quantum states based on neural networks, tensor networs and quantum circuits using TensorCircuit-NG, see the [project repo](https://github.com/sxzgroup/et).
|
|
@@ -388,6 +399,24 @@ For the simulation code and data for variational optimization of simutaneous exc
|
|
|
388
399
|
|
|
389
400
|
Reference paper: https://arxiv.org/abs/2504.21459.
|
|
390
401
|
|
|
402
|
+
### Quantum Machine Unlearning
|
|
403
|
+
|
|
404
|
+
For the simulation code for the work "superior resilience to poisoning and amenability to unlearning in quantum machine learning", see the [project repo](https://github.com/yutuer21/quantum-machine-unlearning).
|
|
405
|
+
|
|
406
|
+
Reference paper: https://arxiv.org/abs/2508.02422.
|
|
407
|
+
|
|
408
|
+
### Low Weight Pauli Propagation Simulation
|
|
409
|
+
|
|
410
|
+
For the simulation code and data for the work on low weight Pauli propagation in the context of variational quantum algorithms, see the [project repo](https://github.com/ZongliangLi/lwpp_init).
|
|
411
|
+
|
|
412
|
+
Reference paper: https://arxiv.org/abs/2508.06358.
|
|
413
|
+
|
|
414
|
+
### Quantum Continual Learning
|
|
415
|
+
|
|
416
|
+
For the code implementation on the work of demonstrating plasticity in quantum continual learning, see the [project repo](https://github.com/sxzgroup/quantum-plasticity).
|
|
417
|
+
|
|
418
|
+
Reference paper: https://arxiv.org/abs/2511.17228.
|
|
419
|
+
|
|
391
420
|
### More works
|
|
392
421
|
|
|
393
422
|
<details>
|
|
@@ -427,26 +456,38 @@ Reference paper: https://arxiv.org/abs/2504.21459.
|
|
|
427
456
|
|
|
428
457
|
- Universal imaginary-time critical dynamics on a quantum computer: https://arxiv.org/abs/2308.05408 (published in PRB).
|
|
429
458
|
|
|
430
|
-
- Absence of barren plateaus in finite local-depth circuits with long-range entanglement: https://arxiv.org/abs/2311.01393 (published in PRL).
|
|
431
|
-
|
|
432
459
|
- Non-Markovianity benefits quantum dynamics simulation: https://arxiv.org/abs/2311.17622.
|
|
433
460
|
|
|
434
461
|
- Variational post-selection for ground states and thermal states simulation: https://arxiv.org/abs/2402.07605 (published in QST).
|
|
435
462
|
|
|
436
|
-
- Subsystem information capacity in random circuits and Hamiltonian dynamics: https://arxiv.org/abs/2405.05076. Code implementation: https://github.com/sxzgroup/subsystem_information_capacity.
|
|
463
|
+
- Subsystem information capacity in random circuits and Hamiltonian dynamics: https://arxiv.org/abs/2405.05076 (published in Quantum). Code implementation: https://github.com/sxzgroup/subsystem_information_capacity.
|
|
437
464
|
|
|
438
465
|
- Symmetry restoration and quantum Mpemba effect in symmetric random circuits: https://arxiv.org/abs/2403.08459 (published in PRL).
|
|
439
466
|
|
|
440
467
|
- Quantum Mpemba effects in many-body localization systems: https://arxiv.org/abs/2408.07750.
|
|
441
468
|
|
|
442
|
-
- Supersymmetry dynamics on Rydberg atom arrays: https://arxiv.org/abs/2410.21386.
|
|
469
|
+
- Supersymmetry dynamics on Rydberg atom arrays: https://arxiv.org/abs/2410.21386 (published in PRB).
|
|
443
470
|
|
|
444
471
|
- Dynamic parameterized quantum circuits: expressive and barren-plateau free: https://arxiv.org/abs/2411.05760.
|
|
445
472
|
|
|
446
|
-
- Holographic deep thermalization: https://arxiv.org/abs/2411.03587.
|
|
473
|
+
- Holographic deep thermalization: https://arxiv.org/abs/2411.03587 (published in Nature Communications).
|
|
447
474
|
|
|
448
475
|
- Quantum deep generative prior with programmable quantum circuits: https://www.nature.com/articles/s42005-024-01765-9 (published in Communications Physics).
|
|
449
476
|
|
|
477
|
+
- Symmetry Breaking Dynamics in Quantum Many-Body Systems: https://arxiv.org/abs/2501.13459.
|
|
478
|
+
|
|
479
|
+
- Entanglement growth and information capacity in a quasiperiodic system with a single-particle mobility edge: https://arxiv.org/abs/2506.18076.
|
|
480
|
+
|
|
481
|
+
- Hilbert subspace imprint: a new mechanism for non-thermalization: https://arxiv.org/abs/2506.11922.
|
|
482
|
+
|
|
483
|
+
- A Neural-Guided Variational Quantum Algorithm for Efficient Sign Structure Learning in Hybrid Architectures: https://arxiv.org/abs/2507.07555.
|
|
484
|
+
|
|
485
|
+
- Quantum Pontus-Mpemba Effects in Real and Imaginary-time Dynamics: https://arxiv.org/abs/2509.01960.
|
|
486
|
+
|
|
487
|
+
- Quantum Mpemba effect in long-ranged U(1)-symmetric random circuits: https://arxiv.org/abs/2512.06775.
|
|
488
|
+
|
|
489
|
+
- A Qudit-native Framework for Discrete Time Crystals: https://arxiv.org/abs/2512.04577.
|
|
490
|
+
|
|
450
491
|
</details>
|
|
451
492
|
|
|
452
493
|
If you want to highlight your research work or projects here, feel free to add by opening PR.
|
{tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20260114}/README_cn.md
RENAMED
|
@@ -21,7 +21,7 @@
|
|
|
21
21
|
|
|
22
22
|
<p align="center"> <a href="README.md">English</a> | 简体中文 </p>
|
|
23
23
|
|
|
24
|
-
TensorCircuit-NG
|
|
24
|
+
TensorCircuit-NG 是下一代量子软件框架,完美支持自动微分、即时编译、硬件加速、向量并行化和分布式训练,是量超智融合的首选平台。
|
|
25
25
|
|
|
26
26
|
TensorCircuit-NG 建立在现代机器学习框架 Jax, TensorFlow, PyTorch 之上,支持机器学习后端无关的统一界面。 其特别适用于理想情况、含噪声情况、稳定子情况、可控近似情况、连续动力学情况及费米子情况下,大规模量子经典混合范式和变分量子算法的高效模拟。其可以高效地编织和模拟量子线路、张量网络和神经网络组成的混合计算图。
|
|
27
27
|
|
|
@@ -33,7 +33,7 @@ TensorCircuit-NG 是目前积极维护的唯一官方版本,是 TensorCircuit
|
|
|
33
33
|
|
|
34
34
|
请从 [完整文档](https://tensorcircuit-ng.readthedocs.io/) 中的 [快速上手](/docs/source/quickstart.rst) 开始。
|
|
35
35
|
|
|
36
|
-
有关软件用法,算法实现和工程范式演示的更多信息和介绍,请参阅
|
|
36
|
+
有关软件用法,算法实现和工程范式演示的更多信息和介绍,请参阅 100+ [示例脚本](/examples) 和 40+ [案例教程](https://tensorcircuit-ng.readthedocs.io/en/latest/#tutorials)。 [测试](/tests) 用例和 API docstring 也提供了丰富的使用信息。
|
|
37
37
|
|
|
38
38
|
TensorCircuit-NG 也支持 AI 原生编程资源:[Devin Deepwiki](https://deepwiki.com/tensorcircuit/tensorcircuit-ng) 和 [Context7 MCP](https://context7.com/tensorcircuit/tensorcircuit-ng).
|
|
39
39
|
|
|
@@ -1,4 +1,4 @@
|
|
|
1
|
-
__version__ = "1.
|
|
1
|
+
__version__ = "1.4.0.dev20260114"
|
|
2
2
|
__author__ = "TensorCircuit Authors"
|
|
3
3
|
__creator__ = "refraction-ray"
|
|
4
4
|
|
|
@@ -23,8 +23,11 @@ from .cons import (
|
|
|
23
23
|
runtime_contractor,
|
|
24
24
|
) # prerun of set hooks
|
|
25
25
|
from . import gates
|
|
26
|
+
from . import quditgates
|
|
26
27
|
from . import basecircuit
|
|
27
28
|
from .gates import Gate
|
|
29
|
+
from .quditcircuit import QuditCircuit
|
|
30
|
+
from .analogcircuit import AnalogCircuit
|
|
28
31
|
from .circuit import Circuit, expectation
|
|
29
32
|
from .mpscircuit import MPSCircuit
|
|
30
33
|
from .densitymatrix import DMCircuit as DMCircuit_reference
|
|
@@ -53,6 +53,7 @@ vgates = [
|
|
|
53
53
|
"any",
|
|
54
54
|
"exp",
|
|
55
55
|
"exp1",
|
|
56
|
+
"su4",
|
|
56
57
|
]
|
|
57
58
|
mpogates = ["multicontrol", "mpo"]
|
|
58
59
|
gate_aliases = [
|
|
@@ -65,9 +66,12 @@ gate_aliases = [
|
|
|
65
66
|
["td", "tdg"],
|
|
66
67
|
]
|
|
67
68
|
|
|
69
|
+
defined_gates = sgates + vgates + mpogates + [alias[1] for alias in gate_aliases]
|
|
70
|
+
|
|
68
71
|
|
|
69
72
|
class AbstractCircuit:
|
|
70
73
|
_nqubits: int
|
|
74
|
+
_d: int = 2
|
|
71
75
|
_qir: List[Dict[str, Any]]
|
|
72
76
|
_extra_qir: List[Dict[str, Any]]
|
|
73
77
|
inputs: Tensor
|