tensorcircuit-nightly 1.3.0.dev20250814__tar.gz → 1.4.0.dev20251226__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (106) hide show
  1. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/CHANGELOG.md +28 -0
  2. {tensorcircuit_nightly-1.3.0.dev20250814/tensorcircuit_nightly.egg-info → tensorcircuit_nightly-1.4.0.dev20251226}/PKG-INFO +54 -13
  3. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/README.md +53 -12
  4. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/README_cn.md +2 -2
  5. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/__init__.py +4 -1
  6. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/abstractcircuit.py +4 -0
  7. tensorcircuit_nightly-1.4.0.dev20251226/tensorcircuit/analogcircuit.py +413 -0
  8. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/applications/layers.py +1 -1
  9. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/backends/abstract_backend.py +217 -2
  10. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/backends/cupy_backend.py +3 -1
  11. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/backends/jax_backend.py +69 -2
  12. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/backends/numpy_backend.py +37 -1
  13. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/backends/pytorch_backend.py +91 -2
  14. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/backends/tensorflow_backend.py +49 -0
  15. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/basecircuit.py +107 -71
  16. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/circuit.py +67 -57
  17. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/cons.py +1 -0
  18. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/densitymatrix.py +15 -10
  19. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/experimental.py +448 -66
  20. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/gates.py +66 -22
  21. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/interfaces/tensortrans.py +6 -2
  22. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/interfaces/torch.py +14 -4
  23. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/mpscircuit.py +89 -59
  24. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/quantum.py +282 -113
  25. tensorcircuit_nightly-1.4.0.dev20251226/tensorcircuit/quditcircuit.py +733 -0
  26. tensorcircuit_nightly-1.4.0.dev20251226/tensorcircuit/quditgates.py +618 -0
  27. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/results/counts.py +45 -31
  28. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/shadows.py +1 -1
  29. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/simplify.py +3 -1
  30. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/templates/hamiltonians.py +29 -8
  31. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/templates/lattice.py +624 -335
  32. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/timeevol.py +166 -81
  33. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226/tensorcircuit_nightly.egg-info}/PKG-INFO +54 -13
  34. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit_nightly.egg-info/SOURCES.txt +3 -0
  35. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/HISTORY.md +0 -0
  36. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/LICENSE +0 -0
  37. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/MANIFEST.in +0 -0
  38. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/pyproject.toml +0 -0
  39. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/setup.cfg +0 -0
  40. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/setup.py +0 -0
  41. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/about.py +0 -0
  42. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/applications/__init__.py +0 -0
  43. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/applications/ai/__init__.py +0 -0
  44. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/applications/ai/ensemble.py +0 -0
  45. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/applications/dqas.py +0 -0
  46. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/applications/finance/__init__.py +0 -0
  47. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/applications/finance/portfolio.py +0 -0
  48. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/applications/graphdata.py +0 -0
  49. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/applications/optimization.py +0 -0
  50. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/applications/physics/__init__.py +0 -0
  51. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/applications/physics/baseline.py +0 -0
  52. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/applications/physics/fss.py +0 -0
  53. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/applications/utils.py +0 -0
  54. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/applications/vags.py +0 -0
  55. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/applications/van.py +0 -0
  56. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/applications/vqes.py +0 -0
  57. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/asciiart.py +0 -0
  58. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/backends/__init__.py +0 -0
  59. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/backends/backend_factory.py +0 -0
  60. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/backends/jax_ops.py +0 -0
  61. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/backends/pytorch_ops.py +0 -0
  62. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/backends/tf_ops.py +0 -0
  63. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/channels.py +0 -0
  64. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/cloud/__init__.py +0 -0
  65. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/cloud/abstraction.py +0 -0
  66. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/cloud/apis.py +0 -0
  67. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/cloud/config.py +0 -0
  68. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/cloud/local.py +0 -0
  69. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/cloud/quafu_provider.py +0 -0
  70. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/cloud/tencent.py +0 -0
  71. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/cloud/utils.py +0 -0
  72. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/cloud/wrapper.py +0 -0
  73. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/compiler/__init__.py +0 -0
  74. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/compiler/composed_compiler.py +0 -0
  75. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/compiler/qiskit_compiler.py +0 -0
  76. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/compiler/simple_compiler.py +0 -0
  77. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/fgs.py +0 -0
  78. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/interfaces/__init__.py +0 -0
  79. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/interfaces/jax.py +0 -0
  80. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/interfaces/numpy.py +0 -0
  81. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/interfaces/scipy.py +0 -0
  82. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/interfaces/tensorflow.py +0 -0
  83. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/keras.py +0 -0
  84. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/mps_base.py +0 -0
  85. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/noisemodel.py +0 -0
  86. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/results/__init__.py +0 -0
  87. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/results/qem/__init__.py +0 -0
  88. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/results/qem/benchmark_circuits.py +0 -0
  89. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/results/qem/qem_methods.py +0 -0
  90. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/results/readout_mitigation.py +0 -0
  91. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/stabilizercircuit.py +0 -0
  92. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/templates/__init__.py +0 -0
  93. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/templates/ansatz.py +0 -0
  94. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/templates/blocks.py +0 -0
  95. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/templates/chems.py +0 -0
  96. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/templates/conversions.py +0 -0
  97. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/templates/dataset.py +0 -0
  98. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/templates/graphs.py +0 -0
  99. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/templates/measurements.py +0 -0
  100. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/torchnn.py +0 -0
  101. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/translation.py +0 -0
  102. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/utils.py +0 -0
  103. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/vis.py +0 -0
  104. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit_nightly.egg-info/dependency_links.txt +0 -0
  105. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit_nightly.egg-info/requires.txt +0 -0
  106. {tensorcircuit_nightly-1.3.0.dev20250814 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit_nightly.egg-info/top_level.txt +0 -0
@@ -4,8 +4,30 @@
4
4
 
5
5
  ### Added
6
6
 
7
+ - Add `tc.AnalogCircuit` for digital-analog hybrid simulation.
8
+
9
+ - Add sparse matrix related methods for pytorch backend.
10
+
11
+ - Add exp and expm for torch backend.
12
+
13
+ - Add `su4` as a generic parameterized two-qubit gates.
14
+
15
+ - Add multi controller jax support for distrubuted contraction.
16
+
17
+ ### Fixed
18
+
19
+ - Fix the breaking logic change in jax from dlpack API, dlcapsule -> tensor.
20
+
21
+ - Better torch interface for dlpack translation.
22
+
23
+ ## v1.4.0
24
+
25
+ ### Added
26
+
7
27
  - Add new module `tc.timeevol` for different types of time evolution solvers.
8
28
 
29
+ - Add qudit circuit support with `tc.QuditCircuit` class.
30
+
9
31
  - Add `special_jv` for numpy and jax backends.
10
32
 
11
33
  - Add `jaxy_scan` for numpy and jax backends, contrasting to the tf style original backend scan method.
@@ -24,6 +46,10 @@
24
46
 
25
47
  - Add transformation method between tensornetwork, quimb, tenpy and QuOperator in tc-ng including `qop2tenpy`, `qop2quimb`, `qop2tn`, `tenpy2qop`, support both MPS and MPO formats.
26
48
 
49
+ - Make the lattice module backend agnostic, now the lattice follows `tc.set_backend`.
50
+
51
+ - Add diffrax backend for ode solver in timeevol module.
52
+
27
53
  ### Fixed
28
54
 
29
55
  - Fixed `one_hot` in numpy backend.
@@ -36,6 +62,8 @@
36
62
 
37
63
  - Fix to use `status` for `circuit.sample` when `allow_state=True`.
38
64
 
65
+ - Fix sample bug when number of qubit exceeding 32.
66
+
39
67
  ### Changed
40
68
 
41
69
  - The order of arguments of `tc.timeevol.ed_evol` are changed for consistent interface with other evolution methods.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: tensorcircuit-nightly
3
- Version: 1.3.0.dev20250814
3
+ Version: 1.4.0.dev20251226
4
4
  Summary: High performance unified quantum computing framework for the NISQ era
5
5
  Author-email: TensorCircuit Authors <znfesnpbh@gmail.com>
6
6
  License-Expression: Apache-2.0
@@ -62,15 +62,15 @@ Dynamic: license-file
62
62
 
63
63
  TensorCircuit-NG is the next-generation open-source high-performance quantum software framework, built upon tensornetwork engines, supporting for automatic differentiation, just-in-time compiling, hardware acceleration, vectorized parallelism and distributed training, providing unified infrastructures and interfaces for quantum programming. It can compose quantum circuits, neural networks and tensor networks seamlessly with high simulation efficiency and flexibility.
64
64
 
65
- TensorCircuit-NG is built on top of modern machine learning frameworks: Jax, TensorFlow, and PyTorch. It is specifically suitable for large-scale simulations of quantum-classical hybrid paradigm and variational quantum algorithms in ideal, noisy, Clifford, approximate, analog and fermionic cases. It also supports quantum hardware access and provides CPU/GPU/QPU hybrid deployment solutions.
65
+ TensorCircuit-NG is built on top of modern machine learning frameworks: Jax, TensorFlow, and PyTorch. It is specifically suitable for large-scale simulations of quantum-classical hybrid paradigm and variational quantum algorithms in ideal (`Circuit`), noisy (`DMCircuit`), Clifford (`StabilizerCircuit`), qudit (`QuditCircuit`), approximate (`MPSCircuit`), analog (`AnalogCircuit`), and fermionic (`FGSCircuit`) cases. It also supports quantum hardware access and provides CPU/GPU/QPU hybrid deployment solutions.
66
66
 
67
- TensorCircuit-NG is the actively maintained official version and a [fully compatible](https://tensorcircuit-ng.readthedocs.io/en/latest/faq.html#what-is-the-relation-between-tensorcircuit-and-tensorcircuit-ng) successor to TensorCircuit with more new features (stabilizer circuit, multi-card distributed simulation, etc.) and bug fixes (support latest `numpy>2` and `qiskit>1`).
67
+ TensorCircuit-NG is the only actively maintained official version and a [fully compatible](https://tensorcircuit-ng.readthedocs.io/en/latest/faq.html#what-is-the-relation-between-tensorcircuit-and-tensorcircuit-ng) successor to TensorCircuit with more new features (stabilizer circuit, qudit circuit, analog circuit, multi-GPU distributed simulation, etc.) and bug fixes (support latest `numpy>2` and `qiskit>1`).
68
68
 
69
69
  ## Getting Started
70
70
 
71
71
  Please begin with [Quick Start](/docs/source/quickstart.rst) in the [full documentation](https://tensorcircuit-ng.readthedocs.io/).
72
72
 
73
- For more information on software usage, sota algorithm implementation and engineer paradigm demonstration, please refer to 90+ [example scripts](/examples) and 30+ [tutorial notebooks](https://tensorcircuit-ng.readthedocs.io/en/latest/#tutorials). API docstrings and test cases in [tests](/tests) are also informative. One can also refer to AI-native docs for tensorcircuit-ng: [Devin Deepwiki](https://deepwiki.com/tensorcircuit/tensorcircuit-ng) and [Context7 MCP](https://context7.com/tensorcircuit/tensorcircuit-ng).
73
+ For more information on software usage, sota algorithm implementation and engineer paradigm demonstration, please refer to 100+ [example scripts](/examples) and 40+ [tutorial notebooks](https://tensorcircuit-ng.readthedocs.io/en/latest/#tutorials). API docstrings and test cases in [tests](/tests) are also informative. One can also refer to AI-native docs for tensorcircuit-ng: [Devin Deepwiki](https://deepwiki.com/tensorcircuit/tensorcircuit-ng) and [Context7 MCP](https://context7.com/tensorcircuit/tensorcircuit-ng).
74
74
 
75
75
  For beginners, please refer to [quantum computing lectures with TC-NG](https://github.com/sxzgroup/qc_lecture) to learn both quantum computing basics and representative usage of TensorCircuit-NG.
76
76
 
@@ -225,7 +225,7 @@ We also have [Docker support](/docker).
225
225
 
226
226
  - Support **Fermion Gaussian state** simulation with expectation, entanglement, measurement, ground state, real and imaginary time evolution.
227
227
 
228
- - Support **qudits simulation**.
228
+ - Support **qudits simulation** for tensor network and MPS approximation modes.
229
229
 
230
230
  - Support **parallel** quantum circuit evaluation across **multiple GPUs**.
231
231
 
@@ -247,6 +247,8 @@ We also have [Docker support](/docker).
247
247
 
248
248
  - **Machine learning interface/layer/model** abstraction in both TensorFlow, PyTorch and Jax for both numerical simulation and real QPU experiments.
249
249
 
250
+ - Support time evolution simulation with **exact, ODE, Krylov, Trotter, Chebyshev solvers**.
251
+
250
252
  - Circuit sampling supports both final state sampling and perfect sampling from tensor networks.
251
253
 
252
254
  - Light cone reduction support for local expectation calculation.
@@ -281,7 +283,7 @@ If this project helps in your research, please cite our software whitepaper to a
281
283
 
282
284
  which is also a good introduction to the software.
283
285
 
284
- Research works citing TensorCircuit can be highlighted in [Research and Applications section](https://github.com/tensorcircuit/tensorcircuit-ng#research-and-applications).
286
+ Research works citing TensorCircuit-NG can be highlighted in [Research and Applications section](https://github.com/tensorcircuit/tensorcircuit-ng#research-and-applications).
285
287
 
286
288
  ### Guidelines
287
289
 
@@ -341,8 +343,11 @@ TensorCircuit-NG is open source, released under the Apache License, Version 2.0.
341
343
  <td align="center" valign="top" width="16.66%"><a href="https://adeshpande.gitlab.io"><img src="https://avatars.githubusercontent.com/u/6169877?v=4?s=100" width="100px;" alt="Abhinav Deshpande"/><br /><sub><b>Abhinav Deshpande</b></sub></a><br /><a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=abhinavd" title="Code">💻</a></td>
342
344
  </tr>
343
345
  <tr>
344
- <td align="center" valign="top" width="16.66%"><a href="https://github.com/Stellogic"><img src="https://avatars.githubusercontent.com/u/186928579?v=4?s=100" width="100px;" alt="Stellogic"/><br /><sub><b>Stellogic</b></sub></a><br /><a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=Stellogic" title="Code">💻</a> <a href="#example-Stellogic" title="Examples">💡</a> <a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=Stellogic" title="Tests">⚠️</a></td>
346
+ <td align="center" valign="top" width="16.66%"><a href="https://github.com/Stellogic"><img src="https://avatars.githubusercontent.com/u/186928579?v=4?s=100" width="100px;" alt="Stellogic"/><br /><sub><b>Stellogic</b></sub></a><br /><a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=Stellogic" title="Code">💻</a> <a href="#example-Stellogic" title="Examples">💡</a> <a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=Stellogic" title="Tests">⚠️</a> <a href="#tutorial-Stellogic" title="Tutorials">✅</a></td>
345
347
  <td align="center" valign="top" width="16.66%"><a href="https://github.com/Charlespkuer"><img src="https://avatars.githubusercontent.com/u/112697147?v=4?s=100" width="100px;" alt="Huang"/><br /><sub><b>Huang</b></sub></a><br /><a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=Charlespkuer" title="Code">💻</a> <a href="#example-Charlespkuer" title="Examples">💡</a> <a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=Charlespkuer" title="Tests">⚠️</a></td>
348
+ <td align="center" valign="top" width="16.66%"><a href="https://github.com/Huang-Xu-Yang"><img src="https://avatars.githubusercontent.com/u/227286661?v=4?s=100" width="100px;" alt="Huang-Xu-Yang"/><br /><sub><b>Huang-Xu-Yang</b></sub></a><br /><a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=Huang-Xu-Yang" title="Code">💻</a> <a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=Huang-Xu-Yang" title="Tests">⚠️</a></td>
349
+ <td align="center" valign="top" width="16.66%"><a href="https://github.com/WeiguoMa"><img src="https://avatars.githubusercontent.com/u/108172530?v=4?s=100" width="100px;" alt="Weiguo_M"/><br /><sub><b>Weiguo_M</b></sub></a><br /><a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=WeiguoMa" title="Code">💻</a> <a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=WeiguoMa" title="Tests">⚠️</a> <a href="#example-WeiguoMa" title="Examples">💡</a> <a href="#tutorial-WeiguoMa" title="Tutorials">✅</a></td>
350
+ <td align="center" valign="top" width="16.66%"><a href="https://github.com/QuiXamii"><img src="https://avatars.githubusercontent.com/u/136054857?v=4?s=100" width="100px;" alt="Qixiang WANG"/><br /><sub><b>Qixiang WANG</b></sub></a><br /><a href="#example-QuiXamii" title="Examples">💡</a></td>
346
351
  </tr>
347
352
  </tbody>
348
353
  </table>
@@ -361,7 +366,7 @@ TensorCircuit-NG is open source, released under the Apache License, Version 2.0.
361
366
 
362
367
  ## Research and Applications
363
368
 
364
- TensorCircuit-NG is a powerful framework for driving research and applications in quantum computing. Below are examples of published academic works and open-source projects that utilize TensorCircuit-NG.
369
+ TensorCircuit-NG is a powerful framework for driving research and applications in quantum computing. Below are examples of published academic works (100+ in total) and open-source projects that utilize TensorCircuit-NG.
365
370
 
366
371
  ### DQAS
367
372
 
@@ -411,6 +416,12 @@ For the setup and simulation code of neural network encoded variational quantum
411
416
 
412
417
  Reference paper: https://arxiv.org/abs/2308.01068 (published in PRApplied).
413
418
 
419
+ ### FLDC
420
+
421
+ Absence of barren plateaus in finite local-depth circuits with long-range entanglement, see the [demo](/examples/vqe_toric_code.py).
422
+
423
+ Reference paper: https://arxiv.org/abs/2311.01393 (published in PRL).
424
+
414
425
  ### Effective temperature in ansatzes
415
426
 
416
427
  For the simulation implementation of quantum states based on neural networks, tensor networs and quantum circuits using TensorCircuit-NG, see the [project repo](https://github.com/sxzgroup/et).
@@ -423,6 +434,24 @@ For the simulation code and data for variational optimization of simutaneous exc
423
434
 
424
435
  Reference paper: https://arxiv.org/abs/2504.21459.
425
436
 
437
+ ### Quantum Machine Unlearning
438
+
439
+ For the simulation code for the work "superior resilience to poisoning and amenability to unlearning in quantum machine learning", see the [project repo](https://github.com/yutuer21/quantum-machine-unlearning).
440
+
441
+ Reference paper: https://arxiv.org/abs/2508.02422.
442
+
443
+ ### Low Weight Pauli Propagation Simulation
444
+
445
+ For the simulation code and data for the work on low weight Pauli propagation in the context of variational quantum algorithms, see the [project repo](https://github.com/ZongliangLi/lwpp_init).
446
+
447
+ Reference paper: https://arxiv.org/abs/2508.06358.
448
+
449
+ ### Quantum Continual Learning
450
+
451
+ For the code implementation on the work of demonstrating plasticity in quantum continual learning, see the [project repo](https://github.com/sxzgroup/quantum-plasticity).
452
+
453
+ Reference paper: https://arxiv.org/abs/2511.17228.
454
+
426
455
  ### More works
427
456
 
428
457
  <details>
@@ -462,26 +491,38 @@ Reference paper: https://arxiv.org/abs/2504.21459.
462
491
 
463
492
  - Universal imaginary-time critical dynamics on a quantum computer: https://arxiv.org/abs/2308.05408 (published in PRB).
464
493
 
465
- - Absence of barren plateaus in finite local-depth circuits with long-range entanglement: https://arxiv.org/abs/2311.01393 (published in PRL).
466
-
467
494
  - Non-Markovianity benefits quantum dynamics simulation: https://arxiv.org/abs/2311.17622.
468
495
 
469
496
  - Variational post-selection for ground states and thermal states simulation: https://arxiv.org/abs/2402.07605 (published in QST).
470
497
 
471
- - Subsystem information capacity in random circuits and Hamiltonian dynamics: https://arxiv.org/abs/2405.05076. Code implementation: https://github.com/sxzgroup/subsystem_information_capacity.
498
+ - Subsystem information capacity in random circuits and Hamiltonian dynamics: https://arxiv.org/abs/2405.05076 (published in Quantum). Code implementation: https://github.com/sxzgroup/subsystem_information_capacity.
472
499
 
473
500
  - Symmetry restoration and quantum Mpemba effect in symmetric random circuits: https://arxiv.org/abs/2403.08459 (published in PRL).
474
501
 
475
502
  - Quantum Mpemba effects in many-body localization systems: https://arxiv.org/abs/2408.07750.
476
503
 
477
- - Supersymmetry dynamics on Rydberg atom arrays: https://arxiv.org/abs/2410.21386.
504
+ - Supersymmetry dynamics on Rydberg atom arrays: https://arxiv.org/abs/2410.21386 (published in PRB).
478
505
 
479
506
  - Dynamic parameterized quantum circuits: expressive and barren-plateau free: https://arxiv.org/abs/2411.05760.
480
507
 
481
- - Holographic deep thermalization: https://arxiv.org/abs/2411.03587.
508
+ - Holographic deep thermalization: https://arxiv.org/abs/2411.03587 (published in Nature Communications).
482
509
 
483
510
  - Quantum deep generative prior with programmable quantum circuits: https://www.nature.com/articles/s42005-024-01765-9 (published in Communications Physics).
484
511
 
512
+ - Symmetry Breaking Dynamics in Quantum Many-Body Systems: https://arxiv.org/abs/2501.13459.
513
+
514
+ - Entanglement growth and information capacity in a quasiperiodic system with a single-particle mobility edge: https://arxiv.org/abs/2506.18076.
515
+
516
+ - Hilbert subspace imprint: a new mechanism for non-thermalization: https://arxiv.org/abs/2506.11922.
517
+
518
+ - A Neural-Guided Variational Quantum Algorithm for Efficient Sign Structure Learning in Hybrid Architectures: https://arxiv.org/abs/2507.07555.
519
+
520
+ - Quantum Pontus-Mpemba Effects in Real and Imaginary-time Dynamics: https://arxiv.org/abs/2509.01960.
521
+
522
+ - Quantum Mpemba effect in long-ranged U(1)-symmetric random circuits: https://arxiv.org/abs/2512.06775.
523
+
524
+ - A Qudit-native Framework for Discrete Time Crystals: https://arxiv.org/abs/2512.04577.
525
+
485
526
  </details>
486
527
 
487
528
  If you want to highlight your research work or projects here, feel free to add by opening PR.
@@ -27,15 +27,15 @@
27
27
 
28
28
  TensorCircuit-NG is the next-generation open-source high-performance quantum software framework, built upon tensornetwork engines, supporting for automatic differentiation, just-in-time compiling, hardware acceleration, vectorized parallelism and distributed training, providing unified infrastructures and interfaces for quantum programming. It can compose quantum circuits, neural networks and tensor networks seamlessly with high simulation efficiency and flexibility.
29
29
 
30
- TensorCircuit-NG is built on top of modern machine learning frameworks: Jax, TensorFlow, and PyTorch. It is specifically suitable for large-scale simulations of quantum-classical hybrid paradigm and variational quantum algorithms in ideal, noisy, Clifford, approximate, analog and fermionic cases. It also supports quantum hardware access and provides CPU/GPU/QPU hybrid deployment solutions.
30
+ TensorCircuit-NG is built on top of modern machine learning frameworks: Jax, TensorFlow, and PyTorch. It is specifically suitable for large-scale simulations of quantum-classical hybrid paradigm and variational quantum algorithms in ideal (`Circuit`), noisy (`DMCircuit`), Clifford (`StabilizerCircuit`), qudit (`QuditCircuit`), approximate (`MPSCircuit`), analog (`AnalogCircuit`), and fermionic (`FGSCircuit`) cases. It also supports quantum hardware access and provides CPU/GPU/QPU hybrid deployment solutions.
31
31
 
32
- TensorCircuit-NG is the actively maintained official version and a [fully compatible](https://tensorcircuit-ng.readthedocs.io/en/latest/faq.html#what-is-the-relation-between-tensorcircuit-and-tensorcircuit-ng) successor to TensorCircuit with more new features (stabilizer circuit, multi-card distributed simulation, etc.) and bug fixes (support latest `numpy>2` and `qiskit>1`).
32
+ TensorCircuit-NG is the only actively maintained official version and a [fully compatible](https://tensorcircuit-ng.readthedocs.io/en/latest/faq.html#what-is-the-relation-between-tensorcircuit-and-tensorcircuit-ng) successor to TensorCircuit with more new features (stabilizer circuit, qudit circuit, analog circuit, multi-GPU distributed simulation, etc.) and bug fixes (support latest `numpy>2` and `qiskit>1`).
33
33
 
34
34
  ## Getting Started
35
35
 
36
36
  Please begin with [Quick Start](/docs/source/quickstart.rst) in the [full documentation](https://tensorcircuit-ng.readthedocs.io/).
37
37
 
38
- For more information on software usage, sota algorithm implementation and engineer paradigm demonstration, please refer to 90+ [example scripts](/examples) and 30+ [tutorial notebooks](https://tensorcircuit-ng.readthedocs.io/en/latest/#tutorials). API docstrings and test cases in [tests](/tests) are also informative. One can also refer to AI-native docs for tensorcircuit-ng: [Devin Deepwiki](https://deepwiki.com/tensorcircuit/tensorcircuit-ng) and [Context7 MCP](https://context7.com/tensorcircuit/tensorcircuit-ng).
38
+ For more information on software usage, sota algorithm implementation and engineer paradigm demonstration, please refer to 100+ [example scripts](/examples) and 40+ [tutorial notebooks](https://tensorcircuit-ng.readthedocs.io/en/latest/#tutorials). API docstrings and test cases in [tests](/tests) are also informative. One can also refer to AI-native docs for tensorcircuit-ng: [Devin Deepwiki](https://deepwiki.com/tensorcircuit/tensorcircuit-ng) and [Context7 MCP](https://context7.com/tensorcircuit/tensorcircuit-ng).
39
39
 
40
40
  For beginners, please refer to [quantum computing lectures with TC-NG](https://github.com/sxzgroup/qc_lecture) to learn both quantum computing basics and representative usage of TensorCircuit-NG.
41
41
 
@@ -190,7 +190,7 @@ We also have [Docker support](/docker).
190
190
 
191
191
  - Support **Fermion Gaussian state** simulation with expectation, entanglement, measurement, ground state, real and imaginary time evolution.
192
192
 
193
- - Support **qudits simulation**.
193
+ - Support **qudits simulation** for tensor network and MPS approximation modes.
194
194
 
195
195
  - Support **parallel** quantum circuit evaluation across **multiple GPUs**.
196
196
 
@@ -212,6 +212,8 @@ We also have [Docker support](/docker).
212
212
 
213
213
  - **Machine learning interface/layer/model** abstraction in both TensorFlow, PyTorch and Jax for both numerical simulation and real QPU experiments.
214
214
 
215
+ - Support time evolution simulation with **exact, ODE, Krylov, Trotter, Chebyshev solvers**.
216
+
215
217
  - Circuit sampling supports both final state sampling and perfect sampling from tensor networks.
216
218
 
217
219
  - Light cone reduction support for local expectation calculation.
@@ -246,7 +248,7 @@ If this project helps in your research, please cite our software whitepaper to a
246
248
 
247
249
  which is also a good introduction to the software.
248
250
 
249
- Research works citing TensorCircuit can be highlighted in [Research and Applications section](https://github.com/tensorcircuit/tensorcircuit-ng#research-and-applications).
251
+ Research works citing TensorCircuit-NG can be highlighted in [Research and Applications section](https://github.com/tensorcircuit/tensorcircuit-ng#research-and-applications).
250
252
 
251
253
  ### Guidelines
252
254
 
@@ -306,8 +308,11 @@ TensorCircuit-NG is open source, released under the Apache License, Version 2.0.
306
308
  <td align="center" valign="top" width="16.66%"><a href="https://adeshpande.gitlab.io"><img src="https://avatars.githubusercontent.com/u/6169877?v=4?s=100" width="100px;" alt="Abhinav Deshpande"/><br /><sub><b>Abhinav Deshpande</b></sub></a><br /><a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=abhinavd" title="Code">💻</a></td>
307
309
  </tr>
308
310
  <tr>
309
- <td align="center" valign="top" width="16.66%"><a href="https://github.com/Stellogic"><img src="https://avatars.githubusercontent.com/u/186928579?v=4?s=100" width="100px;" alt="Stellogic"/><br /><sub><b>Stellogic</b></sub></a><br /><a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=Stellogic" title="Code">💻</a> <a href="#example-Stellogic" title="Examples">💡</a> <a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=Stellogic" title="Tests">⚠️</a></td>
311
+ <td align="center" valign="top" width="16.66%"><a href="https://github.com/Stellogic"><img src="https://avatars.githubusercontent.com/u/186928579?v=4?s=100" width="100px;" alt="Stellogic"/><br /><sub><b>Stellogic</b></sub></a><br /><a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=Stellogic" title="Code">💻</a> <a href="#example-Stellogic" title="Examples">💡</a> <a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=Stellogic" title="Tests">⚠️</a> <a href="#tutorial-Stellogic" title="Tutorials">✅</a></td>
310
312
  <td align="center" valign="top" width="16.66%"><a href="https://github.com/Charlespkuer"><img src="https://avatars.githubusercontent.com/u/112697147?v=4?s=100" width="100px;" alt="Huang"/><br /><sub><b>Huang</b></sub></a><br /><a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=Charlespkuer" title="Code">💻</a> <a href="#example-Charlespkuer" title="Examples">💡</a> <a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=Charlespkuer" title="Tests">⚠️</a></td>
313
+ <td align="center" valign="top" width="16.66%"><a href="https://github.com/Huang-Xu-Yang"><img src="https://avatars.githubusercontent.com/u/227286661?v=4?s=100" width="100px;" alt="Huang-Xu-Yang"/><br /><sub><b>Huang-Xu-Yang</b></sub></a><br /><a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=Huang-Xu-Yang" title="Code">💻</a> <a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=Huang-Xu-Yang" title="Tests">⚠️</a></td>
314
+ <td align="center" valign="top" width="16.66%"><a href="https://github.com/WeiguoMa"><img src="https://avatars.githubusercontent.com/u/108172530?v=4?s=100" width="100px;" alt="Weiguo_M"/><br /><sub><b>Weiguo_M</b></sub></a><br /><a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=WeiguoMa" title="Code">💻</a> <a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=WeiguoMa" title="Tests">⚠️</a> <a href="#example-WeiguoMa" title="Examples">💡</a> <a href="#tutorial-WeiguoMa" title="Tutorials">✅</a></td>
315
+ <td align="center" valign="top" width="16.66%"><a href="https://github.com/QuiXamii"><img src="https://avatars.githubusercontent.com/u/136054857?v=4?s=100" width="100px;" alt="Qixiang WANG"/><br /><sub><b>Qixiang WANG</b></sub></a><br /><a href="#example-QuiXamii" title="Examples">💡</a></td>
311
316
  </tr>
312
317
  </tbody>
313
318
  </table>
@@ -326,7 +331,7 @@ TensorCircuit-NG is open source, released under the Apache License, Version 2.0.
326
331
 
327
332
  ## Research and Applications
328
333
 
329
- TensorCircuit-NG is a powerful framework for driving research and applications in quantum computing. Below are examples of published academic works and open-source projects that utilize TensorCircuit-NG.
334
+ TensorCircuit-NG is a powerful framework for driving research and applications in quantum computing. Below are examples of published academic works (100+ in total) and open-source projects that utilize TensorCircuit-NG.
330
335
 
331
336
  ### DQAS
332
337
 
@@ -376,6 +381,12 @@ For the setup and simulation code of neural network encoded variational quantum
376
381
 
377
382
  Reference paper: https://arxiv.org/abs/2308.01068 (published in PRApplied).
378
383
 
384
+ ### FLDC
385
+
386
+ Absence of barren plateaus in finite local-depth circuits with long-range entanglement, see the [demo](/examples/vqe_toric_code.py).
387
+
388
+ Reference paper: https://arxiv.org/abs/2311.01393 (published in PRL).
389
+
379
390
  ### Effective temperature in ansatzes
380
391
 
381
392
  For the simulation implementation of quantum states based on neural networks, tensor networs and quantum circuits using TensorCircuit-NG, see the [project repo](https://github.com/sxzgroup/et).
@@ -388,6 +399,24 @@ For the simulation code and data for variational optimization of simutaneous exc
388
399
 
389
400
  Reference paper: https://arxiv.org/abs/2504.21459.
390
401
 
402
+ ### Quantum Machine Unlearning
403
+
404
+ For the simulation code for the work "superior resilience to poisoning and amenability to unlearning in quantum machine learning", see the [project repo](https://github.com/yutuer21/quantum-machine-unlearning).
405
+
406
+ Reference paper: https://arxiv.org/abs/2508.02422.
407
+
408
+ ### Low Weight Pauli Propagation Simulation
409
+
410
+ For the simulation code and data for the work on low weight Pauli propagation in the context of variational quantum algorithms, see the [project repo](https://github.com/ZongliangLi/lwpp_init).
411
+
412
+ Reference paper: https://arxiv.org/abs/2508.06358.
413
+
414
+ ### Quantum Continual Learning
415
+
416
+ For the code implementation on the work of demonstrating plasticity in quantum continual learning, see the [project repo](https://github.com/sxzgroup/quantum-plasticity).
417
+
418
+ Reference paper: https://arxiv.org/abs/2511.17228.
419
+
391
420
  ### More works
392
421
 
393
422
  <details>
@@ -427,26 +456,38 @@ Reference paper: https://arxiv.org/abs/2504.21459.
427
456
 
428
457
  - Universal imaginary-time critical dynamics on a quantum computer: https://arxiv.org/abs/2308.05408 (published in PRB).
429
458
 
430
- - Absence of barren plateaus in finite local-depth circuits with long-range entanglement: https://arxiv.org/abs/2311.01393 (published in PRL).
431
-
432
459
  - Non-Markovianity benefits quantum dynamics simulation: https://arxiv.org/abs/2311.17622.
433
460
 
434
461
  - Variational post-selection for ground states and thermal states simulation: https://arxiv.org/abs/2402.07605 (published in QST).
435
462
 
436
- - Subsystem information capacity in random circuits and Hamiltonian dynamics: https://arxiv.org/abs/2405.05076. Code implementation: https://github.com/sxzgroup/subsystem_information_capacity.
463
+ - Subsystem information capacity in random circuits and Hamiltonian dynamics: https://arxiv.org/abs/2405.05076 (published in Quantum). Code implementation: https://github.com/sxzgroup/subsystem_information_capacity.
437
464
 
438
465
  - Symmetry restoration and quantum Mpemba effect in symmetric random circuits: https://arxiv.org/abs/2403.08459 (published in PRL).
439
466
 
440
467
  - Quantum Mpemba effects in many-body localization systems: https://arxiv.org/abs/2408.07750.
441
468
 
442
- - Supersymmetry dynamics on Rydberg atom arrays: https://arxiv.org/abs/2410.21386.
469
+ - Supersymmetry dynamics on Rydberg atom arrays: https://arxiv.org/abs/2410.21386 (published in PRB).
443
470
 
444
471
  - Dynamic parameterized quantum circuits: expressive and barren-plateau free: https://arxiv.org/abs/2411.05760.
445
472
 
446
- - Holographic deep thermalization: https://arxiv.org/abs/2411.03587.
473
+ - Holographic deep thermalization: https://arxiv.org/abs/2411.03587 (published in Nature Communications).
447
474
 
448
475
  - Quantum deep generative prior with programmable quantum circuits: https://www.nature.com/articles/s42005-024-01765-9 (published in Communications Physics).
449
476
 
477
+ - Symmetry Breaking Dynamics in Quantum Many-Body Systems: https://arxiv.org/abs/2501.13459.
478
+
479
+ - Entanglement growth and information capacity in a quasiperiodic system with a single-particle mobility edge: https://arxiv.org/abs/2506.18076.
480
+
481
+ - Hilbert subspace imprint: a new mechanism for non-thermalization: https://arxiv.org/abs/2506.11922.
482
+
483
+ - A Neural-Guided Variational Quantum Algorithm for Efficient Sign Structure Learning in Hybrid Architectures: https://arxiv.org/abs/2507.07555.
484
+
485
+ - Quantum Pontus-Mpemba Effects in Real and Imaginary-time Dynamics: https://arxiv.org/abs/2509.01960.
486
+
487
+ - Quantum Mpemba effect in long-ranged U(1)-symmetric random circuits: https://arxiv.org/abs/2512.06775.
488
+
489
+ - A Qudit-native Framework for Discrete Time Crystals: https://arxiv.org/abs/2512.04577.
490
+
450
491
  </details>
451
492
 
452
493
  If you want to highlight your research work or projects here, feel free to add by opening PR.
@@ -21,7 +21,7 @@
21
21
 
22
22
  <p align="center"> <a href="README.md">English</a> | 简体中文 </p>
23
23
 
24
- TensorCircuit-NG 是下一代量子软件框架,完美支持自动微分、即时编译、硬件加速、向量并行化和分布式训练。
24
+ TensorCircuit-NG 是下一代量子软件框架,完美支持自动微分、即时编译、硬件加速、向量并行化和分布式训练,是量超智融合的首选平台。
25
25
 
26
26
  TensorCircuit-NG 建立在现代机器学习框架 Jax, TensorFlow, PyTorch 之上,支持机器学习后端无关的统一界面。 其特别适用于理想情况、含噪声情况、稳定子情况、可控近似情况、连续动力学情况及费米子情况下,大规模量子经典混合范式和变分量子算法的高效模拟。其可以高效地编织和模拟量子线路、张量网络和神经网络组成的混合计算图。
27
27
 
@@ -33,7 +33,7 @@ TensorCircuit-NG 是目前积极维护的唯一官方版本,是 TensorCircuit
33
33
 
34
34
  请从 [完整文档](https://tensorcircuit-ng.readthedocs.io/) 中的 [快速上手](/docs/source/quickstart.rst) 开始。
35
35
 
36
- 有关软件用法,算法实现和工程范式演示的更多信息和介绍,请参阅 90+ [示例脚本](/examples) 和 30+ [案例教程](https://tensorcircuit-ng.readthedocs.io/en/latest/#tutorials)。 [测试](/tests) 用例和 API docstring 也提供了丰富的使用信息。
36
+ 有关软件用法,算法实现和工程范式演示的更多信息和介绍,请参阅 100+ [示例脚本](/examples) 和 40+ [案例教程](https://tensorcircuit-ng.readthedocs.io/en/latest/#tutorials)。 [测试](/tests) 用例和 API docstring 也提供了丰富的使用信息。
37
37
 
38
38
  TensorCircuit-NG 也支持 AI 原生编程资源:[Devin Deepwiki](https://deepwiki.com/tensorcircuit/tensorcircuit-ng) 和 [Context7 MCP](https://context7.com/tensorcircuit/tensorcircuit-ng).
39
39
 
@@ -1,4 +1,4 @@
1
- __version__ = "1.3.0.dev20250814"
1
+ __version__ = "1.4.0.dev20251226"
2
2
  __author__ = "TensorCircuit Authors"
3
3
  __creator__ = "refraction-ray"
4
4
 
@@ -23,8 +23,11 @@ from .cons import (
23
23
  runtime_contractor,
24
24
  ) # prerun of set hooks
25
25
  from . import gates
26
+ from . import quditgates
26
27
  from . import basecircuit
27
28
  from .gates import Gate
29
+ from .quditcircuit import QuditCircuit
30
+ from .analogcircuit import AnalogCircuit
28
31
  from .circuit import Circuit, expectation
29
32
  from .mpscircuit import MPSCircuit
30
33
  from .densitymatrix import DMCircuit as DMCircuit_reference
@@ -53,6 +53,7 @@ vgates = [
53
53
  "any",
54
54
  "exp",
55
55
  "exp1",
56
+ "su4",
56
57
  ]
57
58
  mpogates = ["multicontrol", "mpo"]
58
59
  gate_aliases = [
@@ -65,9 +66,12 @@ gate_aliases = [
65
66
  ["td", "tdg"],
66
67
  ]
67
68
 
69
+ defined_gates = sgates + vgates + mpogates + [alias[1] for alias in gate_aliases]
70
+
68
71
 
69
72
  class AbstractCircuit:
70
73
  _nqubits: int
74
+ _d: int = 2
71
75
  _qir: List[Dict[str, Any]]
72
76
  _extra_qir: List[Dict[str, Any]]
73
77
  inputs: Tensor