tensorcircuit-nightly 1.3.0.dev20250728__tar.gz → 1.3.0.dev20250729__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of tensorcircuit-nightly might be problematic. Click here for more details.
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/CHANGELOG.md +4 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/PKG-INFO +2 -2
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/README.md +1 -1
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/README_cn.md +7 -3
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/docs/source/modules.rst +1 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/__init__.py +2 -1
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/backends/abstract_backend.py +3 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/backends/tensorflow_backend.py +8 -1
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/experimental.py +7 -152
- tensorcircuit_nightly-1.3.0.dev20250729/tensorcircuit/timeevol.py +346 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit_nightly.egg-info/PKG-INFO +2 -2
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit_nightly.egg-info/SOURCES.txt +2 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tests/test_miscs.py +0 -30
- tensorcircuit_nightly-1.3.0.dev20250729/tests/test_timeevol.py +238 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/HISTORY.md +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/LICENSE +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/MANIFEST.in +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/docs/source/advance.rst +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/docs/source/cnconf.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/docs/source/conf.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/docs/source/contribution.rst +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/docs/source/faq.rst +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/docs/source/generate_rst.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/docs/source/index.rst +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/docs/source/infras.rst +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/docs/source/quickstart.rst +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/docs/source/sharpbits.rst +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/docs/source/textbooktoc.rst +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/docs/source/tutorial.rst +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/docs/source/tutorial_cn.rst +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/docs/source/whitepapertoc.rst +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/docs/source/whitepapertoc_cn.rst +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/setup.cfg +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/setup.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/about.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/abstractcircuit.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/applications/__init__.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/applications/ai/__init__.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/applications/ai/ensemble.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/applications/dqas.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/applications/finance/__init__.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/applications/finance/portfolio.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/applications/graphdata.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/applications/layers.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/applications/optimization.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/applications/physics/__init__.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/applications/physics/baseline.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/applications/physics/fss.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/applications/utils.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/applications/vags.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/applications/van.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/applications/vqes.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/asciiart.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/backends/__init__.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/backends/backend_factory.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/backends/cupy_backend.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/backends/jax_backend.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/backends/jax_ops.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/backends/numpy_backend.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/backends/pytorch_backend.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/backends/pytorch_ops.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/backends/tf_ops.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/basecircuit.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/channels.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/circuit.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/cloud/__init__.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/cloud/abstraction.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/cloud/apis.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/cloud/config.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/cloud/local.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/cloud/quafu_provider.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/cloud/tencent.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/cloud/utils.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/cloud/wrapper.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/compiler/__init__.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/compiler/composed_compiler.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/compiler/qiskit_compiler.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/compiler/simple_compiler.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/cons.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/densitymatrix.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/fgs.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/gates.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/interfaces/__init__.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/interfaces/jax.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/interfaces/numpy.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/interfaces/scipy.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/interfaces/tensorflow.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/interfaces/tensortrans.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/interfaces/torch.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/keras.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/mps_base.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/mpscircuit.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/noisemodel.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/quantum.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/results/__init__.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/results/counts.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/results/qem/__init__.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/results/qem/benchmark_circuits.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/results/qem/qem_methods.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/results/readout_mitigation.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/shadows.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/simplify.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/stabilizercircuit.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/templates/__init__.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/templates/ansatz.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/templates/blocks.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/templates/chems.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/templates/conversions.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/templates/dataset.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/templates/graphs.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/templates/hamiltonians.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/templates/lattice.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/templates/measurements.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/torchnn.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/translation.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/utils.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit/vis.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit_nightly.egg-info/dependency_links.txt +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit_nightly.egg-info/requires.txt +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tensorcircuit_nightly.egg-info/top_level.txt +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tests/__init__.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tests/conftest.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tests/test_backends.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tests/test_calibrating.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tests/test_channels.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tests/test_circuit.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tests/test_cloud.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tests/test_compiler.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tests/test_dmcircuit.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tests/test_ensemble.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tests/test_fgs.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tests/test_gates.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tests/test_hamiltonians.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tests/test_interfaces.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tests/test_keras.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tests/test_lattice.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tests/test_mpscircuit.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tests/test_noisemodel.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tests/test_qaoa.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tests/test_qem.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tests/test_quantum.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tests/test_quantum_attr.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tests/test_results.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tests/test_shadows.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tests/test_simplify.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tests/test_stabilizer.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tests/test_templates.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tests/test_torchnn.py +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/tests/test_van.py +0 -0
{tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/PKG-INFO
RENAMED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: tensorcircuit-nightly
|
|
3
|
-
Version: 1.3.0.
|
|
3
|
+
Version: 1.3.0.dev20250729
|
|
4
4
|
Summary: nightly release for tensorcircuit
|
|
5
5
|
Home-page: https://github.com/refraction-ray/tensorcircuit-dev
|
|
6
6
|
Author: TensorCircuit Authors
|
|
@@ -70,7 +70,7 @@ TensorCircuit-NG is the actively maintained official version and a [fully compat
|
|
|
70
70
|
|
|
71
71
|
Please begin with [Quick Start](/docs/source/quickstart.rst) in the [full documentation](https://tensorcircuit-ng.readthedocs.io/).
|
|
72
72
|
|
|
73
|
-
For more information on software usage, sota algorithm implementation and engineer paradigm demonstration, please refer to 80+ [example scripts](/examples) and 30+ [tutorial notebooks](https://tensorcircuit-ng.readthedocs.io/en/latest/#tutorials). API docstrings and test cases in [tests](/tests) are also informative. One can also refer to tensorcircuit-ng [
|
|
73
|
+
For more information on software usage, sota algorithm implementation and engineer paradigm demonstration, please refer to 80+ [example scripts](/examples) and 30+ [tutorial notebooks](https://tensorcircuit-ng.readthedocs.io/en/latest/#tutorials). API docstrings and test cases in [tests](/tests) are also informative. One can also refer to AI-native docs for tensorcircuit-ng: [Devin Deepwiki](https://deepwiki.com/tensorcircuit/tensorcircuit-ng) and [Context7 MCP](https://context7.com/tensorcircuit/tensorcircuit-ng).
|
|
74
74
|
|
|
75
75
|
For beginners, please refer to [quantum computing lectures with TC-NG](https://github.com/sxzgroup/qc_lecture) to learn both quantum computing basics and representative usage of TensorCircuit-NG.
|
|
76
76
|
|
{tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/README.md
RENAMED
|
@@ -35,7 +35,7 @@ TensorCircuit-NG is the actively maintained official version and a [fully compat
|
|
|
35
35
|
|
|
36
36
|
Please begin with [Quick Start](/docs/source/quickstart.rst) in the [full documentation](https://tensorcircuit-ng.readthedocs.io/).
|
|
37
37
|
|
|
38
|
-
For more information on software usage, sota algorithm implementation and engineer paradigm demonstration, please refer to 80+ [example scripts](/examples) and 30+ [tutorial notebooks](https://tensorcircuit-ng.readthedocs.io/en/latest/#tutorials). API docstrings and test cases in [tests](/tests) are also informative. One can also refer to tensorcircuit-ng [
|
|
38
|
+
For more information on software usage, sota algorithm implementation and engineer paradigm demonstration, please refer to 80+ [example scripts](/examples) and 30+ [tutorial notebooks](https://tensorcircuit-ng.readthedocs.io/en/latest/#tutorials). API docstrings and test cases in [tests](/tests) are also informative. One can also refer to AI-native docs for tensorcircuit-ng: [Devin Deepwiki](https://deepwiki.com/tensorcircuit/tensorcircuit-ng) and [Context7 MCP](https://context7.com/tensorcircuit/tensorcircuit-ng).
|
|
39
39
|
|
|
40
40
|
For beginners, please refer to [quantum computing lectures with TC-NG](https://github.com/sxzgroup/qc_lecture) to learn both quantum computing basics and representative usage of TensorCircuit-NG.
|
|
41
41
|
|
{tensorcircuit_nightly-1.3.0.dev20250728 → tensorcircuit_nightly-1.3.0.dev20250729}/README_cn.md
RENAMED
|
@@ -21,11 +21,13 @@
|
|
|
21
21
|
|
|
22
22
|
<p align="center"> <a href="README.md">English</a> | 简体中文 </p>
|
|
23
23
|
|
|
24
|
-
TensorCircuit-NG
|
|
24
|
+
TensorCircuit-NG 是下一代量子软件框架,完美支持自动微分、即时编译、硬件加速、向量并行化和分布式训练。
|
|
25
25
|
|
|
26
|
-
TensorCircuit-NG 建立在现代机器学习框架 Jax, TensorFlow, PyTorch 之上,支持机器学习后端无关的统一界面。
|
|
26
|
+
TensorCircuit-NG 建立在现代机器学习框架 Jax, TensorFlow, PyTorch 之上,支持机器学习后端无关的统一界面。 其特别适用于理想情况、含噪声情况、稳定子情况、可控近似情况、连续动力学情况及费米子情况下,大规模量子经典混合范式和变分量子算法的高效模拟。其可以高效地编织和模拟量子线路、张量网络和神经网络组成的混合计算图。
|
|
27
27
|
|
|
28
|
-
TensorCircuit-NG 现在支持真实量子硬件连接和实验,并提供优雅的 CPU/GPU/QPU
|
|
28
|
+
TensorCircuit-NG 现在支持真实量子硬件连接和实验,并提供优雅的 CPU/GPU/QPU 硬件混合部署训练方案。
|
|
29
|
+
|
|
30
|
+
TensorCircuit-NG 是目前积极维护的唯一官方版本,是 TensorCircuit 的[完全兼容](https://github.com/orgs/tensorcircuit/discussions/19)的升级版本,它包含了更多新功能(例如稳定子线路、多卡分布式模拟等)和错误修复(例如支持最新的 numpy>2 和 qiskit>1)。
|
|
29
31
|
|
|
30
32
|
## 入门
|
|
31
33
|
|
|
@@ -33,6 +35,8 @@ TensorCircuit-NG 现在支持真实量子硬件连接和实验,并提供优雅
|
|
|
33
35
|
|
|
34
36
|
有关软件用法,算法实现和工程范式演示的更多信息和介绍,请参阅 80+ [示例脚本](/examples) 和 30+ [案例教程](https://tensorcircuit-ng.readthedocs.io/en/latest/#tutorials)。 [测试](/tests) 用例和 API docstring 也提供了丰富的使用信息。
|
|
35
37
|
|
|
38
|
+
TensorCircuit-NG 也支持 AI 原生编程资源:[Devin Deepwiki](https://deepwiki.com/tensorcircuit/tensorcircuit-ng) 和 [Context7 MCP](https://context7.com/tensorcircuit/tensorcircuit-ng).
|
|
39
|
+
|
|
36
40
|
初学者也可以参考[量子计算教程](https://github.com/sxzgroup/qc_lecture)学习量子计算基础和 TensorCircuit-NG 的典型用法.
|
|
37
41
|
|
|
38
42
|
以下是一些最简易的演示。
|
|
@@ -1,4 +1,4 @@
|
|
|
1
|
-
__version__ = "1.3.0.
|
|
1
|
+
__version__ = "1.3.0.dev20250729"
|
|
2
2
|
__author__ = "TensorCircuit Authors"
|
|
3
3
|
__creator__ = "refraction-ray"
|
|
4
4
|
|
|
@@ -52,6 +52,7 @@ from . import compiler
|
|
|
52
52
|
from . import cloud
|
|
53
53
|
from . import fgs
|
|
54
54
|
from .fgs import FGSSimulator
|
|
55
|
+
from . import timeevol
|
|
55
56
|
|
|
56
57
|
FGSCircuit = FGSSimulator
|
|
57
58
|
|
|
@@ -700,6 +700,9 @@ class ExtendedBackend:
|
|
|
700
700
|
"Backend '{}' has not implemented `is_tensor`.".format(self.name)
|
|
701
701
|
)
|
|
702
702
|
|
|
703
|
+
def matvec(self: Any, A: Tensor, x: Tensor) -> Tensor:
|
|
704
|
+
return self.tensordot(A, x, axes=[[1], [0]])
|
|
705
|
+
|
|
703
706
|
def cast(self: Any, a: Tensor, dtype: str) -> Tensor:
|
|
704
707
|
"""
|
|
705
708
|
Cast the tensor dtype of a ``a``.
|
|
@@ -678,7 +678,14 @@ class TensorFlowBackend(tensorflow_backend.TensorFlowBackend, ExtendedBackend):
|
|
|
678
678
|
sp_a: Tensor,
|
|
679
679
|
b: Tensor,
|
|
680
680
|
) -> Tensor:
|
|
681
|
-
|
|
681
|
+
is_vec = False
|
|
682
|
+
if len(b.shape) == 1:
|
|
683
|
+
b = self.reshape(b, [-1, 1])
|
|
684
|
+
is_vec = True
|
|
685
|
+
r = tf.sparse.sparse_dense_matmul(sp_a, b)
|
|
686
|
+
if is_vec:
|
|
687
|
+
return self.reshape(r, [-1])
|
|
688
|
+
return r
|
|
682
689
|
|
|
683
690
|
def _densify(self) -> Tensor:
|
|
684
691
|
@partial(self.jit, jit_compile=True)
|
|
@@ -2,14 +2,20 @@
|
|
|
2
2
|
Experimental features
|
|
3
3
|
"""
|
|
4
4
|
|
|
5
|
+
# pylint: disable=unused-import
|
|
6
|
+
|
|
5
7
|
from functools import partial
|
|
6
8
|
import logging
|
|
7
9
|
from typing import Any, Callable, Dict, Optional, Tuple, List, Sequence, Union
|
|
8
10
|
|
|
9
11
|
import numpy as np
|
|
10
12
|
|
|
11
|
-
from .cons import backend, dtypestr,
|
|
13
|
+
from .cons import backend, dtypestr, rdtypestr, get_tn_info
|
|
12
14
|
from .gates import Gate
|
|
15
|
+
from .timeevol import hamiltonian_evol, evol_global, evol_local
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
# for backward compatibility
|
|
13
19
|
|
|
14
20
|
Tensor = Any
|
|
15
21
|
Circuit = Any
|
|
@@ -435,157 +441,6 @@ def finite_difference_differentiator(
|
|
|
435
441
|
return tf_function # type: ignore
|
|
436
442
|
|
|
437
443
|
|
|
438
|
-
def hamiltonian_evol(
|
|
439
|
-
tlist: Tensor,
|
|
440
|
-
h: Tensor,
|
|
441
|
-
psi0: Tensor,
|
|
442
|
-
callback: Optional[Callable[..., Any]] = None,
|
|
443
|
-
) -> Tensor:
|
|
444
|
-
"""
|
|
445
|
-
Fast implementation of time independent Hamiltonian evolution using eigendecomposition.
|
|
446
|
-
By default, performs imaginary time evolution.
|
|
447
|
-
|
|
448
|
-
:param tlist: Time points for evolution
|
|
449
|
-
:type tlist: Tensor
|
|
450
|
-
:param h: Time-independent Hamiltonian matrix
|
|
451
|
-
:type h: Tensor
|
|
452
|
-
:param psi0: Initial state vector
|
|
453
|
-
:type psi0: Tensor
|
|
454
|
-
:param callback: Optional function to process state at each time point
|
|
455
|
-
:type callback: Optional[Callable[..., Any]], optional
|
|
456
|
-
:return: Evolution results at each time point. If callback is None, returns state vectors;
|
|
457
|
-
otherwise returns callback results
|
|
458
|
-
:rtype: Tensor
|
|
459
|
-
|
|
460
|
-
:Example:
|
|
461
|
-
|
|
462
|
-
>>> import tensorcircuit as tc
|
|
463
|
-
>>> import numpy as np
|
|
464
|
-
>>> # Define a simple 2-qubit Hamiltonian
|
|
465
|
-
>>> h = tc.array_to_tensor([
|
|
466
|
-
... [1.0, 0.0, 0.0, 0.0],
|
|
467
|
-
... [0.0, -1.0, 2.0, 0.0],
|
|
468
|
-
... [0.0, 2.0, -1.0, 0.0],
|
|
469
|
-
... [0.0, 0.0, 0.0, 1.0]
|
|
470
|
-
... ])
|
|
471
|
-
>>> # Initial state |00⟩
|
|
472
|
-
>>> psi0 = tc.array_to_tensor([1.0, 0.0, 0.0, 0.0])
|
|
473
|
-
>>> # Evolution times
|
|
474
|
-
>>> times = tc.array_to_tensor([0.0, 0.5, 1.0])
|
|
475
|
-
>>> # Evolve and get states
|
|
476
|
-
>>> states = tc.experimental.hamiltonian_evol(times, h, psi0)
|
|
477
|
-
>>> print(states.shape) # (3, 4)
|
|
478
|
-
|
|
479
|
-
|
|
480
|
-
Note:
|
|
481
|
-
1. The Hamiltonian must be time-independent
|
|
482
|
-
2. For time-dependent Hamiltonians, use ``evol_local`` or ``evol_global`` instead
|
|
483
|
-
3. The evolution is performed in imaginary time by default (factor -t in exponential)
|
|
484
|
-
4. The state is automatically normalized at each time point
|
|
485
|
-
"""
|
|
486
|
-
es, u = backend.eigh(h)
|
|
487
|
-
utpsi0 = backend.reshape(
|
|
488
|
-
backend.transpose(u) @ backend.reshape(psi0, [-1, 1]), [-1]
|
|
489
|
-
)
|
|
490
|
-
|
|
491
|
-
@backend.jit
|
|
492
|
-
def _evol(t: Tensor) -> Tensor:
|
|
493
|
-
ebetah_utpsi0 = backend.exp(-t * es) * utpsi0
|
|
494
|
-
psi_exact = backend.conj(u) @ backend.reshape(ebetah_utpsi0, [-1, 1])
|
|
495
|
-
psi_exact = backend.reshape(psi_exact, [-1])
|
|
496
|
-
psi_exact = psi_exact / backend.norm(psi_exact)
|
|
497
|
-
if callback is None:
|
|
498
|
-
return psi_exact
|
|
499
|
-
return callback(psi_exact)
|
|
500
|
-
|
|
501
|
-
return backend.stack([_evol(t) for t in tlist])
|
|
502
|
-
|
|
503
|
-
|
|
504
|
-
def evol_local(
|
|
505
|
-
c: Circuit,
|
|
506
|
-
index: Sequence[int],
|
|
507
|
-
h_fun: Callable[..., Tensor],
|
|
508
|
-
t: float,
|
|
509
|
-
*args: Any,
|
|
510
|
-
**solver_kws: Any,
|
|
511
|
-
) -> Circuit:
|
|
512
|
-
"""
|
|
513
|
-
ode evolution of time dependent Hamiltonian on circuit of given indices
|
|
514
|
-
[only jax backend support for now]
|
|
515
|
-
|
|
516
|
-
:param c: _description_
|
|
517
|
-
:type c: Circuit
|
|
518
|
-
:param index: qubit sites to evolve
|
|
519
|
-
:type index: Sequence[int]
|
|
520
|
-
:param h_fun: h_fun should return a dense Hamiltonian matrix
|
|
521
|
-
with input arguments time and *args
|
|
522
|
-
:type h_fun: Callable[..., Tensor]
|
|
523
|
-
:param t: evolution time
|
|
524
|
-
:type t: float
|
|
525
|
-
:return: _description_
|
|
526
|
-
:rtype: Circuit
|
|
527
|
-
"""
|
|
528
|
-
from jax.experimental.ode import odeint
|
|
529
|
-
|
|
530
|
-
s = c.state()
|
|
531
|
-
n = c._nqubits
|
|
532
|
-
l = len(index)
|
|
533
|
-
|
|
534
|
-
def f(y: Tensor, t: Tensor, *args: Any) -> Tensor:
|
|
535
|
-
y = backend.reshape2(y)
|
|
536
|
-
y = Gate(y)
|
|
537
|
-
h = -1.0j * h_fun(t, *args)
|
|
538
|
-
h = backend.reshape2(h)
|
|
539
|
-
h = Gate(h)
|
|
540
|
-
edges = []
|
|
541
|
-
for i in range(n):
|
|
542
|
-
if i not in index:
|
|
543
|
-
edges.append(y[i])
|
|
544
|
-
else:
|
|
545
|
-
j = index.index(i)
|
|
546
|
-
edges.append(h[j])
|
|
547
|
-
h[j + l] ^ y[i]
|
|
548
|
-
y = contractor([y, h], output_edge_order=edges)
|
|
549
|
-
return backend.reshape(y.tensor, [-1])
|
|
550
|
-
|
|
551
|
-
ts = backend.stack([0.0, t])
|
|
552
|
-
ts = backend.cast(ts, dtype=rdtypestr)
|
|
553
|
-
s1 = odeint(f, s, ts, *args, **solver_kws)
|
|
554
|
-
return type(c)(n, inputs=s1[-1])
|
|
555
|
-
|
|
556
|
-
|
|
557
|
-
def evol_global(
|
|
558
|
-
c: Circuit, h_fun: Callable[..., Tensor], t: float, *args: Any, **solver_kws: Any
|
|
559
|
-
) -> Circuit:
|
|
560
|
-
"""
|
|
561
|
-
ode evolution of time dependent Hamiltonian on circuit of all qubits
|
|
562
|
-
[only jax backend support for now]
|
|
563
|
-
|
|
564
|
-
:param c: _description_
|
|
565
|
-
:type c: Circuit
|
|
566
|
-
:param h_fun: h_fun should return a **SPARSE** Hamiltonian matrix
|
|
567
|
-
with input arguments time and *args
|
|
568
|
-
:type h_fun: Callable[..., Tensor]
|
|
569
|
-
:param t: _description_
|
|
570
|
-
:type t: float
|
|
571
|
-
:return: _description_
|
|
572
|
-
:rtype: Circuit
|
|
573
|
-
"""
|
|
574
|
-
from jax.experimental.ode import odeint
|
|
575
|
-
|
|
576
|
-
s = c.state()
|
|
577
|
-
n = c._nqubits
|
|
578
|
-
|
|
579
|
-
def f(y: Tensor, t: Tensor, *args: Any) -> Tensor:
|
|
580
|
-
h = -1.0j * h_fun(t, *args)
|
|
581
|
-
return backend.sparse_dense_matmul(h, y)
|
|
582
|
-
|
|
583
|
-
ts = backend.stack([0.0, t])
|
|
584
|
-
ts = backend.cast(ts, dtype=rdtypestr)
|
|
585
|
-
s1 = odeint(f, s, ts, *args, **solver_kws)
|
|
586
|
-
return type(c)(n, inputs=s1[-1])
|
|
587
|
-
|
|
588
|
-
|
|
589
444
|
def jax_jitted_function_save(filename: str, f: Callable[..., Any], *args: Any) -> None:
|
|
590
445
|
"""
|
|
591
446
|
save a jitted jax function as a file
|
|
@@ -0,0 +1,346 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Analog time evolution engines
|
|
3
|
+
"""
|
|
4
|
+
|
|
5
|
+
from typing import Any, Tuple, Optional, Callable, List, Sequence
|
|
6
|
+
|
|
7
|
+
from .cons import backend, dtypestr, rdtypestr, contractor
|
|
8
|
+
from .gates import Gate
|
|
9
|
+
|
|
10
|
+
Tensor = Any
|
|
11
|
+
Circuit = Any
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
def lanczos_iteration(
|
|
15
|
+
hamiltonian: Tensor, initial_vector: Tensor, subspace_dimension: int
|
|
16
|
+
) -> Tuple[Tensor, Tensor]:
|
|
17
|
+
"""
|
|
18
|
+
Use Lanczos algorithm to construct orthogonal basis and projected Hamiltonian
|
|
19
|
+
of Krylov subspace.
|
|
20
|
+
|
|
21
|
+
:param hamiltonian: Sparse or dense Hamiltonian matrix
|
|
22
|
+
:type hamiltonian: Tensor
|
|
23
|
+
:param initial_vector: Initial quantum state vector
|
|
24
|
+
:type initial_vector: Tensor
|
|
25
|
+
:param subspace_dimension: Dimension of Krylov subspace
|
|
26
|
+
:type subspace_dimension: int
|
|
27
|
+
:return: Tuple containing (basis matrix, projected Hamiltonian)
|
|
28
|
+
:rtype: Tuple[Tensor, Tensor]
|
|
29
|
+
"""
|
|
30
|
+
# Initialize
|
|
31
|
+
vector = initial_vector
|
|
32
|
+
vector = backend.cast(vector, dtypestr)
|
|
33
|
+
|
|
34
|
+
# Use list to store basis vectors
|
|
35
|
+
basis_vectors: List[Any] = []
|
|
36
|
+
|
|
37
|
+
# Store alpha and beta coefficients for constructing tridiagonal matrix
|
|
38
|
+
alphas = []
|
|
39
|
+
betas = []
|
|
40
|
+
|
|
41
|
+
# Normalize initial vector
|
|
42
|
+
vector_norm = backend.norm(vector)
|
|
43
|
+
vector = vector / vector_norm
|
|
44
|
+
|
|
45
|
+
# Add first basis vector
|
|
46
|
+
basis_vectors.append(vector)
|
|
47
|
+
|
|
48
|
+
# Lanczos iteration (fixed number of iterations for JIT compatibility)
|
|
49
|
+
for j in range(subspace_dimension):
|
|
50
|
+
# Calculate H|v_j>
|
|
51
|
+
if backend.is_sparse(hamiltonian):
|
|
52
|
+
w = backend.sparse_dense_matmul(hamiltonian, vector)
|
|
53
|
+
else:
|
|
54
|
+
w = backend.matvec(hamiltonian, vector)
|
|
55
|
+
|
|
56
|
+
# Calculate alpha_j = <v_j|H|v_j>
|
|
57
|
+
alpha = backend.real(backend.sum(backend.conj(vector) * w))
|
|
58
|
+
alphas.append(alpha)
|
|
59
|
+
|
|
60
|
+
# w = H|v_j> - alpha_j|v_j> - beta_{j-1}|v_{j-1}>
|
|
61
|
+
# is not sufficient, require re-normalization
|
|
62
|
+
w = w - backend.cast(alpha, dtypestr) * vector
|
|
63
|
+
|
|
64
|
+
for k in range(j + 1):
|
|
65
|
+
v_k = basis_vectors[k]
|
|
66
|
+
projection = backend.sum(backend.conj(v_k) * w)
|
|
67
|
+
w = w - projection * v_k
|
|
68
|
+
|
|
69
|
+
# if j > 0:
|
|
70
|
+
# w = w - prev_beta * basis_vectors[-2]
|
|
71
|
+
|
|
72
|
+
# Calculate beta_{j+1} = ||w||
|
|
73
|
+
beta = backend.norm(w)
|
|
74
|
+
betas.append(beta)
|
|
75
|
+
|
|
76
|
+
# Use regularization technique to avoid division by zero error,
|
|
77
|
+
# adding small epsilon value to ensure numerical stability
|
|
78
|
+
epsilon = 1e-15
|
|
79
|
+
norm_factor = 1.0 / (beta + epsilon)
|
|
80
|
+
|
|
81
|
+
# Normalize w to get |v_{j+1}> (except for the last iteration)
|
|
82
|
+
if j < subspace_dimension - 1:
|
|
83
|
+
vector = w * backend.cast(norm_factor, dtypestr)
|
|
84
|
+
basis_vectors.append(vector)
|
|
85
|
+
|
|
86
|
+
# Construct final basis matrix
|
|
87
|
+
basis_matrix = backend.stack(basis_vectors, axis=1)
|
|
88
|
+
|
|
89
|
+
# Construct tridiagonal projected Hamiltonian
|
|
90
|
+
# Use vectorized method to construct tridiagonal matrix at once
|
|
91
|
+
alphas_tensor = backend.stack(alphas)
|
|
92
|
+
# Only use first krylov_dim-1 beta values to construct off-diagonal
|
|
93
|
+
betas_tensor = backend.stack(betas[:-1]) if len(betas) > 1 else backend.stack([])
|
|
94
|
+
|
|
95
|
+
# Convert to correct data type
|
|
96
|
+
alphas_tensor = backend.cast(alphas_tensor, dtype=dtypestr)
|
|
97
|
+
if len(betas_tensor) > 0:
|
|
98
|
+
betas_tensor = backend.cast(betas_tensor, dtype=dtypestr)
|
|
99
|
+
|
|
100
|
+
# Construct diagonal and off-diagonal parts
|
|
101
|
+
diag_part = backend.diagflat(alphas_tensor)
|
|
102
|
+
if len(betas_tensor) > 0:
|
|
103
|
+
off_diag_part = backend.diagflat(betas_tensor, k=1)
|
|
104
|
+
projected_hamiltonian = (
|
|
105
|
+
diag_part + off_diag_part + backend.transpose(off_diag_part)
|
|
106
|
+
)
|
|
107
|
+
else:
|
|
108
|
+
projected_hamiltonian = diag_part
|
|
109
|
+
|
|
110
|
+
return basis_matrix, projected_hamiltonian
|
|
111
|
+
|
|
112
|
+
|
|
113
|
+
def krylov_evol(
|
|
114
|
+
hamiltonian: Tensor,
|
|
115
|
+
initial_state: Tensor,
|
|
116
|
+
time_points: Tensor,
|
|
117
|
+
subspace_dimension: int,
|
|
118
|
+
callback: Optional[Callable[[Any], Any]] = None,
|
|
119
|
+
) -> Any:
|
|
120
|
+
"""
|
|
121
|
+
Perform quantum state time evolution using Krylov subspace method.
|
|
122
|
+
|
|
123
|
+
:param hamiltonian: Sparse or dense Hamiltonian matrix
|
|
124
|
+
:type hamiltonian: Tensor
|
|
125
|
+
:param initial_state: Initial quantum state
|
|
126
|
+
:type initial_state: Tensor
|
|
127
|
+
:param time_points: List of time points
|
|
128
|
+
:type time_points: Tensor
|
|
129
|
+
:param subspace_dimension: Krylov subspace dimension
|
|
130
|
+
:type subspace_dimension: int
|
|
131
|
+
:param callback: Optional callback function applied to quantum state at
|
|
132
|
+
each evolution time point, return some observables
|
|
133
|
+
:type callback: Optional[Callable[[Any], Any]], optional
|
|
134
|
+
:return: List of evolved quantum states, or list of callback function results
|
|
135
|
+
(if callback provided)
|
|
136
|
+
:rtype: Any
|
|
137
|
+
"""
|
|
138
|
+
# TODO(@refraction-ray): stable and efficient AD is to be investigated
|
|
139
|
+
basis_matrix, projected_hamiltonian = lanczos_iteration(
|
|
140
|
+
hamiltonian, initial_state, subspace_dimension
|
|
141
|
+
)
|
|
142
|
+
initial_state = backend.cast(initial_state, dtypestr)
|
|
143
|
+
# Project initial state to Krylov subspace: |psi_proj> = V_m^† |psi(0)>
|
|
144
|
+
projected_state = backend.matvec(
|
|
145
|
+
backend.conj(backend.transpose(basis_matrix)), initial_state
|
|
146
|
+
)
|
|
147
|
+
|
|
148
|
+
# Perform spectral decomposition of projected Hamiltonian: T_m = U D U^†
|
|
149
|
+
eigenvalues, eigenvectors = backend.eigh(projected_hamiltonian)
|
|
150
|
+
eigenvalues = backend.cast(eigenvalues, dtypestr)
|
|
151
|
+
time_points = backend.convert_to_tensor(time_points)
|
|
152
|
+
time_points = backend.cast(time_points, dtypestr)
|
|
153
|
+
|
|
154
|
+
# Transform projected state to eigenbasis: |psi_coeff> = U^† |psi_proj>
|
|
155
|
+
eigenvectors_projected_state = backend.matvec(
|
|
156
|
+
backend.conj(backend.transpose(eigenvectors)), projected_state
|
|
157
|
+
)
|
|
158
|
+
|
|
159
|
+
# Calculate exp(-i*projected_H*t) * projected_state
|
|
160
|
+
results = []
|
|
161
|
+
for t in time_points:
|
|
162
|
+
# Calculate exp(-i*eigenvalues*t)
|
|
163
|
+
exp_diagonal = backend.exp(-1j * eigenvalues * t)
|
|
164
|
+
|
|
165
|
+
# Evolve state in eigenbasis: |psi_evolved_coeff> = exp(-i*D*t) |psi_coeff>
|
|
166
|
+
evolved_projected_coeff = exp_diagonal * eigenvectors_projected_state
|
|
167
|
+
|
|
168
|
+
# Transform back to eigenbasis: |psi_evolved_proj> = U |psi_evolved_coeff>
|
|
169
|
+
evolved_projected = backend.matvec(eigenvectors, evolved_projected_coeff)
|
|
170
|
+
|
|
171
|
+
# Transform back to original basis: |psi(t)> = V_m |psi_evolved_proj>
|
|
172
|
+
evolved_state = backend.matvec(basis_matrix, evolved_projected)
|
|
173
|
+
|
|
174
|
+
# Apply callback function if provided
|
|
175
|
+
if callback is not None:
|
|
176
|
+
result = callback(evolved_state)
|
|
177
|
+
else:
|
|
178
|
+
result = evolved_state
|
|
179
|
+
|
|
180
|
+
results.append(result)
|
|
181
|
+
|
|
182
|
+
return backend.stack(results)
|
|
183
|
+
|
|
184
|
+
|
|
185
|
+
def hamiltonian_evol(
|
|
186
|
+
tlist: Tensor,
|
|
187
|
+
h: Tensor,
|
|
188
|
+
psi0: Tensor,
|
|
189
|
+
callback: Optional[Callable[..., Any]] = None,
|
|
190
|
+
) -> Tensor:
|
|
191
|
+
"""
|
|
192
|
+
Fast implementation of time independent Hamiltonian evolution using eigendecomposition.
|
|
193
|
+
By default, performs imaginary time evolution.
|
|
194
|
+
|
|
195
|
+
:param tlist: Time points for evolution
|
|
196
|
+
:type tlist: Tensor
|
|
197
|
+
:param h: Time-independent Hamiltonian matrix
|
|
198
|
+
:type h: Tensor
|
|
199
|
+
:param psi0: Initial state vector
|
|
200
|
+
:type psi0: Tensor
|
|
201
|
+
:param callback: Optional function to process state at each time point
|
|
202
|
+
:type callback: Optional[Callable[..., Any]], optional
|
|
203
|
+
:return: Evolution results at each time point. If callback is None, returns state vectors;
|
|
204
|
+
otherwise returns callback results
|
|
205
|
+
:rtype: Tensor
|
|
206
|
+
|
|
207
|
+
:Example:
|
|
208
|
+
|
|
209
|
+
>>> import tensorcircuit as tc
|
|
210
|
+
>>> import numpy as np
|
|
211
|
+
>>> # Define a simple 2-qubit Hamiltonian
|
|
212
|
+
>>> h = tc.array_to_tensor([
|
|
213
|
+
... [1.0, 0.0, 0.0, 0.0],
|
|
214
|
+
... [0.0, -1.0, 2.0, 0.0],
|
|
215
|
+
... [0.0, 2.0, -1.0, 0.0],
|
|
216
|
+
... [0.0, 0.0, 0.0, 1.0]
|
|
217
|
+
... ])
|
|
218
|
+
>>> # Initial state |00⟩
|
|
219
|
+
>>> psi0 = tc.array_to_tensor([1.0, 0.0, 0.0, 0.0])
|
|
220
|
+
>>> # Evolution times
|
|
221
|
+
>>> times = tc.array_to_tensor([0.0, 0.5, 1.0])
|
|
222
|
+
>>> # Evolve and get states
|
|
223
|
+
>>> states = tc.experimental.hamiltonian_evol(times, h, psi0)
|
|
224
|
+
>>> print(states.shape) # (3, 4)
|
|
225
|
+
|
|
226
|
+
|
|
227
|
+
Note:
|
|
228
|
+
1. The Hamiltonian must be time-independent
|
|
229
|
+
2. For time-dependent Hamiltonians, use ``evol_local`` or ``evol_global`` instead
|
|
230
|
+
3. The evolution is performed in imaginary time by default (factor -t in exponential)
|
|
231
|
+
4. The state is automatically normalized at each time point
|
|
232
|
+
"""
|
|
233
|
+
psi0 = backend.cast(psi0, dtypestr)
|
|
234
|
+
es, u = backend.eigh(h)
|
|
235
|
+
u = backend.cast(u, dtypestr)
|
|
236
|
+
utpsi0 = backend.reshape(
|
|
237
|
+
backend.transpose(u) @ backend.reshape(psi0, [-1, 1]), [-1]
|
|
238
|
+
)
|
|
239
|
+
es = backend.cast(es, dtypestr)
|
|
240
|
+
tlist = backend.cast(backend.convert_to_tensor(tlist), dtypestr)
|
|
241
|
+
|
|
242
|
+
@backend.jit
|
|
243
|
+
def _evol(t: Tensor) -> Tensor:
|
|
244
|
+
ebetah_utpsi0 = backend.exp(-t * es) * utpsi0
|
|
245
|
+
psi_exact = backend.conj(u) @ backend.reshape(ebetah_utpsi0, [-1, 1])
|
|
246
|
+
psi_exact = backend.reshape(psi_exact, [-1])
|
|
247
|
+
psi_exact = psi_exact / backend.norm(psi_exact)
|
|
248
|
+
if callback is None:
|
|
249
|
+
return psi_exact
|
|
250
|
+
return callback(psi_exact)
|
|
251
|
+
|
|
252
|
+
return backend.stack([_evol(t) for t in tlist])
|
|
253
|
+
|
|
254
|
+
|
|
255
|
+
ed_evol = hamiltonian_evol
|
|
256
|
+
|
|
257
|
+
|
|
258
|
+
def evol_local(
|
|
259
|
+
c: Circuit,
|
|
260
|
+
index: Sequence[int],
|
|
261
|
+
h_fun: Callable[..., Tensor],
|
|
262
|
+
t: float,
|
|
263
|
+
*args: Any,
|
|
264
|
+
**solver_kws: Any,
|
|
265
|
+
) -> Circuit:
|
|
266
|
+
"""
|
|
267
|
+
ode evolution of time dependent Hamiltonian on circuit of given indices
|
|
268
|
+
[only jax backend support for now]
|
|
269
|
+
|
|
270
|
+
:param c: _description_
|
|
271
|
+
:type c: Circuit
|
|
272
|
+
:param index: qubit sites to evolve
|
|
273
|
+
:type index: Sequence[int]
|
|
274
|
+
:param h_fun: h_fun should return a dense Hamiltonian matrix
|
|
275
|
+
with input arguments time and *args
|
|
276
|
+
:type h_fun: Callable[..., Tensor]
|
|
277
|
+
:param t: evolution time
|
|
278
|
+
:type t: float
|
|
279
|
+
:return: _description_
|
|
280
|
+
:rtype: Circuit
|
|
281
|
+
"""
|
|
282
|
+
from jax.experimental.ode import odeint
|
|
283
|
+
|
|
284
|
+
s = c.state()
|
|
285
|
+
n = c._nqubits
|
|
286
|
+
l = len(index)
|
|
287
|
+
|
|
288
|
+
def f(y: Tensor, t: Tensor, *args: Any) -> Tensor:
|
|
289
|
+
y = backend.reshape2(y)
|
|
290
|
+
y = Gate(y)
|
|
291
|
+
h = -1.0j * h_fun(t, *args)
|
|
292
|
+
h = backend.reshape2(h)
|
|
293
|
+
h = Gate(h)
|
|
294
|
+
edges = []
|
|
295
|
+
for i in range(n):
|
|
296
|
+
if i not in index:
|
|
297
|
+
edges.append(y[i])
|
|
298
|
+
else:
|
|
299
|
+
j = index.index(i)
|
|
300
|
+
edges.append(h[j])
|
|
301
|
+
h[j + l] ^ y[i]
|
|
302
|
+
y = contractor([y, h], output_edge_order=edges)
|
|
303
|
+
return backend.reshape(y.tensor, [-1])
|
|
304
|
+
|
|
305
|
+
ts = backend.stack([0.0, t])
|
|
306
|
+
ts = backend.cast(ts, dtype=rdtypestr)
|
|
307
|
+
s1 = odeint(f, s, ts, *args, **solver_kws)
|
|
308
|
+
return type(c)(n, inputs=s1[-1])
|
|
309
|
+
|
|
310
|
+
|
|
311
|
+
ode_evol_local = evol_local
|
|
312
|
+
|
|
313
|
+
|
|
314
|
+
def evol_global(
|
|
315
|
+
c: Circuit, h_fun: Callable[..., Tensor], t: float, *args: Any, **solver_kws: Any
|
|
316
|
+
) -> Circuit:
|
|
317
|
+
"""
|
|
318
|
+
ode evolution of time dependent Hamiltonian on circuit of all qubits
|
|
319
|
+
[only jax backend support for now]
|
|
320
|
+
|
|
321
|
+
:param c: _description_
|
|
322
|
+
:type c: Circuit
|
|
323
|
+
:param h_fun: h_fun should return a **SPARSE** Hamiltonian matrix
|
|
324
|
+
with input arguments time and *args
|
|
325
|
+
:type h_fun: Callable[..., Tensor]
|
|
326
|
+
:param t: _description_
|
|
327
|
+
:type t: float
|
|
328
|
+
:return: _description_
|
|
329
|
+
:rtype: Circuit
|
|
330
|
+
"""
|
|
331
|
+
from jax.experimental.ode import odeint
|
|
332
|
+
|
|
333
|
+
s = c.state()
|
|
334
|
+
n = c._nqubits
|
|
335
|
+
|
|
336
|
+
def f(y: Tensor, t: Tensor, *args: Any) -> Tensor:
|
|
337
|
+
h = -1.0j * h_fun(t, *args)
|
|
338
|
+
return backend.sparse_dense_matmul(h, y)
|
|
339
|
+
|
|
340
|
+
ts = backend.stack([0.0, t])
|
|
341
|
+
ts = backend.cast(ts, dtype=rdtypestr)
|
|
342
|
+
s1 = odeint(f, s, ts, *args, **solver_kws)
|
|
343
|
+
return type(c)(n, inputs=s1[-1])
|
|
344
|
+
|
|
345
|
+
|
|
346
|
+
ode_evol_global = evol_global
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: tensorcircuit-nightly
|
|
3
|
-
Version: 1.3.0.
|
|
3
|
+
Version: 1.3.0.dev20250729
|
|
4
4
|
Summary: nightly release for tensorcircuit
|
|
5
5
|
Home-page: https://github.com/refraction-ray/tensorcircuit-dev
|
|
6
6
|
Author: TensorCircuit Authors
|
|
@@ -70,7 +70,7 @@ TensorCircuit-NG is the actively maintained official version and a [fully compat
|
|
|
70
70
|
|
|
71
71
|
Please begin with [Quick Start](/docs/source/quickstart.rst) in the [full documentation](https://tensorcircuit-ng.readthedocs.io/).
|
|
72
72
|
|
|
73
|
-
For more information on software usage, sota algorithm implementation and engineer paradigm demonstration, please refer to 80+ [example scripts](/examples) and 30+ [tutorial notebooks](https://tensorcircuit-ng.readthedocs.io/en/latest/#tutorials). API docstrings and test cases in [tests](/tests) are also informative. One can also refer to tensorcircuit-ng [
|
|
73
|
+
For more information on software usage, sota algorithm implementation and engineer paradigm demonstration, please refer to 80+ [example scripts](/examples) and 30+ [tutorial notebooks](https://tensorcircuit-ng.readthedocs.io/en/latest/#tutorials). API docstrings and test cases in [tests](/tests) are also informative. One can also refer to AI-native docs for tensorcircuit-ng: [Devin Deepwiki](https://deepwiki.com/tensorcircuit/tensorcircuit-ng) and [Context7 MCP](https://context7.com/tensorcircuit/tensorcircuit-ng).
|
|
74
74
|
|
|
75
75
|
For beginners, please refer to [quantum computing lectures with TC-NG](https://github.com/sxzgroup/qc_lecture) to learn both quantum computing basics and representative usage of TensorCircuit-NG.
|
|
76
76
|
|
|
@@ -41,6 +41,7 @@ tensorcircuit/quantum.py
|
|
|
41
41
|
tensorcircuit/shadows.py
|
|
42
42
|
tensorcircuit/simplify.py
|
|
43
43
|
tensorcircuit/stabilizercircuit.py
|
|
44
|
+
tensorcircuit/timeevol.py
|
|
44
45
|
tensorcircuit/torchnn.py
|
|
45
46
|
tensorcircuit/translation.py
|
|
46
47
|
tensorcircuit/utils.py
|
|
@@ -141,5 +142,6 @@ tests/test_shadows.py
|
|
|
141
142
|
tests/test_simplify.py
|
|
142
143
|
tests/test_stabilizer.py
|
|
143
144
|
tests/test_templates.py
|
|
145
|
+
tests/test_timeevol.py
|
|
144
146
|
tests/test_torchnn.py
|
|
145
147
|
tests/test_van.py
|