tensorcircuit-nightly 1.2.0.dev20250309__tar.gz → 1.4.0.dev20251226__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/CHANGELOG.md +98 -0
- tensorcircuit_nightly-1.4.0.dev20251226/MANIFEST.in +13 -0
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/PKG-INFO +86 -32
- tensorcircuit_nightly-1.2.0.dev20250309/tensorcircuit_nightly.egg-info/PKG-INFO → tensorcircuit_nightly-1.4.0.dev20251226/README.md +69 -50
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/README_cn.md +8 -4
- tensorcircuit_nightly-1.4.0.dev20251226/pyproject.toml +75 -0
- tensorcircuit_nightly-1.4.0.dev20251226/setup.py +4 -0
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/__init__.py +5 -1
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/abstractcircuit.py +4 -0
- tensorcircuit_nightly-1.4.0.dev20251226/tensorcircuit/analogcircuit.py +413 -0
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/applications/layers.py +1 -1
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/applications/van.py +1 -1
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/backends/abstract_backend.py +312 -5
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/backends/cupy_backend.py +3 -1
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/backends/jax_backend.py +100 -4
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/backends/jax_ops.py +108 -0
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/backends/numpy_backend.py +49 -3
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/backends/pytorch_backend.py +92 -3
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/backends/tensorflow_backend.py +102 -3
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/basecircuit.py +157 -98
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/circuit.py +115 -57
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/cloud/local.py +1 -1
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/cloud/quafu_provider.py +1 -1
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/cloud/tencent.py +1 -1
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/compiler/simple_compiler.py +2 -2
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/cons.py +105 -23
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/densitymatrix.py +16 -11
- tensorcircuit_nightly-1.4.0.dev20251226/tensorcircuit/experimental.py +1208 -0
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/fgs.py +254 -73
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/gates.py +66 -22
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/interfaces/jax.py +5 -3
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/interfaces/tensortrans.py +6 -2
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/interfaces/torch.py +14 -4
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/keras.py +3 -3
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/mpscircuit.py +154 -65
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/quantum.py +698 -134
- tensorcircuit_nightly-1.4.0.dev20251226/tensorcircuit/quditcircuit.py +733 -0
- tensorcircuit_nightly-1.4.0.dev20251226/tensorcircuit/quditgates.py +618 -0
- tensorcircuit_nightly-1.4.0.dev20251226/tensorcircuit/results/counts.py +251 -0
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/results/readout_mitigation.py +4 -1
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/shadows.py +1 -1
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/simplify.py +3 -1
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/stabilizercircuit.py +29 -17
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/templates/__init__.py +2 -0
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/templates/blocks.py +2 -2
- tensorcircuit_nightly-1.4.0.dev20251226/tensorcircuit/templates/hamiltonians.py +174 -0
- tensorcircuit_nightly-1.4.0.dev20251226/tensorcircuit/templates/lattice.py +1789 -0
- tensorcircuit_nightly-1.4.0.dev20251226/tensorcircuit/timeevol.py +896 -0
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/translation.py +10 -3
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/utils.py +7 -0
- tensorcircuit_nightly-1.2.0.dev20250309/README.md → tensorcircuit_nightly-1.4.0.dev20251226/tensorcircuit_nightly.egg-info/PKG-INFO +104 -16
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit_nightly.egg-info/SOURCES.txt +8 -46
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit_nightly.egg-info/requires.txt +7 -1
- tensorcircuit_nightly-1.4.0.dev20251226/tensorcircuit_nightly.egg-info/top_level.txt +8 -0
- tensorcircuit_nightly-1.2.0.dev20250309/MANIFEST.in +0 -7
- tensorcircuit_nightly-1.2.0.dev20250309/docs/source/advance.rst +0 -576
- tensorcircuit_nightly-1.2.0.dev20250309/docs/source/cnconf.py +0 -208
- tensorcircuit_nightly-1.2.0.dev20250309/docs/source/conf.py +0 -212
- tensorcircuit_nightly-1.2.0.dev20250309/docs/source/contribution.rst +0 -272
- tensorcircuit_nightly-1.2.0.dev20250309/docs/source/faq.rst +0 -279
- tensorcircuit_nightly-1.2.0.dev20250309/docs/source/generate_rst.py +0 -117
- tensorcircuit_nightly-1.2.0.dev20250309/docs/source/index.rst +0 -229
- tensorcircuit_nightly-1.2.0.dev20250309/docs/source/infras.rst +0 -183
- tensorcircuit_nightly-1.2.0.dev20250309/docs/source/modules.rst +0 -32
- tensorcircuit_nightly-1.2.0.dev20250309/docs/source/modules.rst.backup +0 -29
- tensorcircuit_nightly-1.2.0.dev20250309/docs/source/quickstart.rst +0 -985
- tensorcircuit_nightly-1.2.0.dev20250309/docs/source/sharpbits.rst +0 -243
- tensorcircuit_nightly-1.2.0.dev20250309/docs/source/textbooktoc.rst +0 -11
- tensorcircuit_nightly-1.2.0.dev20250309/docs/source/tutorial.rst +0 -31
- tensorcircuit_nightly-1.2.0.dev20250309/docs/source/tutorial_cn.rst +0 -23
- tensorcircuit_nightly-1.2.0.dev20250309/docs/source/whitepapertoc.rst +0 -15
- tensorcircuit_nightly-1.2.0.dev20250309/docs/source/whitepapertoc_cn.rst +0 -15
- tensorcircuit_nightly-1.2.0.dev20250309/setup.py +0 -38
- tensorcircuit_nightly-1.2.0.dev20250309/tensorcircuit/experimental.py +0 -628
- tensorcircuit_nightly-1.2.0.dev20250309/tensorcircuit/results/counts.py +0 -138
- tensorcircuit_nightly-1.2.0.dev20250309/tensorcircuit_nightly.egg-info/top_level.txt +0 -2
- tensorcircuit_nightly-1.2.0.dev20250309/tests/__init__.py +0 -0
- tensorcircuit_nightly-1.2.0.dev20250309/tests/conftest.py +0 -67
- tensorcircuit_nightly-1.2.0.dev20250309/tests/test_backends.py +0 -1035
- tensorcircuit_nightly-1.2.0.dev20250309/tests/test_calibrating.py +0 -149
- tensorcircuit_nightly-1.2.0.dev20250309/tests/test_channels.py +0 -409
- tensorcircuit_nightly-1.2.0.dev20250309/tests/test_circuit.py +0 -1699
- tensorcircuit_nightly-1.2.0.dev20250309/tests/test_cloud.py +0 -219
- tensorcircuit_nightly-1.2.0.dev20250309/tests/test_compiler.py +0 -147
- tensorcircuit_nightly-1.2.0.dev20250309/tests/test_dmcircuit.py +0 -555
- tensorcircuit_nightly-1.2.0.dev20250309/tests/test_ensemble.py +0 -72
- tensorcircuit_nightly-1.2.0.dev20250309/tests/test_fgs.py +0 -310
- tensorcircuit_nightly-1.2.0.dev20250309/tests/test_gates.py +0 -156
- tensorcircuit_nightly-1.2.0.dev20250309/tests/test_interfaces.py +0 -562
- tensorcircuit_nightly-1.2.0.dev20250309/tests/test_keras.py +0 -160
- tensorcircuit_nightly-1.2.0.dev20250309/tests/test_miscs.py +0 -282
- tensorcircuit_nightly-1.2.0.dev20250309/tests/test_mpscircuit.py +0 -341
- tensorcircuit_nightly-1.2.0.dev20250309/tests/test_noisemodel.py +0 -156
- tensorcircuit_nightly-1.2.0.dev20250309/tests/test_qaoa.py +0 -86
- tensorcircuit_nightly-1.2.0.dev20250309/tests/test_qem.py +0 -152
- tensorcircuit_nightly-1.2.0.dev20250309/tests/test_quantum.py +0 -549
- tensorcircuit_nightly-1.2.0.dev20250309/tests/test_quantum_attr.py +0 -42
- tensorcircuit_nightly-1.2.0.dev20250309/tests/test_results.py +0 -380
- tensorcircuit_nightly-1.2.0.dev20250309/tests/test_shadows.py +0 -160
- tensorcircuit_nightly-1.2.0.dev20250309/tests/test_simplify.py +0 -46
- tensorcircuit_nightly-1.2.0.dev20250309/tests/test_stabilizer.py +0 -217
- tensorcircuit_nightly-1.2.0.dev20250309/tests/test_templates.py +0 -218
- tensorcircuit_nightly-1.2.0.dev20250309/tests/test_torchnn.py +0 -99
- tensorcircuit_nightly-1.2.0.dev20250309/tests/test_van.py +0 -102
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/HISTORY.md +0 -0
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/LICENSE +0 -0
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/setup.cfg +0 -0
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/about.py +0 -0
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/applications/__init__.py +0 -0
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/applications/ai/__init__.py +0 -0
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/applications/ai/ensemble.py +0 -0
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/applications/dqas.py +0 -0
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/applications/finance/__init__.py +0 -0
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/applications/finance/portfolio.py +0 -0
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/applications/graphdata.py +0 -0
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/applications/optimization.py +0 -0
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/applications/physics/__init__.py +0 -0
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/applications/physics/baseline.py +0 -0
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/applications/physics/fss.py +0 -0
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/applications/utils.py +0 -0
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/applications/vags.py +0 -0
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/applications/vqes.py +0 -0
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/asciiart.py +0 -0
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/backends/__init__.py +0 -0
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/backends/backend_factory.py +0 -0
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/backends/pytorch_ops.py +0 -0
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/backends/tf_ops.py +0 -0
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/channels.py +0 -0
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/cloud/__init__.py +0 -0
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/cloud/abstraction.py +0 -0
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/cloud/apis.py +0 -0
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/cloud/config.py +0 -0
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/cloud/utils.py +0 -0
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/cloud/wrapper.py +0 -0
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/compiler/__init__.py +0 -0
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/compiler/composed_compiler.py +0 -0
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/compiler/qiskit_compiler.py +0 -0
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/interfaces/__init__.py +0 -0
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/interfaces/numpy.py +0 -0
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/interfaces/scipy.py +0 -0
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/interfaces/tensorflow.py +0 -0
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/mps_base.py +0 -0
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/noisemodel.py +0 -0
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/results/__init__.py +0 -0
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/results/qem/__init__.py +0 -0
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/results/qem/benchmark_circuits.py +0 -0
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/results/qem/qem_methods.py +0 -0
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/templates/ansatz.py +0 -0
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/templates/chems.py +0 -0
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/templates/conversions.py +0 -0
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/templates/dataset.py +0 -0
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/templates/graphs.py +0 -0
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/templates/measurements.py +0 -0
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/torchnn.py +0 -0
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/vis.py +0 -0
- {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit_nightly.egg-info/dependency_links.txt +0 -0
{tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/CHANGELOG.md
RENAMED
|
@@ -2,6 +2,104 @@
|
|
|
2
2
|
|
|
3
3
|
## Unreleased
|
|
4
4
|
|
|
5
|
+
### Added
|
|
6
|
+
|
|
7
|
+
- Add `tc.AnalogCircuit` for digital-analog hybrid simulation.
|
|
8
|
+
|
|
9
|
+
- Add sparse matrix related methods for pytorch backend.
|
|
10
|
+
|
|
11
|
+
- Add exp and expm for torch backend.
|
|
12
|
+
|
|
13
|
+
- Add `su4` as a generic parameterized two-qubit gates.
|
|
14
|
+
|
|
15
|
+
- Add multi controller jax support for distrubuted contraction.
|
|
16
|
+
|
|
17
|
+
### Fixed
|
|
18
|
+
|
|
19
|
+
- Fix the breaking logic change in jax from dlpack API, dlcapsule -> tensor.
|
|
20
|
+
|
|
21
|
+
- Better torch interface for dlpack translation.
|
|
22
|
+
|
|
23
|
+
## v1.4.0
|
|
24
|
+
|
|
25
|
+
### Added
|
|
26
|
+
|
|
27
|
+
- Add new module `tc.timeevol` for different types of time evolution solvers.
|
|
28
|
+
|
|
29
|
+
- Add qudit circuit support with `tc.QuditCircuit` class.
|
|
30
|
+
|
|
31
|
+
- Add `special_jv` for numpy and jax backends.
|
|
32
|
+
|
|
33
|
+
- Add `jaxy_scan` for numpy and jax backends, contrasting to the tf style original backend scan method.
|
|
34
|
+
|
|
35
|
+
- Add `sparse_csr_from_coo` method for numpy and jax backends to convert COO format to CSR format, the latter is more efficient for `sparse_dense_matmul`.
|
|
36
|
+
|
|
37
|
+
- Add `krylov_evol` method for krylov evolution.
|
|
38
|
+
|
|
39
|
+
- Add `chebyshev_evol` method for chebyshev polynomial evolution.
|
|
40
|
+
|
|
41
|
+
- Add `ode_evol_local` and `ode_evol_global` methods for local and global ODE evolution.
|
|
42
|
+
|
|
43
|
+
- Introducing pyproject.toml finally
|
|
44
|
+
|
|
45
|
+
- Add `argsort` method for backends
|
|
46
|
+
|
|
47
|
+
- Add transformation method between tensornetwork, quimb, tenpy and QuOperator in tc-ng including `qop2tenpy`, `qop2quimb`, `qop2tn`, `tenpy2qop`, support both MPS and MPO formats.
|
|
48
|
+
|
|
49
|
+
- Make the lattice module backend agnostic, now the lattice follows `tc.set_backend`.
|
|
50
|
+
|
|
51
|
+
- Add diffrax backend for ode solver in timeevol module.
|
|
52
|
+
|
|
53
|
+
### Fixed
|
|
54
|
+
|
|
55
|
+
- Fixed `one_hot` in numpy backend.
|
|
56
|
+
|
|
57
|
+
- Fixed `scan` in tensorflow backend and numpy backend.
|
|
58
|
+
|
|
59
|
+
- Fix potential np.matrix return from `PaulistringSum2Dense`.
|
|
60
|
+
|
|
61
|
+
- `MPSCircuit` now will first try to transform `QuVector` input to tensors directly instead of evaluating it to dense wavefunction first.
|
|
62
|
+
|
|
63
|
+
- Fix to use `status` for `circuit.sample` when `allow_state=True`.
|
|
64
|
+
|
|
65
|
+
- Fix sample bug when number of qubit exceeding 32.
|
|
66
|
+
|
|
67
|
+
### Changed
|
|
68
|
+
|
|
69
|
+
- The order of arguments of `tc.timeevol.ed_evol` are changed for consistent interface with other evolution methods.
|
|
70
|
+
|
|
71
|
+
## v1.3.0
|
|
72
|
+
|
|
73
|
+
### Added
|
|
74
|
+
|
|
75
|
+
- Add `Lattice` module (`tensorcircuit.templates.lattice`) for creating and manipulating various lattice geometries, including `SquareLattice`, `HoneycombLattice`, and `CustomizeLattice`.
|
|
76
|
+
|
|
77
|
+
- Add `tc.templates.hamiltonians` for commom systems.
|
|
78
|
+
|
|
79
|
+
- Add `DistributedContractor` in experimental module with new examples for fast implementation of distribution circuit simulation on jax backend.
|
|
80
|
+
|
|
81
|
+
- Add `circuit.amplitude_before()` method to return the corresponding tensornetwork nodes.
|
|
82
|
+
|
|
83
|
+
- Add `with_prob` for `stabilizercircuit.measure()`.
|
|
84
|
+
|
|
85
|
+
- Add `tc.cons.function_nodes_capture` decorator and `tc.cons.runtime_nodes_capture` context manager for directly return nodes before real contraction.
|
|
86
|
+
|
|
87
|
+
### Fixed
|
|
88
|
+
|
|
89
|
+
- Fix the nodes order in contraction by giving each node a global `_stable_id_`.
|
|
90
|
+
|
|
91
|
+
- Fix `to_dlpack` for jax version >= 0.7.
|
|
92
|
+
|
|
93
|
+
- Fix large eps issue in entanglement calculation of FGS.
|
|
94
|
+
|
|
95
|
+
- Fix cmatrix non-refresh issue for `post_select` in FGS.
|
|
96
|
+
|
|
97
|
+
## v1.2.1
|
|
98
|
+
|
|
99
|
+
### Fixed
|
|
100
|
+
|
|
101
|
+
- Jax can be omited in the env
|
|
102
|
+
|
|
5
103
|
## v1.2.0
|
|
6
104
|
|
|
7
105
|
### Added
|
{tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/PKG-INFO
RENAMED
|
@@ -1,17 +1,21 @@
|
|
|
1
|
-
Metadata-Version: 2.
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
2
|
Name: tensorcircuit-nightly
|
|
3
|
-
Version: 1.
|
|
4
|
-
Summary:
|
|
5
|
-
|
|
6
|
-
|
|
7
|
-
|
|
3
|
+
Version: 1.4.0.dev20251226
|
|
4
|
+
Summary: High performance unified quantum computing framework for the NISQ era
|
|
5
|
+
Author-email: TensorCircuit Authors <znfesnpbh@gmail.com>
|
|
6
|
+
License-Expression: Apache-2.0
|
|
7
|
+
Project-URL: Homepage, https://github.com/tensorcircuit/tensorcircuit-ng
|
|
8
|
+
Project-URL: Repository, https://github.com/tensorcircuit/tensorcircuit-ng
|
|
8
9
|
Classifier: Programming Language :: Python :: 3
|
|
9
10
|
Classifier: Operating System :: OS Independent
|
|
11
|
+
Classifier: Intended Audience :: Science/Research
|
|
12
|
+
Classifier: Topic :: Scientific/Engineering :: Physics
|
|
13
|
+
Requires-Python: >=3.9
|
|
10
14
|
Description-Content-Type: text/markdown
|
|
11
15
|
License-File: LICENSE
|
|
12
16
|
Requires-Dist: numpy
|
|
13
17
|
Requires-Dist: scipy
|
|
14
|
-
Requires-Dist: tensornetwork
|
|
18
|
+
Requires-Dist: tensornetwork-ng
|
|
15
19
|
Requires-Dist: networkx
|
|
16
20
|
Provides-Extra: tensorflow
|
|
17
21
|
Requires-Dist: tensorflow; extra == "tensorflow"
|
|
@@ -22,15 +26,12 @@ Provides-Extra: torch
|
|
|
22
26
|
Requires-Dist: torch; extra == "torch"
|
|
23
27
|
Provides-Extra: qiskit
|
|
24
28
|
Requires-Dist: qiskit; extra == "qiskit"
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
|
|
29
|
-
|
|
30
|
-
Dynamic:
|
|
31
|
-
Dynamic: provides-extra
|
|
32
|
-
Dynamic: requires-dist
|
|
33
|
-
Dynamic: summary
|
|
29
|
+
Requires-Dist: sympy; extra == "qiskit"
|
|
30
|
+
Requires-Dist: symengine; extra == "qiskit"
|
|
31
|
+
Provides-Extra: cloud
|
|
32
|
+
Requires-Dist: qiskit; extra == "cloud"
|
|
33
|
+
Requires-Dist: mthree<2.8; extra == "cloud"
|
|
34
|
+
Dynamic: license-file
|
|
34
35
|
|
|
35
36
|
<p align="center">
|
|
36
37
|
<a href="https://github.com/tensorcircuit/tensorcircuit-ng">
|
|
@@ -59,19 +60,19 @@ Dynamic: summary
|
|
|
59
60
|
|
|
60
61
|
<p align="center"> English | <a href="README_cn.md"> 简体中文 </a></p>
|
|
61
62
|
|
|
62
|
-
TensorCircuit-NG is
|
|
63
|
+
TensorCircuit-NG is the next-generation open-source high-performance quantum software framework, built upon tensornetwork engines, supporting for automatic differentiation, just-in-time compiling, hardware acceleration, vectorized parallelism and distributed training, providing unified infrastructures and interfaces for quantum programming. It can compose quantum circuits, neural networks and tensor networks seamlessly with high simulation efficiency and flexibility.
|
|
63
64
|
|
|
64
|
-
TensorCircuit-NG is built on top of modern machine learning frameworks: Jax, TensorFlow, and PyTorch. It is specifically suitable for large-scale simulations of quantum-classical hybrid paradigm and variational quantum algorithms in ideal, noisy, Clifford, approximate
|
|
65
|
+
TensorCircuit-NG is built on top of modern machine learning frameworks: Jax, TensorFlow, and PyTorch. It is specifically suitable for large-scale simulations of quantum-classical hybrid paradigm and variational quantum algorithms in ideal (`Circuit`), noisy (`DMCircuit`), Clifford (`StabilizerCircuit`), qudit (`QuditCircuit`), approximate (`MPSCircuit`), analog (`AnalogCircuit`), and fermionic (`FGSCircuit`) cases. It also supports quantum hardware access and provides CPU/GPU/QPU hybrid deployment solutions.
|
|
65
66
|
|
|
66
|
-
TensorCircuit-NG is [fully compatible](https://tensorcircuit-ng.readthedocs.io/en/latest/faq.html#what-is-the-relation-between-tensorcircuit-and-tensorcircuit-ng)
|
|
67
|
+
TensorCircuit-NG is the only actively maintained official version and a [fully compatible](https://tensorcircuit-ng.readthedocs.io/en/latest/faq.html#what-is-the-relation-between-tensorcircuit-and-tensorcircuit-ng) successor to TensorCircuit with more new features (stabilizer circuit, qudit circuit, analog circuit, multi-GPU distributed simulation, etc.) and bug fixes (support latest `numpy>2` and `qiskit>1`).
|
|
67
68
|
|
|
68
69
|
## Getting Started
|
|
69
70
|
|
|
70
71
|
Please begin with [Quick Start](/docs/source/quickstart.rst) in the [full documentation](https://tensorcircuit-ng.readthedocs.io/).
|
|
71
72
|
|
|
72
|
-
For more information on software usage, sota algorithm implementation and engineer paradigm demonstration, please refer to
|
|
73
|
+
For more information on software usage, sota algorithm implementation and engineer paradigm demonstration, please refer to 100+ [example scripts](/examples) and 40+ [tutorial notebooks](https://tensorcircuit-ng.readthedocs.io/en/latest/#tutorials). API docstrings and test cases in [tests](/tests) are also informative. One can also refer to AI-native docs for tensorcircuit-ng: [Devin Deepwiki](https://deepwiki.com/tensorcircuit/tensorcircuit-ng) and [Context7 MCP](https://context7.com/tensorcircuit/tensorcircuit-ng).
|
|
73
74
|
|
|
74
|
-
For beginners, please refer to [quantum computing lectures with TC-NG](https://github.com/sxzgroup/qc_lecture) to learn both quantum computing
|
|
75
|
+
For beginners, please refer to [quantum computing lectures with TC-NG](https://github.com/sxzgroup/qc_lecture) to learn both quantum computing basics and representative usage of TensorCircuit-NG.
|
|
75
76
|
|
|
76
77
|
The following are some minimal demos.
|
|
77
78
|
|
|
@@ -169,7 +170,7 @@ The package is written in pure Python and can be obtained via pip as:
|
|
|
169
170
|
pip install tensorcircuit-ng
|
|
170
171
|
```
|
|
171
172
|
|
|
172
|
-
We recommend you install this package with tensorflow also installed as:
|
|
173
|
+
We recommend you install this package with tensorflow or jax also installed as:
|
|
173
174
|
|
|
174
175
|
```python
|
|
175
176
|
pip install "tensorcircuit-ng[tensorflow]"
|
|
@@ -191,7 +192,7 @@ We also have [Docker support](/docker).
|
|
|
191
192
|
|
|
192
193
|
- JIT, AD, vectorized parallelism compatible
|
|
193
194
|
|
|
194
|
-
- GPU support,
|
|
195
|
+
- GPU support, QPU access support, hybrid deployment support
|
|
195
196
|
|
|
196
197
|
- HPC native, distributed simulation enabled, multiple devices/hosts support
|
|
197
198
|
|
|
@@ -224,7 +225,7 @@ We also have [Docker support](/docker).
|
|
|
224
225
|
|
|
225
226
|
- Support **Fermion Gaussian state** simulation with expectation, entanglement, measurement, ground state, real and imaginary time evolution.
|
|
226
227
|
|
|
227
|
-
- Support **qudits simulation
|
|
228
|
+
- Support **qudits simulation** for tensor network and MPS approximation modes.
|
|
228
229
|
|
|
229
230
|
- Support **parallel** quantum circuit evaluation across **multiple GPUs**.
|
|
230
231
|
|
|
@@ -246,6 +247,8 @@ We also have [Docker support](/docker).
|
|
|
246
247
|
|
|
247
248
|
- **Machine learning interface/layer/model** abstraction in both TensorFlow, PyTorch and Jax for both numerical simulation and real QPU experiments.
|
|
248
249
|
|
|
250
|
+
- Support time evolution simulation with **exact, ODE, Krylov, Trotter, Chebyshev solvers**.
|
|
251
|
+
|
|
249
252
|
- Circuit sampling supports both final state sampling and perfect sampling from tensor networks.
|
|
250
253
|
|
|
251
254
|
- Light cone reduction support for local expectation calculation.
|
|
@@ -280,7 +283,7 @@ If this project helps in your research, please cite our software whitepaper to a
|
|
|
280
283
|
|
|
281
284
|
which is also a good introduction to the software.
|
|
282
285
|
|
|
283
|
-
Research works citing TensorCircuit can be highlighted in [Research and Applications section](https://github.com/tensorcircuit/tensorcircuit-ng#research-and-applications).
|
|
286
|
+
Research works citing TensorCircuit-NG can be highlighted in [Research and Applications section](https://github.com/tensorcircuit/tensorcircuit-ng#research-and-applications).
|
|
284
287
|
|
|
285
288
|
### Guidelines
|
|
286
289
|
|
|
@@ -339,6 +342,13 @@ TensorCircuit-NG is open source, released under the Apache License, Version 2.0.
|
|
|
339
342
|
<td align="center" valign="top" width="16.66%"><a href="https://github.com/AbdullahKazi500"><img src="https://avatars.githubusercontent.com/u/75779966?v=4?s=100" width="100px;" alt="Chanandellar Bong"/><br /><sub><b>Chanandellar Bong</b></sub></a><br /><a href="#example-AbdullahKazi500" title="Examples">💡</a></td>
|
|
340
343
|
<td align="center" valign="top" width="16.66%"><a href="https://adeshpande.gitlab.io"><img src="https://avatars.githubusercontent.com/u/6169877?v=4?s=100" width="100px;" alt="Abhinav Deshpande"/><br /><sub><b>Abhinav Deshpande</b></sub></a><br /><a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=abhinavd" title="Code">💻</a></td>
|
|
341
344
|
</tr>
|
|
345
|
+
<tr>
|
|
346
|
+
<td align="center" valign="top" width="16.66%"><a href="https://github.com/Stellogic"><img src="https://avatars.githubusercontent.com/u/186928579?v=4?s=100" width="100px;" alt="Stellogic"/><br /><sub><b>Stellogic</b></sub></a><br /><a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=Stellogic" title="Code">💻</a> <a href="#example-Stellogic" title="Examples">💡</a> <a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=Stellogic" title="Tests">⚠️</a> <a href="#tutorial-Stellogic" title="Tutorials">✅</a></td>
|
|
347
|
+
<td align="center" valign="top" width="16.66%"><a href="https://github.com/Charlespkuer"><img src="https://avatars.githubusercontent.com/u/112697147?v=4?s=100" width="100px;" alt="Huang"/><br /><sub><b>Huang</b></sub></a><br /><a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=Charlespkuer" title="Code">💻</a> <a href="#example-Charlespkuer" title="Examples">💡</a> <a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=Charlespkuer" title="Tests">⚠️</a></td>
|
|
348
|
+
<td align="center" valign="top" width="16.66%"><a href="https://github.com/Huang-Xu-Yang"><img src="https://avatars.githubusercontent.com/u/227286661?v=4?s=100" width="100px;" alt="Huang-Xu-Yang"/><br /><sub><b>Huang-Xu-Yang</b></sub></a><br /><a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=Huang-Xu-Yang" title="Code">💻</a> <a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=Huang-Xu-Yang" title="Tests">⚠️</a></td>
|
|
349
|
+
<td align="center" valign="top" width="16.66%"><a href="https://github.com/WeiguoMa"><img src="https://avatars.githubusercontent.com/u/108172530?v=4?s=100" width="100px;" alt="Weiguo_M"/><br /><sub><b>Weiguo_M</b></sub></a><br /><a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=WeiguoMa" title="Code">💻</a> <a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=WeiguoMa" title="Tests">⚠️</a> <a href="#example-WeiguoMa" title="Examples">💡</a> <a href="#tutorial-WeiguoMa" title="Tutorials">✅</a></td>
|
|
350
|
+
<td align="center" valign="top" width="16.66%"><a href="https://github.com/QuiXamii"><img src="https://avatars.githubusercontent.com/u/136054857?v=4?s=100" width="100px;" alt="Qixiang WANG"/><br /><sub><b>Qixiang WANG</b></sub></a><br /><a href="#example-QuiXamii" title="Examples">💡</a></td>
|
|
351
|
+
</tr>
|
|
342
352
|
</tbody>
|
|
343
353
|
</table>
|
|
344
354
|
|
|
@@ -356,6 +366,8 @@ TensorCircuit-NG is open source, released under the Apache License, Version 2.0.
|
|
|
356
366
|
|
|
357
367
|
## Research and Applications
|
|
358
368
|
|
|
369
|
+
TensorCircuit-NG is a powerful framework for driving research and applications in quantum computing. Below are examples of published academic works (100+ in total) and open-source projects that utilize TensorCircuit-NG.
|
|
370
|
+
|
|
359
371
|
### DQAS
|
|
360
372
|
|
|
361
373
|
For the application of Differentiable Quantum Architecture Search, see [applications](/tensorcircuit/applications).
|
|
@@ -404,12 +416,42 @@ For the setup and simulation code of neural network encoded variational quantum
|
|
|
404
416
|
|
|
405
417
|
Reference paper: https://arxiv.org/abs/2308.01068 (published in PRApplied).
|
|
406
418
|
|
|
407
|
-
###
|
|
419
|
+
### FLDC
|
|
420
|
+
|
|
421
|
+
Absence of barren plateaus in finite local-depth circuits with long-range entanglement, see the [demo](/examples/vqe_toric_code.py).
|
|
422
|
+
|
|
423
|
+
Reference paper: https://arxiv.org/abs/2311.01393 (published in PRL).
|
|
424
|
+
|
|
425
|
+
### Effective temperature in ansatzes
|
|
408
426
|
|
|
409
427
|
For the simulation implementation of quantum states based on neural networks, tensor networs and quantum circuits using TensorCircuit-NG, see the [project repo](https://github.com/sxzgroup/et).
|
|
410
428
|
|
|
411
429
|
Reference paper: https://arxiv.org/abs/2411.18921.
|
|
412
430
|
|
|
431
|
+
### A Unified Variational Framework for Quantum Excited States
|
|
432
|
+
|
|
433
|
+
For the simulation code and data for variational optimization of simutaneous excited states, see the [project repo](https://github.com/sxzgroup/quantum_excited_state).
|
|
434
|
+
|
|
435
|
+
Reference paper: https://arxiv.org/abs/2504.21459.
|
|
436
|
+
|
|
437
|
+
### Quantum Machine Unlearning
|
|
438
|
+
|
|
439
|
+
For the simulation code for the work "superior resilience to poisoning and amenability to unlearning in quantum machine learning", see the [project repo](https://github.com/yutuer21/quantum-machine-unlearning).
|
|
440
|
+
|
|
441
|
+
Reference paper: https://arxiv.org/abs/2508.02422.
|
|
442
|
+
|
|
443
|
+
### Low Weight Pauli Propagation Simulation
|
|
444
|
+
|
|
445
|
+
For the simulation code and data for the work on low weight Pauli propagation in the context of variational quantum algorithms, see the [project repo](https://github.com/ZongliangLi/lwpp_init).
|
|
446
|
+
|
|
447
|
+
Reference paper: https://arxiv.org/abs/2508.06358.
|
|
448
|
+
|
|
449
|
+
### Quantum Continual Learning
|
|
450
|
+
|
|
451
|
+
For the code implementation on the work of demonstrating plasticity in quantum continual learning, see the [project repo](https://github.com/sxzgroup/quantum-plasticity).
|
|
452
|
+
|
|
453
|
+
Reference paper: https://arxiv.org/abs/2511.17228.
|
|
454
|
+
|
|
413
455
|
### More works
|
|
414
456
|
|
|
415
457
|
<details>
|
|
@@ -449,26 +491,38 @@ Reference paper: https://arxiv.org/abs/2411.18921.
|
|
|
449
491
|
|
|
450
492
|
- Universal imaginary-time critical dynamics on a quantum computer: https://arxiv.org/abs/2308.05408 (published in PRB).
|
|
451
493
|
|
|
452
|
-
- Absence of barren plateaus in finite local-depth circuits with long-range entanglement: https://arxiv.org/abs/2311.01393 (published in PRL).
|
|
453
|
-
|
|
454
494
|
- Non-Markovianity benefits quantum dynamics simulation: https://arxiv.org/abs/2311.17622.
|
|
455
495
|
|
|
456
|
-
- Variational post-selection for ground states and thermal states simulation: https://arxiv.org/abs/2402.07605 (published in
|
|
496
|
+
- Variational post-selection for ground states and thermal states simulation: https://arxiv.org/abs/2402.07605 (published in QST).
|
|
457
497
|
|
|
458
|
-
- Subsystem information capacity in random circuits and Hamiltonian dynamics: https://arxiv.org/abs/2405.05076.
|
|
498
|
+
- Subsystem information capacity in random circuits and Hamiltonian dynamics: https://arxiv.org/abs/2405.05076 (published in Quantum). Code implementation: https://github.com/sxzgroup/subsystem_information_capacity.
|
|
459
499
|
|
|
460
500
|
- Symmetry restoration and quantum Mpemba effect in symmetric random circuits: https://arxiv.org/abs/2403.08459 (published in PRL).
|
|
461
501
|
|
|
462
502
|
- Quantum Mpemba effects in many-body localization systems: https://arxiv.org/abs/2408.07750.
|
|
463
503
|
|
|
464
|
-
- Supersymmetry dynamics on Rydberg atom arrays: https://arxiv.org/abs/2410.21386.
|
|
504
|
+
- Supersymmetry dynamics on Rydberg atom arrays: https://arxiv.org/abs/2410.21386 (published in PRB).
|
|
465
505
|
|
|
466
506
|
- Dynamic parameterized quantum circuits: expressive and barren-plateau free: https://arxiv.org/abs/2411.05760.
|
|
467
507
|
|
|
468
|
-
- Holographic deep thermalization: https://arxiv.org/abs/2411.03587.
|
|
508
|
+
- Holographic deep thermalization: https://arxiv.org/abs/2411.03587 (published in Nature Communications).
|
|
469
509
|
|
|
470
510
|
- Quantum deep generative prior with programmable quantum circuits: https://www.nature.com/articles/s42005-024-01765-9 (published in Communications Physics).
|
|
471
511
|
|
|
512
|
+
- Symmetry Breaking Dynamics in Quantum Many-Body Systems: https://arxiv.org/abs/2501.13459.
|
|
513
|
+
|
|
514
|
+
- Entanglement growth and information capacity in a quasiperiodic system with a single-particle mobility edge: https://arxiv.org/abs/2506.18076.
|
|
515
|
+
|
|
516
|
+
- Hilbert subspace imprint: a new mechanism for non-thermalization: https://arxiv.org/abs/2506.11922.
|
|
517
|
+
|
|
518
|
+
- A Neural-Guided Variational Quantum Algorithm for Efficient Sign Structure Learning in Hybrid Architectures: https://arxiv.org/abs/2507.07555.
|
|
519
|
+
|
|
520
|
+
- Quantum Pontus-Mpemba Effects in Real and Imaginary-time Dynamics: https://arxiv.org/abs/2509.01960.
|
|
521
|
+
|
|
522
|
+
- Quantum Mpemba effect in long-ranged U(1)-symmetric random circuits: https://arxiv.org/abs/2512.06775.
|
|
523
|
+
|
|
524
|
+
- A Qudit-native Framework for Discrete Time Crystals: https://arxiv.org/abs/2512.04577.
|
|
525
|
+
|
|
472
526
|
</details>
|
|
473
527
|
|
|
474
528
|
If you want to highlight your research work or projects here, feel free to add by opening PR.
|
|
@@ -1,37 +1,3 @@
|
|
|
1
|
-
Metadata-Version: 2.2
|
|
2
|
-
Name: tensorcircuit-nightly
|
|
3
|
-
Version: 1.2.0.dev20250309
|
|
4
|
-
Summary: nightly release for tensorcircuit
|
|
5
|
-
Home-page: https://github.com/refraction-ray/tensorcircuit-dev
|
|
6
|
-
Author: TensorCircuit Authors
|
|
7
|
-
Author-email: znfesnpbh.tc@gmail.com
|
|
8
|
-
Classifier: Programming Language :: Python :: 3
|
|
9
|
-
Classifier: Operating System :: OS Independent
|
|
10
|
-
Description-Content-Type: text/markdown
|
|
11
|
-
License-File: LICENSE
|
|
12
|
-
Requires-Dist: numpy
|
|
13
|
-
Requires-Dist: scipy
|
|
14
|
-
Requires-Dist: tensornetwork
|
|
15
|
-
Requires-Dist: networkx
|
|
16
|
-
Provides-Extra: tensorflow
|
|
17
|
-
Requires-Dist: tensorflow; extra == "tensorflow"
|
|
18
|
-
Provides-Extra: jax
|
|
19
|
-
Requires-Dist: jax; extra == "jax"
|
|
20
|
-
Requires-Dist: jaxlib; extra == "jax"
|
|
21
|
-
Provides-Extra: torch
|
|
22
|
-
Requires-Dist: torch; extra == "torch"
|
|
23
|
-
Provides-Extra: qiskit
|
|
24
|
-
Requires-Dist: qiskit; extra == "qiskit"
|
|
25
|
-
Dynamic: author
|
|
26
|
-
Dynamic: author-email
|
|
27
|
-
Dynamic: classifier
|
|
28
|
-
Dynamic: description
|
|
29
|
-
Dynamic: description-content-type
|
|
30
|
-
Dynamic: home-page
|
|
31
|
-
Dynamic: provides-extra
|
|
32
|
-
Dynamic: requires-dist
|
|
33
|
-
Dynamic: summary
|
|
34
|
-
|
|
35
1
|
<p align="center">
|
|
36
2
|
<a href="https://github.com/tensorcircuit/tensorcircuit-ng">
|
|
37
3
|
<img width=90% src="docs/source/statics/logong.png">
|
|
@@ -59,19 +25,19 @@ Dynamic: summary
|
|
|
59
25
|
|
|
60
26
|
<p align="center"> English | <a href="README_cn.md"> 简体中文 </a></p>
|
|
61
27
|
|
|
62
|
-
TensorCircuit-NG is
|
|
28
|
+
TensorCircuit-NG is the next-generation open-source high-performance quantum software framework, built upon tensornetwork engines, supporting for automatic differentiation, just-in-time compiling, hardware acceleration, vectorized parallelism and distributed training, providing unified infrastructures and interfaces for quantum programming. It can compose quantum circuits, neural networks and tensor networks seamlessly with high simulation efficiency and flexibility.
|
|
63
29
|
|
|
64
|
-
TensorCircuit-NG is built on top of modern machine learning frameworks: Jax, TensorFlow, and PyTorch. It is specifically suitable for large-scale simulations of quantum-classical hybrid paradigm and variational quantum algorithms in ideal, noisy, Clifford, approximate
|
|
30
|
+
TensorCircuit-NG is built on top of modern machine learning frameworks: Jax, TensorFlow, and PyTorch. It is specifically suitable for large-scale simulations of quantum-classical hybrid paradigm and variational quantum algorithms in ideal (`Circuit`), noisy (`DMCircuit`), Clifford (`StabilizerCircuit`), qudit (`QuditCircuit`), approximate (`MPSCircuit`), analog (`AnalogCircuit`), and fermionic (`FGSCircuit`) cases. It also supports quantum hardware access and provides CPU/GPU/QPU hybrid deployment solutions.
|
|
65
31
|
|
|
66
|
-
TensorCircuit-NG is [fully compatible](https://tensorcircuit-ng.readthedocs.io/en/latest/faq.html#what-is-the-relation-between-tensorcircuit-and-tensorcircuit-ng)
|
|
32
|
+
TensorCircuit-NG is the only actively maintained official version and a [fully compatible](https://tensorcircuit-ng.readthedocs.io/en/latest/faq.html#what-is-the-relation-between-tensorcircuit-and-tensorcircuit-ng) successor to TensorCircuit with more new features (stabilizer circuit, qudit circuit, analog circuit, multi-GPU distributed simulation, etc.) and bug fixes (support latest `numpy>2` and `qiskit>1`).
|
|
67
33
|
|
|
68
34
|
## Getting Started
|
|
69
35
|
|
|
70
36
|
Please begin with [Quick Start](/docs/source/quickstart.rst) in the [full documentation](https://tensorcircuit-ng.readthedocs.io/).
|
|
71
37
|
|
|
72
|
-
For more information on software usage, sota algorithm implementation and engineer paradigm demonstration, please refer to
|
|
38
|
+
For more information on software usage, sota algorithm implementation and engineer paradigm demonstration, please refer to 100+ [example scripts](/examples) and 40+ [tutorial notebooks](https://tensorcircuit-ng.readthedocs.io/en/latest/#tutorials). API docstrings and test cases in [tests](/tests) are also informative. One can also refer to AI-native docs for tensorcircuit-ng: [Devin Deepwiki](https://deepwiki.com/tensorcircuit/tensorcircuit-ng) and [Context7 MCP](https://context7.com/tensorcircuit/tensorcircuit-ng).
|
|
73
39
|
|
|
74
|
-
For beginners, please refer to [quantum computing lectures with TC-NG](https://github.com/sxzgroup/qc_lecture) to learn both quantum computing
|
|
40
|
+
For beginners, please refer to [quantum computing lectures with TC-NG](https://github.com/sxzgroup/qc_lecture) to learn both quantum computing basics and representative usage of TensorCircuit-NG.
|
|
75
41
|
|
|
76
42
|
The following are some minimal demos.
|
|
77
43
|
|
|
@@ -169,7 +135,7 @@ The package is written in pure Python and can be obtained via pip as:
|
|
|
169
135
|
pip install tensorcircuit-ng
|
|
170
136
|
```
|
|
171
137
|
|
|
172
|
-
We recommend you install this package with tensorflow also installed as:
|
|
138
|
+
We recommend you install this package with tensorflow or jax also installed as:
|
|
173
139
|
|
|
174
140
|
```python
|
|
175
141
|
pip install "tensorcircuit-ng[tensorflow]"
|
|
@@ -191,7 +157,7 @@ We also have [Docker support](/docker).
|
|
|
191
157
|
|
|
192
158
|
- JIT, AD, vectorized parallelism compatible
|
|
193
159
|
|
|
194
|
-
- GPU support,
|
|
160
|
+
- GPU support, QPU access support, hybrid deployment support
|
|
195
161
|
|
|
196
162
|
- HPC native, distributed simulation enabled, multiple devices/hosts support
|
|
197
163
|
|
|
@@ -224,7 +190,7 @@ We also have [Docker support](/docker).
|
|
|
224
190
|
|
|
225
191
|
- Support **Fermion Gaussian state** simulation with expectation, entanglement, measurement, ground state, real and imaginary time evolution.
|
|
226
192
|
|
|
227
|
-
- Support **qudits simulation
|
|
193
|
+
- Support **qudits simulation** for tensor network and MPS approximation modes.
|
|
228
194
|
|
|
229
195
|
- Support **parallel** quantum circuit evaluation across **multiple GPUs**.
|
|
230
196
|
|
|
@@ -246,6 +212,8 @@ We also have [Docker support](/docker).
|
|
|
246
212
|
|
|
247
213
|
- **Machine learning interface/layer/model** abstraction in both TensorFlow, PyTorch and Jax for both numerical simulation and real QPU experiments.
|
|
248
214
|
|
|
215
|
+
- Support time evolution simulation with **exact, ODE, Krylov, Trotter, Chebyshev solvers**.
|
|
216
|
+
|
|
249
217
|
- Circuit sampling supports both final state sampling and perfect sampling from tensor networks.
|
|
250
218
|
|
|
251
219
|
- Light cone reduction support for local expectation calculation.
|
|
@@ -280,7 +248,7 @@ If this project helps in your research, please cite our software whitepaper to a
|
|
|
280
248
|
|
|
281
249
|
which is also a good introduction to the software.
|
|
282
250
|
|
|
283
|
-
Research works citing TensorCircuit can be highlighted in [Research and Applications section](https://github.com/tensorcircuit/tensorcircuit-ng#research-and-applications).
|
|
251
|
+
Research works citing TensorCircuit-NG can be highlighted in [Research and Applications section](https://github.com/tensorcircuit/tensorcircuit-ng#research-and-applications).
|
|
284
252
|
|
|
285
253
|
### Guidelines
|
|
286
254
|
|
|
@@ -339,6 +307,13 @@ TensorCircuit-NG is open source, released under the Apache License, Version 2.0.
|
|
|
339
307
|
<td align="center" valign="top" width="16.66%"><a href="https://github.com/AbdullahKazi500"><img src="https://avatars.githubusercontent.com/u/75779966?v=4?s=100" width="100px;" alt="Chanandellar Bong"/><br /><sub><b>Chanandellar Bong</b></sub></a><br /><a href="#example-AbdullahKazi500" title="Examples">💡</a></td>
|
|
340
308
|
<td align="center" valign="top" width="16.66%"><a href="https://adeshpande.gitlab.io"><img src="https://avatars.githubusercontent.com/u/6169877?v=4?s=100" width="100px;" alt="Abhinav Deshpande"/><br /><sub><b>Abhinav Deshpande</b></sub></a><br /><a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=abhinavd" title="Code">💻</a></td>
|
|
341
309
|
</tr>
|
|
310
|
+
<tr>
|
|
311
|
+
<td align="center" valign="top" width="16.66%"><a href="https://github.com/Stellogic"><img src="https://avatars.githubusercontent.com/u/186928579?v=4?s=100" width="100px;" alt="Stellogic"/><br /><sub><b>Stellogic</b></sub></a><br /><a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=Stellogic" title="Code">💻</a> <a href="#example-Stellogic" title="Examples">💡</a> <a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=Stellogic" title="Tests">⚠️</a> <a href="#tutorial-Stellogic" title="Tutorials">✅</a></td>
|
|
312
|
+
<td align="center" valign="top" width="16.66%"><a href="https://github.com/Charlespkuer"><img src="https://avatars.githubusercontent.com/u/112697147?v=4?s=100" width="100px;" alt="Huang"/><br /><sub><b>Huang</b></sub></a><br /><a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=Charlespkuer" title="Code">💻</a> <a href="#example-Charlespkuer" title="Examples">💡</a> <a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=Charlespkuer" title="Tests">⚠️</a></td>
|
|
313
|
+
<td align="center" valign="top" width="16.66%"><a href="https://github.com/Huang-Xu-Yang"><img src="https://avatars.githubusercontent.com/u/227286661?v=4?s=100" width="100px;" alt="Huang-Xu-Yang"/><br /><sub><b>Huang-Xu-Yang</b></sub></a><br /><a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=Huang-Xu-Yang" title="Code">💻</a> <a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=Huang-Xu-Yang" title="Tests">⚠️</a></td>
|
|
314
|
+
<td align="center" valign="top" width="16.66%"><a href="https://github.com/WeiguoMa"><img src="https://avatars.githubusercontent.com/u/108172530?v=4?s=100" width="100px;" alt="Weiguo_M"/><br /><sub><b>Weiguo_M</b></sub></a><br /><a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=WeiguoMa" title="Code">💻</a> <a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=WeiguoMa" title="Tests">⚠️</a> <a href="#example-WeiguoMa" title="Examples">💡</a> <a href="#tutorial-WeiguoMa" title="Tutorials">✅</a></td>
|
|
315
|
+
<td align="center" valign="top" width="16.66%"><a href="https://github.com/QuiXamii"><img src="https://avatars.githubusercontent.com/u/136054857?v=4?s=100" width="100px;" alt="Qixiang WANG"/><br /><sub><b>Qixiang WANG</b></sub></a><br /><a href="#example-QuiXamii" title="Examples">💡</a></td>
|
|
316
|
+
</tr>
|
|
342
317
|
</tbody>
|
|
343
318
|
</table>
|
|
344
319
|
|
|
@@ -356,6 +331,8 @@ TensorCircuit-NG is open source, released under the Apache License, Version 2.0.
|
|
|
356
331
|
|
|
357
332
|
## Research and Applications
|
|
358
333
|
|
|
334
|
+
TensorCircuit-NG is a powerful framework for driving research and applications in quantum computing. Below are examples of published academic works (100+ in total) and open-source projects that utilize TensorCircuit-NG.
|
|
335
|
+
|
|
359
336
|
### DQAS
|
|
360
337
|
|
|
361
338
|
For the application of Differentiable Quantum Architecture Search, see [applications](/tensorcircuit/applications).
|
|
@@ -404,12 +381,42 @@ For the setup and simulation code of neural network encoded variational quantum
|
|
|
404
381
|
|
|
405
382
|
Reference paper: https://arxiv.org/abs/2308.01068 (published in PRApplied).
|
|
406
383
|
|
|
407
|
-
###
|
|
384
|
+
### FLDC
|
|
385
|
+
|
|
386
|
+
Absence of barren plateaus in finite local-depth circuits with long-range entanglement, see the [demo](/examples/vqe_toric_code.py).
|
|
387
|
+
|
|
388
|
+
Reference paper: https://arxiv.org/abs/2311.01393 (published in PRL).
|
|
389
|
+
|
|
390
|
+
### Effective temperature in ansatzes
|
|
408
391
|
|
|
409
392
|
For the simulation implementation of quantum states based on neural networks, tensor networs and quantum circuits using TensorCircuit-NG, see the [project repo](https://github.com/sxzgroup/et).
|
|
410
393
|
|
|
411
394
|
Reference paper: https://arxiv.org/abs/2411.18921.
|
|
412
395
|
|
|
396
|
+
### A Unified Variational Framework for Quantum Excited States
|
|
397
|
+
|
|
398
|
+
For the simulation code and data for variational optimization of simutaneous excited states, see the [project repo](https://github.com/sxzgroup/quantum_excited_state).
|
|
399
|
+
|
|
400
|
+
Reference paper: https://arxiv.org/abs/2504.21459.
|
|
401
|
+
|
|
402
|
+
### Quantum Machine Unlearning
|
|
403
|
+
|
|
404
|
+
For the simulation code for the work "superior resilience to poisoning and amenability to unlearning in quantum machine learning", see the [project repo](https://github.com/yutuer21/quantum-machine-unlearning).
|
|
405
|
+
|
|
406
|
+
Reference paper: https://arxiv.org/abs/2508.02422.
|
|
407
|
+
|
|
408
|
+
### Low Weight Pauli Propagation Simulation
|
|
409
|
+
|
|
410
|
+
For the simulation code and data for the work on low weight Pauli propagation in the context of variational quantum algorithms, see the [project repo](https://github.com/ZongliangLi/lwpp_init).
|
|
411
|
+
|
|
412
|
+
Reference paper: https://arxiv.org/abs/2508.06358.
|
|
413
|
+
|
|
414
|
+
### Quantum Continual Learning
|
|
415
|
+
|
|
416
|
+
For the code implementation on the work of demonstrating plasticity in quantum continual learning, see the [project repo](https://github.com/sxzgroup/quantum-plasticity).
|
|
417
|
+
|
|
418
|
+
Reference paper: https://arxiv.org/abs/2511.17228.
|
|
419
|
+
|
|
413
420
|
### More works
|
|
414
421
|
|
|
415
422
|
<details>
|
|
@@ -449,26 +456,38 @@ Reference paper: https://arxiv.org/abs/2411.18921.
|
|
|
449
456
|
|
|
450
457
|
- Universal imaginary-time critical dynamics on a quantum computer: https://arxiv.org/abs/2308.05408 (published in PRB).
|
|
451
458
|
|
|
452
|
-
- Absence of barren plateaus in finite local-depth circuits with long-range entanglement: https://arxiv.org/abs/2311.01393 (published in PRL).
|
|
453
|
-
|
|
454
459
|
- Non-Markovianity benefits quantum dynamics simulation: https://arxiv.org/abs/2311.17622.
|
|
455
460
|
|
|
456
|
-
- Variational post-selection for ground states and thermal states simulation: https://arxiv.org/abs/2402.07605 (published in
|
|
461
|
+
- Variational post-selection for ground states and thermal states simulation: https://arxiv.org/abs/2402.07605 (published in QST).
|
|
457
462
|
|
|
458
|
-
- Subsystem information capacity in random circuits and Hamiltonian dynamics: https://arxiv.org/abs/2405.05076.
|
|
463
|
+
- Subsystem information capacity in random circuits and Hamiltonian dynamics: https://arxiv.org/abs/2405.05076 (published in Quantum). Code implementation: https://github.com/sxzgroup/subsystem_information_capacity.
|
|
459
464
|
|
|
460
465
|
- Symmetry restoration and quantum Mpemba effect in symmetric random circuits: https://arxiv.org/abs/2403.08459 (published in PRL).
|
|
461
466
|
|
|
462
467
|
- Quantum Mpemba effects in many-body localization systems: https://arxiv.org/abs/2408.07750.
|
|
463
468
|
|
|
464
|
-
- Supersymmetry dynamics on Rydberg atom arrays: https://arxiv.org/abs/2410.21386.
|
|
469
|
+
- Supersymmetry dynamics on Rydberg atom arrays: https://arxiv.org/abs/2410.21386 (published in PRB).
|
|
465
470
|
|
|
466
471
|
- Dynamic parameterized quantum circuits: expressive and barren-plateau free: https://arxiv.org/abs/2411.05760.
|
|
467
472
|
|
|
468
|
-
- Holographic deep thermalization: https://arxiv.org/abs/2411.03587.
|
|
473
|
+
- Holographic deep thermalization: https://arxiv.org/abs/2411.03587 (published in Nature Communications).
|
|
469
474
|
|
|
470
475
|
- Quantum deep generative prior with programmable quantum circuits: https://www.nature.com/articles/s42005-024-01765-9 (published in Communications Physics).
|
|
471
476
|
|
|
477
|
+
- Symmetry Breaking Dynamics in Quantum Many-Body Systems: https://arxiv.org/abs/2501.13459.
|
|
478
|
+
|
|
479
|
+
- Entanglement growth and information capacity in a quasiperiodic system with a single-particle mobility edge: https://arxiv.org/abs/2506.18076.
|
|
480
|
+
|
|
481
|
+
- Hilbert subspace imprint: a new mechanism for non-thermalization: https://arxiv.org/abs/2506.11922.
|
|
482
|
+
|
|
483
|
+
- A Neural-Guided Variational Quantum Algorithm for Efficient Sign Structure Learning in Hybrid Architectures: https://arxiv.org/abs/2507.07555.
|
|
484
|
+
|
|
485
|
+
- Quantum Pontus-Mpemba Effects in Real and Imaginary-time Dynamics: https://arxiv.org/abs/2509.01960.
|
|
486
|
+
|
|
487
|
+
- Quantum Mpemba effect in long-ranged U(1)-symmetric random circuits: https://arxiv.org/abs/2512.06775.
|
|
488
|
+
|
|
489
|
+
- A Qudit-native Framework for Discrete Time Crystals: https://arxiv.org/abs/2512.04577.
|
|
490
|
+
|
|
472
491
|
</details>
|
|
473
492
|
|
|
474
493
|
If you want to highlight your research work or projects here, feel free to add by opening PR.
|
{tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/README_cn.md
RENAMED
|
@@ -21,17 +21,21 @@
|
|
|
21
21
|
|
|
22
22
|
<p align="center"> <a href="README.md">English</a> | 简体中文 </p>
|
|
23
23
|
|
|
24
|
-
TensorCircuit-NG
|
|
24
|
+
TensorCircuit-NG 是下一代量子软件框架,完美支持自动微分、即时编译、硬件加速、向量并行化和分布式训练,是量超智融合的首选平台。
|
|
25
25
|
|
|
26
|
-
TensorCircuit-NG 建立在现代机器学习框架 Jax, TensorFlow, PyTorch 之上,支持机器学习后端无关的统一界面。
|
|
26
|
+
TensorCircuit-NG 建立在现代机器学习框架 Jax, TensorFlow, PyTorch 之上,支持机器学习后端无关的统一界面。 其特别适用于理想情况、含噪声情况、稳定子情况、可控近似情况、连续动力学情况及费米子情况下,大规模量子经典混合范式和变分量子算法的高效模拟。其可以高效地编织和模拟量子线路、张量网络和神经网络组成的混合计算图。
|
|
27
27
|
|
|
28
|
-
TensorCircuit-NG 现在支持真实量子硬件连接和实验,并提供优雅的 CPU/GPU/QPU
|
|
28
|
+
TensorCircuit-NG 现在支持真实量子硬件连接和实验,并提供优雅的 CPU/GPU/QPU 硬件混合部署训练方案。
|
|
29
|
+
|
|
30
|
+
TensorCircuit-NG 是目前积极维护的唯一官方版本,是 TensorCircuit 的[完全兼容](https://github.com/orgs/tensorcircuit/discussions/19)的升级版本,它包含了更多新功能(例如稳定子线路、多卡分布式模拟等)和错误修复(例如支持最新的 numpy>2 和 qiskit>1)。
|
|
29
31
|
|
|
30
32
|
## 入门
|
|
31
33
|
|
|
32
34
|
请从 [完整文档](https://tensorcircuit-ng.readthedocs.io/) 中的 [快速上手](/docs/source/quickstart.rst) 开始。
|
|
33
35
|
|
|
34
|
-
有关软件用法,算法实现和工程范式演示的更多信息和介绍,请参阅
|
|
36
|
+
有关软件用法,算法实现和工程范式演示的更多信息和介绍,请参阅 100+ [示例脚本](/examples) 和 40+ [案例教程](https://tensorcircuit-ng.readthedocs.io/en/latest/#tutorials)。 [测试](/tests) 用例和 API docstring 也提供了丰富的使用信息。
|
|
37
|
+
|
|
38
|
+
TensorCircuit-NG 也支持 AI 原生编程资源:[Devin Deepwiki](https://deepwiki.com/tensorcircuit/tensorcircuit-ng) 和 [Context7 MCP](https://context7.com/tensorcircuit/tensorcircuit-ng).
|
|
35
39
|
|
|
36
40
|
初学者也可以参考[量子计算教程](https://github.com/sxzgroup/qc_lecture)学习量子计算基础和 TensorCircuit-NG 的典型用法.
|
|
37
41
|
|