tensorcircuit-nightly 1.2.0.dev20250309__tar.gz → 1.4.0.dev20251226__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (156) hide show
  1. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/CHANGELOG.md +98 -0
  2. tensorcircuit_nightly-1.4.0.dev20251226/MANIFEST.in +13 -0
  3. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/PKG-INFO +86 -32
  4. tensorcircuit_nightly-1.2.0.dev20250309/tensorcircuit_nightly.egg-info/PKG-INFO → tensorcircuit_nightly-1.4.0.dev20251226/README.md +69 -50
  5. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/README_cn.md +8 -4
  6. tensorcircuit_nightly-1.4.0.dev20251226/pyproject.toml +75 -0
  7. tensorcircuit_nightly-1.4.0.dev20251226/setup.py +4 -0
  8. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/__init__.py +5 -1
  9. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/abstractcircuit.py +4 -0
  10. tensorcircuit_nightly-1.4.0.dev20251226/tensorcircuit/analogcircuit.py +413 -0
  11. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/applications/layers.py +1 -1
  12. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/applications/van.py +1 -1
  13. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/backends/abstract_backend.py +312 -5
  14. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/backends/cupy_backend.py +3 -1
  15. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/backends/jax_backend.py +100 -4
  16. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/backends/jax_ops.py +108 -0
  17. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/backends/numpy_backend.py +49 -3
  18. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/backends/pytorch_backend.py +92 -3
  19. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/backends/tensorflow_backend.py +102 -3
  20. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/basecircuit.py +157 -98
  21. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/circuit.py +115 -57
  22. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/cloud/local.py +1 -1
  23. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/cloud/quafu_provider.py +1 -1
  24. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/cloud/tencent.py +1 -1
  25. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/compiler/simple_compiler.py +2 -2
  26. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/cons.py +105 -23
  27. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/densitymatrix.py +16 -11
  28. tensorcircuit_nightly-1.4.0.dev20251226/tensorcircuit/experimental.py +1208 -0
  29. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/fgs.py +254 -73
  30. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/gates.py +66 -22
  31. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/interfaces/jax.py +5 -3
  32. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/interfaces/tensortrans.py +6 -2
  33. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/interfaces/torch.py +14 -4
  34. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/keras.py +3 -3
  35. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/mpscircuit.py +154 -65
  36. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/quantum.py +698 -134
  37. tensorcircuit_nightly-1.4.0.dev20251226/tensorcircuit/quditcircuit.py +733 -0
  38. tensorcircuit_nightly-1.4.0.dev20251226/tensorcircuit/quditgates.py +618 -0
  39. tensorcircuit_nightly-1.4.0.dev20251226/tensorcircuit/results/counts.py +251 -0
  40. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/results/readout_mitigation.py +4 -1
  41. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/shadows.py +1 -1
  42. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/simplify.py +3 -1
  43. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/stabilizercircuit.py +29 -17
  44. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/templates/__init__.py +2 -0
  45. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/templates/blocks.py +2 -2
  46. tensorcircuit_nightly-1.4.0.dev20251226/tensorcircuit/templates/hamiltonians.py +174 -0
  47. tensorcircuit_nightly-1.4.0.dev20251226/tensorcircuit/templates/lattice.py +1789 -0
  48. tensorcircuit_nightly-1.4.0.dev20251226/tensorcircuit/timeevol.py +896 -0
  49. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/translation.py +10 -3
  50. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/utils.py +7 -0
  51. tensorcircuit_nightly-1.2.0.dev20250309/README.md → tensorcircuit_nightly-1.4.0.dev20251226/tensorcircuit_nightly.egg-info/PKG-INFO +104 -16
  52. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit_nightly.egg-info/SOURCES.txt +8 -46
  53. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit_nightly.egg-info/requires.txt +7 -1
  54. tensorcircuit_nightly-1.4.0.dev20251226/tensorcircuit_nightly.egg-info/top_level.txt +8 -0
  55. tensorcircuit_nightly-1.2.0.dev20250309/MANIFEST.in +0 -7
  56. tensorcircuit_nightly-1.2.0.dev20250309/docs/source/advance.rst +0 -576
  57. tensorcircuit_nightly-1.2.0.dev20250309/docs/source/cnconf.py +0 -208
  58. tensorcircuit_nightly-1.2.0.dev20250309/docs/source/conf.py +0 -212
  59. tensorcircuit_nightly-1.2.0.dev20250309/docs/source/contribution.rst +0 -272
  60. tensorcircuit_nightly-1.2.0.dev20250309/docs/source/faq.rst +0 -279
  61. tensorcircuit_nightly-1.2.0.dev20250309/docs/source/generate_rst.py +0 -117
  62. tensorcircuit_nightly-1.2.0.dev20250309/docs/source/index.rst +0 -229
  63. tensorcircuit_nightly-1.2.0.dev20250309/docs/source/infras.rst +0 -183
  64. tensorcircuit_nightly-1.2.0.dev20250309/docs/source/modules.rst +0 -32
  65. tensorcircuit_nightly-1.2.0.dev20250309/docs/source/modules.rst.backup +0 -29
  66. tensorcircuit_nightly-1.2.0.dev20250309/docs/source/quickstart.rst +0 -985
  67. tensorcircuit_nightly-1.2.0.dev20250309/docs/source/sharpbits.rst +0 -243
  68. tensorcircuit_nightly-1.2.0.dev20250309/docs/source/textbooktoc.rst +0 -11
  69. tensorcircuit_nightly-1.2.0.dev20250309/docs/source/tutorial.rst +0 -31
  70. tensorcircuit_nightly-1.2.0.dev20250309/docs/source/tutorial_cn.rst +0 -23
  71. tensorcircuit_nightly-1.2.0.dev20250309/docs/source/whitepapertoc.rst +0 -15
  72. tensorcircuit_nightly-1.2.0.dev20250309/docs/source/whitepapertoc_cn.rst +0 -15
  73. tensorcircuit_nightly-1.2.0.dev20250309/setup.py +0 -38
  74. tensorcircuit_nightly-1.2.0.dev20250309/tensorcircuit/experimental.py +0 -628
  75. tensorcircuit_nightly-1.2.0.dev20250309/tensorcircuit/results/counts.py +0 -138
  76. tensorcircuit_nightly-1.2.0.dev20250309/tensorcircuit_nightly.egg-info/top_level.txt +0 -2
  77. tensorcircuit_nightly-1.2.0.dev20250309/tests/__init__.py +0 -0
  78. tensorcircuit_nightly-1.2.0.dev20250309/tests/conftest.py +0 -67
  79. tensorcircuit_nightly-1.2.0.dev20250309/tests/test_backends.py +0 -1035
  80. tensorcircuit_nightly-1.2.0.dev20250309/tests/test_calibrating.py +0 -149
  81. tensorcircuit_nightly-1.2.0.dev20250309/tests/test_channels.py +0 -409
  82. tensorcircuit_nightly-1.2.0.dev20250309/tests/test_circuit.py +0 -1699
  83. tensorcircuit_nightly-1.2.0.dev20250309/tests/test_cloud.py +0 -219
  84. tensorcircuit_nightly-1.2.0.dev20250309/tests/test_compiler.py +0 -147
  85. tensorcircuit_nightly-1.2.0.dev20250309/tests/test_dmcircuit.py +0 -555
  86. tensorcircuit_nightly-1.2.0.dev20250309/tests/test_ensemble.py +0 -72
  87. tensorcircuit_nightly-1.2.0.dev20250309/tests/test_fgs.py +0 -310
  88. tensorcircuit_nightly-1.2.0.dev20250309/tests/test_gates.py +0 -156
  89. tensorcircuit_nightly-1.2.0.dev20250309/tests/test_interfaces.py +0 -562
  90. tensorcircuit_nightly-1.2.0.dev20250309/tests/test_keras.py +0 -160
  91. tensorcircuit_nightly-1.2.0.dev20250309/tests/test_miscs.py +0 -282
  92. tensorcircuit_nightly-1.2.0.dev20250309/tests/test_mpscircuit.py +0 -341
  93. tensorcircuit_nightly-1.2.0.dev20250309/tests/test_noisemodel.py +0 -156
  94. tensorcircuit_nightly-1.2.0.dev20250309/tests/test_qaoa.py +0 -86
  95. tensorcircuit_nightly-1.2.0.dev20250309/tests/test_qem.py +0 -152
  96. tensorcircuit_nightly-1.2.0.dev20250309/tests/test_quantum.py +0 -549
  97. tensorcircuit_nightly-1.2.0.dev20250309/tests/test_quantum_attr.py +0 -42
  98. tensorcircuit_nightly-1.2.0.dev20250309/tests/test_results.py +0 -380
  99. tensorcircuit_nightly-1.2.0.dev20250309/tests/test_shadows.py +0 -160
  100. tensorcircuit_nightly-1.2.0.dev20250309/tests/test_simplify.py +0 -46
  101. tensorcircuit_nightly-1.2.0.dev20250309/tests/test_stabilizer.py +0 -217
  102. tensorcircuit_nightly-1.2.0.dev20250309/tests/test_templates.py +0 -218
  103. tensorcircuit_nightly-1.2.0.dev20250309/tests/test_torchnn.py +0 -99
  104. tensorcircuit_nightly-1.2.0.dev20250309/tests/test_van.py +0 -102
  105. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/HISTORY.md +0 -0
  106. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/LICENSE +0 -0
  107. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/setup.cfg +0 -0
  108. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/about.py +0 -0
  109. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/applications/__init__.py +0 -0
  110. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/applications/ai/__init__.py +0 -0
  111. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/applications/ai/ensemble.py +0 -0
  112. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/applications/dqas.py +0 -0
  113. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/applications/finance/__init__.py +0 -0
  114. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/applications/finance/portfolio.py +0 -0
  115. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/applications/graphdata.py +0 -0
  116. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/applications/optimization.py +0 -0
  117. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/applications/physics/__init__.py +0 -0
  118. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/applications/physics/baseline.py +0 -0
  119. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/applications/physics/fss.py +0 -0
  120. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/applications/utils.py +0 -0
  121. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/applications/vags.py +0 -0
  122. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/applications/vqes.py +0 -0
  123. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/asciiart.py +0 -0
  124. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/backends/__init__.py +0 -0
  125. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/backends/backend_factory.py +0 -0
  126. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/backends/pytorch_ops.py +0 -0
  127. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/backends/tf_ops.py +0 -0
  128. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/channels.py +0 -0
  129. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/cloud/__init__.py +0 -0
  130. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/cloud/abstraction.py +0 -0
  131. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/cloud/apis.py +0 -0
  132. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/cloud/config.py +0 -0
  133. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/cloud/utils.py +0 -0
  134. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/cloud/wrapper.py +0 -0
  135. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/compiler/__init__.py +0 -0
  136. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/compiler/composed_compiler.py +0 -0
  137. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/compiler/qiskit_compiler.py +0 -0
  138. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/interfaces/__init__.py +0 -0
  139. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/interfaces/numpy.py +0 -0
  140. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/interfaces/scipy.py +0 -0
  141. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/interfaces/tensorflow.py +0 -0
  142. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/mps_base.py +0 -0
  143. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/noisemodel.py +0 -0
  144. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/results/__init__.py +0 -0
  145. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/results/qem/__init__.py +0 -0
  146. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/results/qem/benchmark_circuits.py +0 -0
  147. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/results/qem/qem_methods.py +0 -0
  148. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/templates/ansatz.py +0 -0
  149. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/templates/chems.py +0 -0
  150. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/templates/conversions.py +0 -0
  151. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/templates/dataset.py +0 -0
  152. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/templates/graphs.py +0 -0
  153. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/templates/measurements.py +0 -0
  154. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/torchnn.py +0 -0
  155. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit/vis.py +0 -0
  156. {tensorcircuit_nightly-1.2.0.dev20250309 → tensorcircuit_nightly-1.4.0.dev20251226}/tensorcircuit_nightly.egg-info/dependency_links.txt +0 -0
@@ -2,6 +2,104 @@
2
2
 
3
3
  ## Unreleased
4
4
 
5
+ ### Added
6
+
7
+ - Add `tc.AnalogCircuit` for digital-analog hybrid simulation.
8
+
9
+ - Add sparse matrix related methods for pytorch backend.
10
+
11
+ - Add exp and expm for torch backend.
12
+
13
+ - Add `su4` as a generic parameterized two-qubit gates.
14
+
15
+ - Add multi controller jax support for distrubuted contraction.
16
+
17
+ ### Fixed
18
+
19
+ - Fix the breaking logic change in jax from dlpack API, dlcapsule -> tensor.
20
+
21
+ - Better torch interface for dlpack translation.
22
+
23
+ ## v1.4.0
24
+
25
+ ### Added
26
+
27
+ - Add new module `tc.timeevol` for different types of time evolution solvers.
28
+
29
+ - Add qudit circuit support with `tc.QuditCircuit` class.
30
+
31
+ - Add `special_jv` for numpy and jax backends.
32
+
33
+ - Add `jaxy_scan` for numpy and jax backends, contrasting to the tf style original backend scan method.
34
+
35
+ - Add `sparse_csr_from_coo` method for numpy and jax backends to convert COO format to CSR format, the latter is more efficient for `sparse_dense_matmul`.
36
+
37
+ - Add `krylov_evol` method for krylov evolution.
38
+
39
+ - Add `chebyshev_evol` method for chebyshev polynomial evolution.
40
+
41
+ - Add `ode_evol_local` and `ode_evol_global` methods for local and global ODE evolution.
42
+
43
+ - Introducing pyproject.toml finally
44
+
45
+ - Add `argsort` method for backends
46
+
47
+ - Add transformation method between tensornetwork, quimb, tenpy and QuOperator in tc-ng including `qop2tenpy`, `qop2quimb`, `qop2tn`, `tenpy2qop`, support both MPS and MPO formats.
48
+
49
+ - Make the lattice module backend agnostic, now the lattice follows `tc.set_backend`.
50
+
51
+ - Add diffrax backend for ode solver in timeevol module.
52
+
53
+ ### Fixed
54
+
55
+ - Fixed `one_hot` in numpy backend.
56
+
57
+ - Fixed `scan` in tensorflow backend and numpy backend.
58
+
59
+ - Fix potential np.matrix return from `PaulistringSum2Dense`.
60
+
61
+ - `MPSCircuit` now will first try to transform `QuVector` input to tensors directly instead of evaluating it to dense wavefunction first.
62
+
63
+ - Fix to use `status` for `circuit.sample` when `allow_state=True`.
64
+
65
+ - Fix sample bug when number of qubit exceeding 32.
66
+
67
+ ### Changed
68
+
69
+ - The order of arguments of `tc.timeevol.ed_evol` are changed for consistent interface with other evolution methods.
70
+
71
+ ## v1.3.0
72
+
73
+ ### Added
74
+
75
+ - Add `Lattice` module (`tensorcircuit.templates.lattice`) for creating and manipulating various lattice geometries, including `SquareLattice`, `HoneycombLattice`, and `CustomizeLattice`.
76
+
77
+ - Add `tc.templates.hamiltonians` for commom systems.
78
+
79
+ - Add `DistributedContractor` in experimental module with new examples for fast implementation of distribution circuit simulation on jax backend.
80
+
81
+ - Add `circuit.amplitude_before()` method to return the corresponding tensornetwork nodes.
82
+
83
+ - Add `with_prob` for `stabilizercircuit.measure()`.
84
+
85
+ - Add `tc.cons.function_nodes_capture` decorator and `tc.cons.runtime_nodes_capture` context manager for directly return nodes before real contraction.
86
+
87
+ ### Fixed
88
+
89
+ - Fix the nodes order in contraction by giving each node a global `_stable_id_`.
90
+
91
+ - Fix `to_dlpack` for jax version >= 0.7.
92
+
93
+ - Fix large eps issue in entanglement calculation of FGS.
94
+
95
+ - Fix cmatrix non-refresh issue for `post_select` in FGS.
96
+
97
+ ## v1.2.1
98
+
99
+ ### Fixed
100
+
101
+ - Jax can be omited in the env
102
+
5
103
  ## v1.2.0
6
104
 
7
105
  ### Added
@@ -0,0 +1,13 @@
1
+ include README.md
2
+ include README_cn.md
3
+ include HISTORY.md
4
+ include LICENSE
5
+ include CHANGELOG.md
6
+ prune tests
7
+ prune docs
8
+ prune examples
9
+ prune develop
10
+ prune benchmarks
11
+ prune docs
12
+ global-exclude __pycache__
13
+ global-exclude .DS_Store
@@ -1,17 +1,21 @@
1
- Metadata-Version: 2.2
1
+ Metadata-Version: 2.4
2
2
  Name: tensorcircuit-nightly
3
- Version: 1.2.0.dev20250309
4
- Summary: nightly release for tensorcircuit
5
- Home-page: https://github.com/refraction-ray/tensorcircuit-dev
6
- Author: TensorCircuit Authors
7
- Author-email: znfesnpbh.tc@gmail.com
3
+ Version: 1.4.0.dev20251226
4
+ Summary: High performance unified quantum computing framework for the NISQ era
5
+ Author-email: TensorCircuit Authors <znfesnpbh@gmail.com>
6
+ License-Expression: Apache-2.0
7
+ Project-URL: Homepage, https://github.com/tensorcircuit/tensorcircuit-ng
8
+ Project-URL: Repository, https://github.com/tensorcircuit/tensorcircuit-ng
8
9
  Classifier: Programming Language :: Python :: 3
9
10
  Classifier: Operating System :: OS Independent
11
+ Classifier: Intended Audience :: Science/Research
12
+ Classifier: Topic :: Scientific/Engineering :: Physics
13
+ Requires-Python: >=3.9
10
14
  Description-Content-Type: text/markdown
11
15
  License-File: LICENSE
12
16
  Requires-Dist: numpy
13
17
  Requires-Dist: scipy
14
- Requires-Dist: tensornetwork
18
+ Requires-Dist: tensornetwork-ng
15
19
  Requires-Dist: networkx
16
20
  Provides-Extra: tensorflow
17
21
  Requires-Dist: tensorflow; extra == "tensorflow"
@@ -22,15 +26,12 @@ Provides-Extra: torch
22
26
  Requires-Dist: torch; extra == "torch"
23
27
  Provides-Extra: qiskit
24
28
  Requires-Dist: qiskit; extra == "qiskit"
25
- Dynamic: author
26
- Dynamic: author-email
27
- Dynamic: classifier
28
- Dynamic: description
29
- Dynamic: description-content-type
30
- Dynamic: home-page
31
- Dynamic: provides-extra
32
- Dynamic: requires-dist
33
- Dynamic: summary
29
+ Requires-Dist: sympy; extra == "qiskit"
30
+ Requires-Dist: symengine; extra == "qiskit"
31
+ Provides-Extra: cloud
32
+ Requires-Dist: qiskit; extra == "cloud"
33
+ Requires-Dist: mthree<2.8; extra == "cloud"
34
+ Dynamic: license-file
34
35
 
35
36
  <p align="center">
36
37
  <a href="https://github.com/tensorcircuit/tensorcircuit-ng">
@@ -59,19 +60,19 @@ Dynamic: summary
59
60
 
60
61
  <p align="center"> English | <a href="README_cn.md"> 简体中文 </a></p>
61
62
 
62
- TensorCircuit-NG is an open-source high-performance quantum software framework, supporting for automatic differentiation, just-in-time compiling, hardware acceleration, and vectorized parallelism, providing unified infrastructures and interfaces for quantum programming. It can compose quantum circuits, neural networks and tensor networks seamlessly with high simulation efficiency and flexibility.
63
+ TensorCircuit-NG is the next-generation open-source high-performance quantum software framework, built upon tensornetwork engines, supporting for automatic differentiation, just-in-time compiling, hardware acceleration, vectorized parallelism and distributed training, providing unified infrastructures and interfaces for quantum programming. It can compose quantum circuits, neural networks and tensor networks seamlessly with high simulation efficiency and flexibility.
63
64
 
64
- TensorCircuit-NG is built on top of modern machine learning frameworks: Jax, TensorFlow, and PyTorch. It is specifically suitable for large-scale simulations of quantum-classical hybrid paradigm and variational quantum algorithms in ideal, noisy, Clifford, approximate and analog cases. It also supports quantum hardware access and provides CPU/GPU/QPU hybrid deployment solutions.
65
+ TensorCircuit-NG is built on top of modern machine learning frameworks: Jax, TensorFlow, and PyTorch. It is specifically suitable for large-scale simulations of quantum-classical hybrid paradigm and variational quantum algorithms in ideal (`Circuit`), noisy (`DMCircuit`), Clifford (`StabilizerCircuit`), qudit (`QuditCircuit`), approximate (`MPSCircuit`), analog (`AnalogCircuit`), and fermionic (`FGSCircuit`) cases. It also supports quantum hardware access and provides CPU/GPU/QPU hybrid deployment solutions.
65
66
 
66
- TensorCircuit-NG is [fully compatible](https://tensorcircuit-ng.readthedocs.io/en/latest/faq.html#what-is-the-relation-between-tensorcircuit-and-tensorcircuit-ng) with TensorCircuit with more new features and bug fixes (support latest `numpy>2` and `qiskit>1`).
67
+ TensorCircuit-NG is the only actively maintained official version and a [fully compatible](https://tensorcircuit-ng.readthedocs.io/en/latest/faq.html#what-is-the-relation-between-tensorcircuit-and-tensorcircuit-ng) successor to TensorCircuit with more new features (stabilizer circuit, qudit circuit, analog circuit, multi-GPU distributed simulation, etc.) and bug fixes (support latest `numpy>2` and `qiskit>1`).
67
68
 
68
69
  ## Getting Started
69
70
 
70
71
  Please begin with [Quick Start](/docs/source/quickstart.rst) in the [full documentation](https://tensorcircuit-ng.readthedocs.io/).
71
72
 
72
- For more information on software usage, sota algorithm implementation and engineer paradigm demonstration, please refer to 80+ [example scripts](/examples) and 30+ [tutorial notebooks](https://tensorcircuit-ng.readthedocs.io/en/latest/#tutorials). API docstrings and test cases in [tests](/tests) are also informative.
73
+ For more information on software usage, sota algorithm implementation and engineer paradigm demonstration, please refer to 100+ [example scripts](/examples) and 40+ [tutorial notebooks](https://tensorcircuit-ng.readthedocs.io/en/latest/#tutorials). API docstrings and test cases in [tests](/tests) are also informative. One can also refer to AI-native docs for tensorcircuit-ng: [Devin Deepwiki](https://deepwiki.com/tensorcircuit/tensorcircuit-ng) and [Context7 MCP](https://context7.com/tensorcircuit/tensorcircuit-ng).
73
74
 
74
- For beginners, please refer to [quantum computing lectures with TC-NG](https://github.com/sxzgroup/qc_lecture) to learn both quantum computing basis and representative usage of TensorCircuit-NG.
75
+ For beginners, please refer to [quantum computing lectures with TC-NG](https://github.com/sxzgroup/qc_lecture) to learn both quantum computing basics and representative usage of TensorCircuit-NG.
75
76
 
76
77
  The following are some minimal demos.
77
78
 
@@ -169,7 +170,7 @@ The package is written in pure Python and can be obtained via pip as:
169
170
  pip install tensorcircuit-ng
170
171
  ```
171
172
 
172
- We recommend you install this package with tensorflow also installed as:
173
+ We recommend you install this package with tensorflow or jax also installed as:
173
174
 
174
175
  ```python
175
176
  pip install "tensorcircuit-ng[tensorflow]"
@@ -191,7 +192,7 @@ We also have [Docker support](/docker).
191
192
 
192
193
  - JIT, AD, vectorized parallelism compatible
193
194
 
194
- - GPU support, quantum device access support, hybrid deployment support
195
+ - GPU support, QPU access support, hybrid deployment support
195
196
 
196
197
  - HPC native, distributed simulation enabled, multiple devices/hosts support
197
198
 
@@ -224,7 +225,7 @@ We also have [Docker support](/docker).
224
225
 
225
226
  - Support **Fermion Gaussian state** simulation with expectation, entanglement, measurement, ground state, real and imaginary time evolution.
226
227
 
227
- - Support **qudits simulation**.
228
+ - Support **qudits simulation** for tensor network and MPS approximation modes.
228
229
 
229
230
  - Support **parallel** quantum circuit evaluation across **multiple GPUs**.
230
231
 
@@ -246,6 +247,8 @@ We also have [Docker support](/docker).
246
247
 
247
248
  - **Machine learning interface/layer/model** abstraction in both TensorFlow, PyTorch and Jax for both numerical simulation and real QPU experiments.
248
249
 
250
+ - Support time evolution simulation with **exact, ODE, Krylov, Trotter, Chebyshev solvers**.
251
+
249
252
  - Circuit sampling supports both final state sampling and perfect sampling from tensor networks.
250
253
 
251
254
  - Light cone reduction support for local expectation calculation.
@@ -280,7 +283,7 @@ If this project helps in your research, please cite our software whitepaper to a
280
283
 
281
284
  which is also a good introduction to the software.
282
285
 
283
- Research works citing TensorCircuit can be highlighted in [Research and Applications section](https://github.com/tensorcircuit/tensorcircuit-ng#research-and-applications).
286
+ Research works citing TensorCircuit-NG can be highlighted in [Research and Applications section](https://github.com/tensorcircuit/tensorcircuit-ng#research-and-applications).
284
287
 
285
288
  ### Guidelines
286
289
 
@@ -339,6 +342,13 @@ TensorCircuit-NG is open source, released under the Apache License, Version 2.0.
339
342
  <td align="center" valign="top" width="16.66%"><a href="https://github.com/AbdullahKazi500"><img src="https://avatars.githubusercontent.com/u/75779966?v=4?s=100" width="100px;" alt="Chanandellar Bong"/><br /><sub><b>Chanandellar Bong</b></sub></a><br /><a href="#example-AbdullahKazi500" title="Examples">💡</a></td>
340
343
  <td align="center" valign="top" width="16.66%"><a href="https://adeshpande.gitlab.io"><img src="https://avatars.githubusercontent.com/u/6169877?v=4?s=100" width="100px;" alt="Abhinav Deshpande"/><br /><sub><b>Abhinav Deshpande</b></sub></a><br /><a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=abhinavd" title="Code">💻</a></td>
341
344
  </tr>
345
+ <tr>
346
+ <td align="center" valign="top" width="16.66%"><a href="https://github.com/Stellogic"><img src="https://avatars.githubusercontent.com/u/186928579?v=4?s=100" width="100px;" alt="Stellogic"/><br /><sub><b>Stellogic</b></sub></a><br /><a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=Stellogic" title="Code">💻</a> <a href="#example-Stellogic" title="Examples">💡</a> <a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=Stellogic" title="Tests">⚠️</a> <a href="#tutorial-Stellogic" title="Tutorials">✅</a></td>
347
+ <td align="center" valign="top" width="16.66%"><a href="https://github.com/Charlespkuer"><img src="https://avatars.githubusercontent.com/u/112697147?v=4?s=100" width="100px;" alt="Huang"/><br /><sub><b>Huang</b></sub></a><br /><a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=Charlespkuer" title="Code">💻</a> <a href="#example-Charlespkuer" title="Examples">💡</a> <a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=Charlespkuer" title="Tests">⚠️</a></td>
348
+ <td align="center" valign="top" width="16.66%"><a href="https://github.com/Huang-Xu-Yang"><img src="https://avatars.githubusercontent.com/u/227286661?v=4?s=100" width="100px;" alt="Huang-Xu-Yang"/><br /><sub><b>Huang-Xu-Yang</b></sub></a><br /><a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=Huang-Xu-Yang" title="Code">💻</a> <a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=Huang-Xu-Yang" title="Tests">⚠️</a></td>
349
+ <td align="center" valign="top" width="16.66%"><a href="https://github.com/WeiguoMa"><img src="https://avatars.githubusercontent.com/u/108172530?v=4?s=100" width="100px;" alt="Weiguo_M"/><br /><sub><b>Weiguo_M</b></sub></a><br /><a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=WeiguoMa" title="Code">💻</a> <a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=WeiguoMa" title="Tests">⚠️</a> <a href="#example-WeiguoMa" title="Examples">💡</a> <a href="#tutorial-WeiguoMa" title="Tutorials">✅</a></td>
350
+ <td align="center" valign="top" width="16.66%"><a href="https://github.com/QuiXamii"><img src="https://avatars.githubusercontent.com/u/136054857?v=4?s=100" width="100px;" alt="Qixiang WANG"/><br /><sub><b>Qixiang WANG</b></sub></a><br /><a href="#example-QuiXamii" title="Examples">💡</a></td>
351
+ </tr>
342
352
  </tbody>
343
353
  </table>
344
354
 
@@ -356,6 +366,8 @@ TensorCircuit-NG is open source, released under the Apache License, Version 2.0.
356
366
 
357
367
  ## Research and Applications
358
368
 
369
+ TensorCircuit-NG is a powerful framework for driving research and applications in quantum computing. Below are examples of published academic works (100+ in total) and open-source projects that utilize TensorCircuit-NG.
370
+
359
371
  ### DQAS
360
372
 
361
373
  For the application of Differentiable Quantum Architecture Search, see [applications](/tensorcircuit/applications).
@@ -404,12 +416,42 @@ For the setup and simulation code of neural network encoded variational quantum
404
416
 
405
417
  Reference paper: https://arxiv.org/abs/2308.01068 (published in PRApplied).
406
418
 
407
- ### Effective temperature in approximate ansatzes
419
+ ### FLDC
420
+
421
+ Absence of barren plateaus in finite local-depth circuits with long-range entanglement, see the [demo](/examples/vqe_toric_code.py).
422
+
423
+ Reference paper: https://arxiv.org/abs/2311.01393 (published in PRL).
424
+
425
+ ### Effective temperature in ansatzes
408
426
 
409
427
  For the simulation implementation of quantum states based on neural networks, tensor networs and quantum circuits using TensorCircuit-NG, see the [project repo](https://github.com/sxzgroup/et).
410
428
 
411
429
  Reference paper: https://arxiv.org/abs/2411.18921.
412
430
 
431
+ ### A Unified Variational Framework for Quantum Excited States
432
+
433
+ For the simulation code and data for variational optimization of simutaneous excited states, see the [project repo](https://github.com/sxzgroup/quantum_excited_state).
434
+
435
+ Reference paper: https://arxiv.org/abs/2504.21459.
436
+
437
+ ### Quantum Machine Unlearning
438
+
439
+ For the simulation code for the work "superior resilience to poisoning and amenability to unlearning in quantum machine learning", see the [project repo](https://github.com/yutuer21/quantum-machine-unlearning).
440
+
441
+ Reference paper: https://arxiv.org/abs/2508.02422.
442
+
443
+ ### Low Weight Pauli Propagation Simulation
444
+
445
+ For the simulation code and data for the work on low weight Pauli propagation in the context of variational quantum algorithms, see the [project repo](https://github.com/ZongliangLi/lwpp_init).
446
+
447
+ Reference paper: https://arxiv.org/abs/2508.06358.
448
+
449
+ ### Quantum Continual Learning
450
+
451
+ For the code implementation on the work of demonstrating plasticity in quantum continual learning, see the [project repo](https://github.com/sxzgroup/quantum-plasticity).
452
+
453
+ Reference paper: https://arxiv.org/abs/2511.17228.
454
+
413
455
  ### More works
414
456
 
415
457
  <details>
@@ -449,26 +491,38 @@ Reference paper: https://arxiv.org/abs/2411.18921.
449
491
 
450
492
  - Universal imaginary-time critical dynamics on a quantum computer: https://arxiv.org/abs/2308.05408 (published in PRB).
451
493
 
452
- - Absence of barren plateaus in finite local-depth circuits with long-range entanglement: https://arxiv.org/abs/2311.01393 (published in PRL).
453
-
454
494
  - Non-Markovianity benefits quantum dynamics simulation: https://arxiv.org/abs/2311.17622.
455
495
 
456
- - Variational post-selection for ground states and thermal states simulation: https://arxiv.org/abs/2402.07605 (published in PRB).
496
+ - Variational post-selection for ground states and thermal states simulation: https://arxiv.org/abs/2402.07605 (published in QST).
457
497
 
458
- - Subsystem information capacity in random circuits and Hamiltonian dynamics: https://arxiv.org/abs/2405.05076.
498
+ - Subsystem information capacity in random circuits and Hamiltonian dynamics: https://arxiv.org/abs/2405.05076 (published in Quantum). Code implementation: https://github.com/sxzgroup/subsystem_information_capacity.
459
499
 
460
500
  - Symmetry restoration and quantum Mpemba effect in symmetric random circuits: https://arxiv.org/abs/2403.08459 (published in PRL).
461
501
 
462
502
  - Quantum Mpemba effects in many-body localization systems: https://arxiv.org/abs/2408.07750.
463
503
 
464
- - Supersymmetry dynamics on Rydberg atom arrays: https://arxiv.org/abs/2410.21386.
504
+ - Supersymmetry dynamics on Rydberg atom arrays: https://arxiv.org/abs/2410.21386 (published in PRB).
465
505
 
466
506
  - Dynamic parameterized quantum circuits: expressive and barren-plateau free: https://arxiv.org/abs/2411.05760.
467
507
 
468
- - Holographic deep thermalization: https://arxiv.org/abs/2411.03587.
508
+ - Holographic deep thermalization: https://arxiv.org/abs/2411.03587 (published in Nature Communications).
469
509
 
470
510
  - Quantum deep generative prior with programmable quantum circuits: https://www.nature.com/articles/s42005-024-01765-9 (published in Communications Physics).
471
511
 
512
+ - Symmetry Breaking Dynamics in Quantum Many-Body Systems: https://arxiv.org/abs/2501.13459.
513
+
514
+ - Entanglement growth and information capacity in a quasiperiodic system with a single-particle mobility edge: https://arxiv.org/abs/2506.18076.
515
+
516
+ - Hilbert subspace imprint: a new mechanism for non-thermalization: https://arxiv.org/abs/2506.11922.
517
+
518
+ - A Neural-Guided Variational Quantum Algorithm for Efficient Sign Structure Learning in Hybrid Architectures: https://arxiv.org/abs/2507.07555.
519
+
520
+ - Quantum Pontus-Mpemba Effects in Real and Imaginary-time Dynamics: https://arxiv.org/abs/2509.01960.
521
+
522
+ - Quantum Mpemba effect in long-ranged U(1)-symmetric random circuits: https://arxiv.org/abs/2512.06775.
523
+
524
+ - A Qudit-native Framework for Discrete Time Crystals: https://arxiv.org/abs/2512.04577.
525
+
472
526
  </details>
473
527
 
474
528
  If you want to highlight your research work or projects here, feel free to add by opening PR.
@@ -1,37 +1,3 @@
1
- Metadata-Version: 2.2
2
- Name: tensorcircuit-nightly
3
- Version: 1.2.0.dev20250309
4
- Summary: nightly release for tensorcircuit
5
- Home-page: https://github.com/refraction-ray/tensorcircuit-dev
6
- Author: TensorCircuit Authors
7
- Author-email: znfesnpbh.tc@gmail.com
8
- Classifier: Programming Language :: Python :: 3
9
- Classifier: Operating System :: OS Independent
10
- Description-Content-Type: text/markdown
11
- License-File: LICENSE
12
- Requires-Dist: numpy
13
- Requires-Dist: scipy
14
- Requires-Dist: tensornetwork
15
- Requires-Dist: networkx
16
- Provides-Extra: tensorflow
17
- Requires-Dist: tensorflow; extra == "tensorflow"
18
- Provides-Extra: jax
19
- Requires-Dist: jax; extra == "jax"
20
- Requires-Dist: jaxlib; extra == "jax"
21
- Provides-Extra: torch
22
- Requires-Dist: torch; extra == "torch"
23
- Provides-Extra: qiskit
24
- Requires-Dist: qiskit; extra == "qiskit"
25
- Dynamic: author
26
- Dynamic: author-email
27
- Dynamic: classifier
28
- Dynamic: description
29
- Dynamic: description-content-type
30
- Dynamic: home-page
31
- Dynamic: provides-extra
32
- Dynamic: requires-dist
33
- Dynamic: summary
34
-
35
1
  <p align="center">
36
2
  <a href="https://github.com/tensorcircuit/tensorcircuit-ng">
37
3
  <img width=90% src="docs/source/statics/logong.png">
@@ -59,19 +25,19 @@ Dynamic: summary
59
25
 
60
26
  <p align="center"> English | <a href="README_cn.md"> 简体中文 </a></p>
61
27
 
62
- TensorCircuit-NG is an open-source high-performance quantum software framework, supporting for automatic differentiation, just-in-time compiling, hardware acceleration, and vectorized parallelism, providing unified infrastructures and interfaces for quantum programming. It can compose quantum circuits, neural networks and tensor networks seamlessly with high simulation efficiency and flexibility.
28
+ TensorCircuit-NG is the next-generation open-source high-performance quantum software framework, built upon tensornetwork engines, supporting for automatic differentiation, just-in-time compiling, hardware acceleration, vectorized parallelism and distributed training, providing unified infrastructures and interfaces for quantum programming. It can compose quantum circuits, neural networks and tensor networks seamlessly with high simulation efficiency and flexibility.
63
29
 
64
- TensorCircuit-NG is built on top of modern machine learning frameworks: Jax, TensorFlow, and PyTorch. It is specifically suitable for large-scale simulations of quantum-classical hybrid paradigm and variational quantum algorithms in ideal, noisy, Clifford, approximate and analog cases. It also supports quantum hardware access and provides CPU/GPU/QPU hybrid deployment solutions.
30
+ TensorCircuit-NG is built on top of modern machine learning frameworks: Jax, TensorFlow, and PyTorch. It is specifically suitable for large-scale simulations of quantum-classical hybrid paradigm and variational quantum algorithms in ideal (`Circuit`), noisy (`DMCircuit`), Clifford (`StabilizerCircuit`), qudit (`QuditCircuit`), approximate (`MPSCircuit`), analog (`AnalogCircuit`), and fermionic (`FGSCircuit`) cases. It also supports quantum hardware access and provides CPU/GPU/QPU hybrid deployment solutions.
65
31
 
66
- TensorCircuit-NG is [fully compatible](https://tensorcircuit-ng.readthedocs.io/en/latest/faq.html#what-is-the-relation-between-tensorcircuit-and-tensorcircuit-ng) with TensorCircuit with more new features and bug fixes (support latest `numpy>2` and `qiskit>1`).
32
+ TensorCircuit-NG is the only actively maintained official version and a [fully compatible](https://tensorcircuit-ng.readthedocs.io/en/latest/faq.html#what-is-the-relation-between-tensorcircuit-and-tensorcircuit-ng) successor to TensorCircuit with more new features (stabilizer circuit, qudit circuit, analog circuit, multi-GPU distributed simulation, etc.) and bug fixes (support latest `numpy>2` and `qiskit>1`).
67
33
 
68
34
  ## Getting Started
69
35
 
70
36
  Please begin with [Quick Start](/docs/source/quickstart.rst) in the [full documentation](https://tensorcircuit-ng.readthedocs.io/).
71
37
 
72
- For more information on software usage, sota algorithm implementation and engineer paradigm demonstration, please refer to 80+ [example scripts](/examples) and 30+ [tutorial notebooks](https://tensorcircuit-ng.readthedocs.io/en/latest/#tutorials). API docstrings and test cases in [tests](/tests) are also informative.
38
+ For more information on software usage, sota algorithm implementation and engineer paradigm demonstration, please refer to 100+ [example scripts](/examples) and 40+ [tutorial notebooks](https://tensorcircuit-ng.readthedocs.io/en/latest/#tutorials). API docstrings and test cases in [tests](/tests) are also informative. One can also refer to AI-native docs for tensorcircuit-ng: [Devin Deepwiki](https://deepwiki.com/tensorcircuit/tensorcircuit-ng) and [Context7 MCP](https://context7.com/tensorcircuit/tensorcircuit-ng).
73
39
 
74
- For beginners, please refer to [quantum computing lectures with TC-NG](https://github.com/sxzgroup/qc_lecture) to learn both quantum computing basis and representative usage of TensorCircuit-NG.
40
+ For beginners, please refer to [quantum computing lectures with TC-NG](https://github.com/sxzgroup/qc_lecture) to learn both quantum computing basics and representative usage of TensorCircuit-NG.
75
41
 
76
42
  The following are some minimal demos.
77
43
 
@@ -169,7 +135,7 @@ The package is written in pure Python and can be obtained via pip as:
169
135
  pip install tensorcircuit-ng
170
136
  ```
171
137
 
172
- We recommend you install this package with tensorflow also installed as:
138
+ We recommend you install this package with tensorflow or jax also installed as:
173
139
 
174
140
  ```python
175
141
  pip install "tensorcircuit-ng[tensorflow]"
@@ -191,7 +157,7 @@ We also have [Docker support](/docker).
191
157
 
192
158
  - JIT, AD, vectorized parallelism compatible
193
159
 
194
- - GPU support, quantum device access support, hybrid deployment support
160
+ - GPU support, QPU access support, hybrid deployment support
195
161
 
196
162
  - HPC native, distributed simulation enabled, multiple devices/hosts support
197
163
 
@@ -224,7 +190,7 @@ We also have [Docker support](/docker).
224
190
 
225
191
  - Support **Fermion Gaussian state** simulation with expectation, entanglement, measurement, ground state, real and imaginary time evolution.
226
192
 
227
- - Support **qudits simulation**.
193
+ - Support **qudits simulation** for tensor network and MPS approximation modes.
228
194
 
229
195
  - Support **parallel** quantum circuit evaluation across **multiple GPUs**.
230
196
 
@@ -246,6 +212,8 @@ We also have [Docker support](/docker).
246
212
 
247
213
  - **Machine learning interface/layer/model** abstraction in both TensorFlow, PyTorch and Jax for both numerical simulation and real QPU experiments.
248
214
 
215
+ - Support time evolution simulation with **exact, ODE, Krylov, Trotter, Chebyshev solvers**.
216
+
249
217
  - Circuit sampling supports both final state sampling and perfect sampling from tensor networks.
250
218
 
251
219
  - Light cone reduction support for local expectation calculation.
@@ -280,7 +248,7 @@ If this project helps in your research, please cite our software whitepaper to a
280
248
 
281
249
  which is also a good introduction to the software.
282
250
 
283
- Research works citing TensorCircuit can be highlighted in [Research and Applications section](https://github.com/tensorcircuit/tensorcircuit-ng#research-and-applications).
251
+ Research works citing TensorCircuit-NG can be highlighted in [Research and Applications section](https://github.com/tensorcircuit/tensorcircuit-ng#research-and-applications).
284
252
 
285
253
  ### Guidelines
286
254
 
@@ -339,6 +307,13 @@ TensorCircuit-NG is open source, released under the Apache License, Version 2.0.
339
307
  <td align="center" valign="top" width="16.66%"><a href="https://github.com/AbdullahKazi500"><img src="https://avatars.githubusercontent.com/u/75779966?v=4?s=100" width="100px;" alt="Chanandellar Bong"/><br /><sub><b>Chanandellar Bong</b></sub></a><br /><a href="#example-AbdullahKazi500" title="Examples">💡</a></td>
340
308
  <td align="center" valign="top" width="16.66%"><a href="https://adeshpande.gitlab.io"><img src="https://avatars.githubusercontent.com/u/6169877?v=4?s=100" width="100px;" alt="Abhinav Deshpande"/><br /><sub><b>Abhinav Deshpande</b></sub></a><br /><a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=abhinavd" title="Code">💻</a></td>
341
309
  </tr>
310
+ <tr>
311
+ <td align="center" valign="top" width="16.66%"><a href="https://github.com/Stellogic"><img src="https://avatars.githubusercontent.com/u/186928579?v=4?s=100" width="100px;" alt="Stellogic"/><br /><sub><b>Stellogic</b></sub></a><br /><a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=Stellogic" title="Code">💻</a> <a href="#example-Stellogic" title="Examples">💡</a> <a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=Stellogic" title="Tests">⚠️</a> <a href="#tutorial-Stellogic" title="Tutorials">✅</a></td>
312
+ <td align="center" valign="top" width="16.66%"><a href="https://github.com/Charlespkuer"><img src="https://avatars.githubusercontent.com/u/112697147?v=4?s=100" width="100px;" alt="Huang"/><br /><sub><b>Huang</b></sub></a><br /><a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=Charlespkuer" title="Code">💻</a> <a href="#example-Charlespkuer" title="Examples">💡</a> <a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=Charlespkuer" title="Tests">⚠️</a></td>
313
+ <td align="center" valign="top" width="16.66%"><a href="https://github.com/Huang-Xu-Yang"><img src="https://avatars.githubusercontent.com/u/227286661?v=4?s=100" width="100px;" alt="Huang-Xu-Yang"/><br /><sub><b>Huang-Xu-Yang</b></sub></a><br /><a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=Huang-Xu-Yang" title="Code">💻</a> <a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=Huang-Xu-Yang" title="Tests">⚠️</a></td>
314
+ <td align="center" valign="top" width="16.66%"><a href="https://github.com/WeiguoMa"><img src="https://avatars.githubusercontent.com/u/108172530?v=4?s=100" width="100px;" alt="Weiguo_M"/><br /><sub><b>Weiguo_M</b></sub></a><br /><a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=WeiguoMa" title="Code">💻</a> <a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=WeiguoMa" title="Tests">⚠️</a> <a href="#example-WeiguoMa" title="Examples">💡</a> <a href="#tutorial-WeiguoMa" title="Tutorials">✅</a></td>
315
+ <td align="center" valign="top" width="16.66%"><a href="https://github.com/QuiXamii"><img src="https://avatars.githubusercontent.com/u/136054857?v=4?s=100" width="100px;" alt="Qixiang WANG"/><br /><sub><b>Qixiang WANG</b></sub></a><br /><a href="#example-QuiXamii" title="Examples">💡</a></td>
316
+ </tr>
342
317
  </tbody>
343
318
  </table>
344
319
 
@@ -356,6 +331,8 @@ TensorCircuit-NG is open source, released under the Apache License, Version 2.0.
356
331
 
357
332
  ## Research and Applications
358
333
 
334
+ TensorCircuit-NG is a powerful framework for driving research and applications in quantum computing. Below are examples of published academic works (100+ in total) and open-source projects that utilize TensorCircuit-NG.
335
+
359
336
  ### DQAS
360
337
 
361
338
  For the application of Differentiable Quantum Architecture Search, see [applications](/tensorcircuit/applications).
@@ -404,12 +381,42 @@ For the setup and simulation code of neural network encoded variational quantum
404
381
 
405
382
  Reference paper: https://arxiv.org/abs/2308.01068 (published in PRApplied).
406
383
 
407
- ### Effective temperature in approximate ansatzes
384
+ ### FLDC
385
+
386
+ Absence of barren plateaus in finite local-depth circuits with long-range entanglement, see the [demo](/examples/vqe_toric_code.py).
387
+
388
+ Reference paper: https://arxiv.org/abs/2311.01393 (published in PRL).
389
+
390
+ ### Effective temperature in ansatzes
408
391
 
409
392
  For the simulation implementation of quantum states based on neural networks, tensor networs and quantum circuits using TensorCircuit-NG, see the [project repo](https://github.com/sxzgroup/et).
410
393
 
411
394
  Reference paper: https://arxiv.org/abs/2411.18921.
412
395
 
396
+ ### A Unified Variational Framework for Quantum Excited States
397
+
398
+ For the simulation code and data for variational optimization of simutaneous excited states, see the [project repo](https://github.com/sxzgroup/quantum_excited_state).
399
+
400
+ Reference paper: https://arxiv.org/abs/2504.21459.
401
+
402
+ ### Quantum Machine Unlearning
403
+
404
+ For the simulation code for the work "superior resilience to poisoning and amenability to unlearning in quantum machine learning", see the [project repo](https://github.com/yutuer21/quantum-machine-unlearning).
405
+
406
+ Reference paper: https://arxiv.org/abs/2508.02422.
407
+
408
+ ### Low Weight Pauli Propagation Simulation
409
+
410
+ For the simulation code and data for the work on low weight Pauli propagation in the context of variational quantum algorithms, see the [project repo](https://github.com/ZongliangLi/lwpp_init).
411
+
412
+ Reference paper: https://arxiv.org/abs/2508.06358.
413
+
414
+ ### Quantum Continual Learning
415
+
416
+ For the code implementation on the work of demonstrating plasticity in quantum continual learning, see the [project repo](https://github.com/sxzgroup/quantum-plasticity).
417
+
418
+ Reference paper: https://arxiv.org/abs/2511.17228.
419
+
413
420
  ### More works
414
421
 
415
422
  <details>
@@ -449,26 +456,38 @@ Reference paper: https://arxiv.org/abs/2411.18921.
449
456
 
450
457
  - Universal imaginary-time critical dynamics on a quantum computer: https://arxiv.org/abs/2308.05408 (published in PRB).
451
458
 
452
- - Absence of barren plateaus in finite local-depth circuits with long-range entanglement: https://arxiv.org/abs/2311.01393 (published in PRL).
453
-
454
459
  - Non-Markovianity benefits quantum dynamics simulation: https://arxiv.org/abs/2311.17622.
455
460
 
456
- - Variational post-selection for ground states and thermal states simulation: https://arxiv.org/abs/2402.07605 (published in PRB).
461
+ - Variational post-selection for ground states and thermal states simulation: https://arxiv.org/abs/2402.07605 (published in QST).
457
462
 
458
- - Subsystem information capacity in random circuits and Hamiltonian dynamics: https://arxiv.org/abs/2405.05076.
463
+ - Subsystem information capacity in random circuits and Hamiltonian dynamics: https://arxiv.org/abs/2405.05076 (published in Quantum). Code implementation: https://github.com/sxzgroup/subsystem_information_capacity.
459
464
 
460
465
  - Symmetry restoration and quantum Mpemba effect in symmetric random circuits: https://arxiv.org/abs/2403.08459 (published in PRL).
461
466
 
462
467
  - Quantum Mpemba effects in many-body localization systems: https://arxiv.org/abs/2408.07750.
463
468
 
464
- - Supersymmetry dynamics on Rydberg atom arrays: https://arxiv.org/abs/2410.21386.
469
+ - Supersymmetry dynamics on Rydberg atom arrays: https://arxiv.org/abs/2410.21386 (published in PRB).
465
470
 
466
471
  - Dynamic parameterized quantum circuits: expressive and barren-plateau free: https://arxiv.org/abs/2411.05760.
467
472
 
468
- - Holographic deep thermalization: https://arxiv.org/abs/2411.03587.
473
+ - Holographic deep thermalization: https://arxiv.org/abs/2411.03587 (published in Nature Communications).
469
474
 
470
475
  - Quantum deep generative prior with programmable quantum circuits: https://www.nature.com/articles/s42005-024-01765-9 (published in Communications Physics).
471
476
 
477
+ - Symmetry Breaking Dynamics in Quantum Many-Body Systems: https://arxiv.org/abs/2501.13459.
478
+
479
+ - Entanglement growth and information capacity in a quasiperiodic system with a single-particle mobility edge: https://arxiv.org/abs/2506.18076.
480
+
481
+ - Hilbert subspace imprint: a new mechanism for non-thermalization: https://arxiv.org/abs/2506.11922.
482
+
483
+ - A Neural-Guided Variational Quantum Algorithm for Efficient Sign Structure Learning in Hybrid Architectures: https://arxiv.org/abs/2507.07555.
484
+
485
+ - Quantum Pontus-Mpemba Effects in Real and Imaginary-time Dynamics: https://arxiv.org/abs/2509.01960.
486
+
487
+ - Quantum Mpemba effect in long-ranged U(1)-symmetric random circuits: https://arxiv.org/abs/2512.06775.
488
+
489
+ - A Qudit-native Framework for Discrete Time Crystals: https://arxiv.org/abs/2512.04577.
490
+
472
491
  </details>
473
492
 
474
493
  If you want to highlight your research work or projects here, feel free to add by opening PR.
@@ -21,17 +21,21 @@
21
21
 
22
22
  <p align="center"> <a href="README.md">English</a> | 简体中文 </p>
23
23
 
24
- TensorCircuit-NG 是下一代量子软件框架,完美支持自动微分、即时编译、硬件加速和向量并行化。
24
+ TensorCircuit-NG 是下一代量子软件框架,完美支持自动微分、即时编译、硬件加速、向量并行化和分布式训练,是量超智融合的首选平台。
25
25
 
26
- TensorCircuit-NG 建立在现代机器学习框架 Jax, TensorFlow, PyTorch 之上,支持机器学习后端无关的统一界面。 其特别适用于理想情况、含噪声情况、稳定子情况及可控近似情况下,大规模量子经典混合范式和变分量子算法的高效模拟。
26
+ TensorCircuit-NG 建立在现代机器学习框架 Jax, TensorFlow, PyTorch 之上,支持机器学习后端无关的统一界面。 其特别适用于理想情况、含噪声情况、稳定子情况、可控近似情况、连续动力学情况及费米子情况下,大规模量子经典混合范式和变分量子算法的高效模拟。其可以高效地编织和模拟量子线路、张量网络和神经网络组成的混合计算图。
27
27
 
28
- TensorCircuit-NG 现在支持真实量子硬件连接和实验,并提供优雅的 CPU/GPU/QPU 混合部署训练方案(v0.9+)。
28
+ TensorCircuit-NG 现在支持真实量子硬件连接和实验,并提供优雅的 CPU/GPU/QPU 硬件混合部署训练方案。
29
+
30
+ TensorCircuit-NG 是目前积极维护的唯一官方版本,是 TensorCircuit 的[完全兼容](https://github.com/orgs/tensorcircuit/discussions/19)的升级版本,它包含了更多新功能(例如稳定子线路、多卡分布式模拟等)和错误修复(例如支持最新的 numpy>2 和 qiskit>1)。
29
31
 
30
32
  ## 入门
31
33
 
32
34
  请从 [完整文档](https://tensorcircuit-ng.readthedocs.io/) 中的 [快速上手](/docs/source/quickstart.rst) 开始。
33
35
 
34
- 有关软件用法,算法实现和工程范式演示的更多信息和介绍,请参阅 80+ [示例脚本](/examples) 和 30+ [案例教程](https://tensorcircuit-ng.readthedocs.io/en/latest/#tutorials)。 [测试](/tests) 用例和 API docstring 也提供了丰富的使用信息。
36
+ 有关软件用法,算法实现和工程范式演示的更多信息和介绍,请参阅 100+ [示例脚本](/examples) 和 40+ [案例教程](https://tensorcircuit-ng.readthedocs.io/en/latest/#tutorials)。 [测试](/tests) 用例和 API docstring 也提供了丰富的使用信息。
37
+
38
+ TensorCircuit-NG 也支持 AI 原生编程资源:[Devin Deepwiki](https://deepwiki.com/tensorcircuit/tensorcircuit-ng) 和 [Context7 MCP](https://context7.com/tensorcircuit/tensorcircuit-ng).
35
39
 
36
40
  初学者也可以参考[量子计算教程](https://github.com/sxzgroup/qc_lecture)学习量子计算基础和 TensorCircuit-NG 的典型用法.
37
41