tamar-model-client 0.1.8__tar.gz → 0.1.15__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (25) hide show
  1. {tamar_model_client-0.1.8 → tamar_model_client-0.1.15}/PKG-INFO +10 -3
  2. {tamar_model_client-0.1.8 → tamar_model_client-0.1.15}/README.md +7 -0
  3. {tamar_model_client-0.1.8 → tamar_model_client-0.1.15}/setup.py +3 -3
  4. {tamar_model_client-0.1.8 → tamar_model_client-0.1.15}/tamar_model_client/async_client.py +154 -55
  5. {tamar_model_client-0.1.8 → tamar_model_client-0.1.15}/tamar_model_client/generated/model_service_pb2.py +3 -3
  6. {tamar_model_client-0.1.8 → tamar_model_client-0.1.15}/tamar_model_client/generated/model_service_pb2_grpc.py +1 -1
  7. {tamar_model_client-0.1.8 → tamar_model_client-0.1.15}/tamar_model_client/schemas/inputs.py +7 -2
  8. tamar_model_client-0.1.15/tamar_model_client/sync_client.py +509 -0
  9. {tamar_model_client-0.1.8 → tamar_model_client-0.1.15}/tamar_model_client.egg-info/PKG-INFO +10 -3
  10. {tamar_model_client-0.1.8 → tamar_model_client-0.1.15}/tamar_model_client.egg-info/requires.txt +2 -2
  11. tamar_model_client-0.1.8/tamar_model_client/sync_client.py +0 -111
  12. {tamar_model_client-0.1.8 → tamar_model_client-0.1.15}/setup.cfg +0 -0
  13. {tamar_model_client-0.1.8 → tamar_model_client-0.1.15}/tamar_model_client/__init__.py +0 -0
  14. {tamar_model_client-0.1.8 → tamar_model_client-0.1.15}/tamar_model_client/auth.py +0 -0
  15. {tamar_model_client-0.1.8 → tamar_model_client-0.1.15}/tamar_model_client/enums/__init__.py +0 -0
  16. {tamar_model_client-0.1.8 → tamar_model_client-0.1.15}/tamar_model_client/enums/channel.py +0 -0
  17. {tamar_model_client-0.1.8 → tamar_model_client-0.1.15}/tamar_model_client/enums/invoke.py +0 -0
  18. {tamar_model_client-0.1.8 → tamar_model_client-0.1.15}/tamar_model_client/enums/providers.py +0 -0
  19. {tamar_model_client-0.1.8 → tamar_model_client-0.1.15}/tamar_model_client/exceptions.py +0 -0
  20. {tamar_model_client-0.1.8 → tamar_model_client-0.1.15}/tamar_model_client/generated/__init__.py +0 -0
  21. {tamar_model_client-0.1.8 → tamar_model_client-0.1.15}/tamar_model_client/schemas/__init__.py +0 -0
  22. {tamar_model_client-0.1.8 → tamar_model_client-0.1.15}/tamar_model_client/schemas/outputs.py +0 -0
  23. {tamar_model_client-0.1.8 → tamar_model_client-0.1.15}/tamar_model_client.egg-info/SOURCES.txt +0 -0
  24. {tamar_model_client-0.1.8 → tamar_model_client-0.1.15}/tamar_model_client.egg-info/dependency_links.txt +0 -0
  25. {tamar_model_client-0.1.8 → tamar_model_client-0.1.15}/tamar_model_client.egg-info/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: tamar-model-client
3
- Version: 0.1.8
3
+ Version: 0.1.15
4
4
  Summary: A Python SDK for interacting with the Model Manager gRPC service
5
5
  Home-page: http://gitlab.tamaredge.top/project-tap/AgentOS/model-manager-client
6
6
  Author: Oscar Ou
@@ -11,8 +11,8 @@ Classifier: License :: OSI Approved :: MIT License
11
11
  Classifier: Operating System :: OS Independent
12
12
  Requires-Python: >=3.8
13
13
  Description-Content-Type: text/markdown
14
- Requires-Dist: grpcio
15
- Requires-Dist: grpcio-tools
14
+ Requires-Dist: grpcio~=1.67.1
15
+ Requires-Dist: grpcio-tools~=1.67.1
16
16
  Requires-Dist: pydantic
17
17
  Requires-Dist: PyJWT
18
18
  Requires-Dist: nest_asyncio
@@ -528,6 +528,13 @@ pip install -e .
528
528
  python make_grpc.py
529
529
  ```
530
530
 
531
+ ### 部署到 pip
532
+ ```bash
533
+ python setup.py sdist bdist_wheel
534
+ twine check dist/*
535
+
536
+ ```
537
+
531
538
  ## 许可证
532
539
 
533
540
  MIT License
@@ -498,6 +498,13 @@ pip install -e .
498
498
  python make_grpc.py
499
499
  ```
500
500
 
501
+ ### 部署到 pip
502
+ ```bash
503
+ python setup.py sdist bdist_wheel
504
+ twine check dist/*
505
+
506
+ ```
507
+
501
508
  ## 许可证
502
509
 
503
510
  MIT License
@@ -2,7 +2,7 @@ from setuptools import setup, find_packages
2
2
 
3
3
  setup(
4
4
  name="tamar-model-client",
5
- version="0.1.8",
5
+ version="0.1.15",
6
6
  description="A Python SDK for interacting with the Model Manager gRPC service",
7
7
  author="Oscar Ou",
8
8
  author_email="oscar.ou@tamaredge.ai",
@@ -12,8 +12,8 @@ setup(
12
12
  "tamar_model_client": ["generated/*.py"], # 包含 gRPC 生成文件
13
13
  },
14
14
  install_requires=[
15
- "grpcio",
16
- "grpcio-tools",
15
+ "grpcio~=1.67.1",
16
+ "grpcio-tools~=1.67.1",
17
17
  "pydantic",
18
18
  "PyJWT",
19
19
  "nest_asyncio",
@@ -4,6 +4,8 @@ import base64
4
4
  import json
5
5
  import logging
6
6
  import os
7
+ import uuid
8
+ from contextvars import ContextVar
7
9
 
8
10
  import grpc
9
11
  from typing import Optional, AsyncIterator, Union, Iterable
@@ -13,21 +15,44 @@ from pydantic import BaseModel
13
15
 
14
16
  from .auth import JWTAuthHandler
15
17
  from .enums import ProviderType, InvokeType
16
- from .exceptions import ConnectionError, ValidationError
18
+ from .exceptions import ConnectionError
17
19
  from .schemas import ModelRequest, ModelResponse, BatchModelRequest, BatchModelResponse
18
20
  from .generated import model_service_pb2, model_service_pb2_grpc
19
21
  from .schemas.inputs import GoogleGenAiInput, OpenAIResponsesInput, OpenAIChatCompletionsInput, \
20
22
  GoogleVertexAIImagesInput, OpenAIImagesInput
21
23
 
22
- if not logging.getLogger().hasHandlers():
23
- # 配置日志格式
24
- logging.basicConfig(
25
- level=logging.INFO,
26
- format="%(asctime)s [%(levelname)s] %(message)s",
27
- )
28
-
29
24
  logger = logging.getLogger(__name__)
30
25
 
26
+ # 使用 contextvars 管理请求ID
27
+ _request_id: ContextVar[str] = ContextVar('request_id', default='-')
28
+
29
+
30
+ class RequestIdFilter(logging.Filter):
31
+ """自定义日志过滤器,向日志中添加 request_id"""
32
+
33
+ def filter(self, record):
34
+ # 从 ContextVar 中获取当前的 request_id
35
+ record.request_id = _request_id.get()
36
+ return True
37
+
38
+
39
+ if not logger.hasHandlers():
40
+ # 创建日志处理器,输出到控制台
41
+ console_handler = logging.StreamHandler()
42
+
43
+ # 设置日志格式
44
+ formatter = logging.Formatter('%(asctime)s [%(levelname)s] [%(request_id)s] %(message)s')
45
+ console_handler.setFormatter(formatter)
46
+
47
+ # 为当前记录器添加处理器
48
+ logger.addHandler(console_handler)
49
+
50
+ # 设置日志级别
51
+ logger.setLevel(logging.INFO)
52
+
53
+ # 将自定义的 RequestIdFilter 添加到 logger 中
54
+ logger.addFilter(RequestIdFilter())
55
+
31
56
  MAX_MESSAGE_LENGTH = 2 ** 31 - 1 # 对于32位系统
32
57
 
33
58
 
@@ -97,6 +122,16 @@ def remove_none_from_dict(data: Any) -> Any:
97
122
  return data
98
123
 
99
124
 
125
+ def generate_request_id():
126
+ """生成一个唯一的request_id"""
127
+ return str(uuid.uuid4())
128
+
129
+
130
+ def set_request_id(request_id: str):
131
+ """设置当前请求的 request_id"""
132
+ _request_id.set(request_id)
133
+
134
+
100
135
  class AsyncTamarModelClient:
101
136
  def __init__(
102
137
  self,
@@ -105,8 +140,8 @@ class AsyncTamarModelClient:
105
140
  jwt_token: Optional[str] = None,
106
141
  default_payload: Optional[dict] = None,
107
142
  token_expires_in: int = 3600,
108
- max_retries: int = 3, # 最大重试次数
109
- retry_delay: float = 1.0, # 初始重试延迟(秒)
143
+ max_retries: Optional[int] = None, # 最大重试次数
144
+ retry_delay: Optional[float] = None, # 初始重试延迟(秒)
110
145
  ):
111
146
  # 服务端地址
112
147
  self.server_address = server_address or os.getenv("MODEL_MANAGER_SERVER_ADDRESS")
@@ -137,12 +172,45 @@ class AsyncTamarModelClient:
137
172
  self._closed = False
138
173
  atexit.register(self._safe_sync_close) # 注册进程退出自动关闭
139
174
 
140
- def _build_auth_metadata(self) -> list:
175
+ async def _retry_request(self, func, *args, **kwargs):
176
+ retry_count = 0
177
+ while retry_count < self.max_retries:
178
+ try:
179
+ return await func(*args, **kwargs)
180
+ except (grpc.aio.AioRpcError, grpc.RpcError) as e:
181
+ # 对于取消的情况进行指数退避重试
182
+ if isinstance(e, grpc.aio.AioRpcError) and e.code() == grpc.StatusCode.CANCELLED:
183
+ retry_count += 1
184
+ logger.warning(f"❌ RPC cancelled, retrying {retry_count}/{self.max_retries}...")
185
+ if retry_count < self.max_retries:
186
+ delay = self.retry_delay * (2 ** (retry_count - 1))
187
+ await asyncio.sleep(delay)
188
+ else:
189
+ logger.error("❌ Max retry reached for CANCELLED")
190
+ raise
191
+ # 针对其他 RPC 错误类型,如暂时的连接问题、服务器超时等
192
+ elif isinstance(e, grpc.RpcError) and e.code() in {grpc.StatusCode.UNAVAILABLE,
193
+ grpc.StatusCode.DEADLINE_EXCEEDED}:
194
+ retry_count += 1
195
+ logger.warning(f"❌ gRPC error {e.code()}, retrying {retry_count}/{self.max_retries}...")
196
+ if retry_count < self.max_retries:
197
+ delay = self.retry_delay * (2 ** (retry_count - 1))
198
+ await asyncio.sleep(delay)
199
+ else:
200
+ logger.error(f"❌ Max retry reached for {e.code()}")
201
+ raise
202
+ else:
203
+ logger.error(f"❌ Non-retryable gRPC error: {e}", exc_info=True)
204
+ raise
205
+
206
+ def _build_auth_metadata(self, request_id: str) -> list:
141
207
  # if not self.jwt_token and self.jwt_handler:
142
208
  # 更改为每次请求都生成一次token
209
+ metadata = [("x-request-id", request_id)] # 将 request_id 添加到 headers
143
210
  if self.jwt_handler:
144
211
  self.jwt_token = self.jwt_handler.encode_token(self.default_payload, expires_in=self.token_expires_in)
145
- return [("authorization", f"Bearer {self.jwt_token}")] if self.jwt_token else []
212
+ metadata.append(("authorization", f"Bearer {self.jwt_token}"))
213
+ return metadata
146
214
 
147
215
  async def _ensure_initialized(self):
148
216
  """初始化 gRPC 通道,支持 TLS 与重试机制"""
@@ -153,6 +221,7 @@ class AsyncTamarModelClient:
153
221
  options = [
154
222
  ('grpc.max_send_message_length', MAX_MESSAGE_LENGTH),
155
223
  ('grpc.max_receive_message_length', MAX_MESSAGE_LENGTH),
224
+ ('grpc.keepalive_permit_without_calls', True) # 即使没有活跃请求也保持连接
156
225
  ]
157
226
  if self.default_authority:
158
227
  options.append(("grpc.default_authority", self.default_authority))
@@ -178,14 +247,15 @@ class AsyncTamarModelClient:
178
247
  logger.info(f"✅ gRPC channel initialized to {self.server_address}")
179
248
  return
180
249
  except grpc.FutureTimeoutError as e:
181
- logger.warning(f"❌ gRPC channel initialization timed out: {str(e)}")
250
+ logger.error(f"❌ gRPC channel initialization timed out: {str(e)}", exc_info=True)
182
251
  except grpc.RpcError as e:
183
- logger.warning(f"❌ gRPC channel initialization failed: {str(e)}")
252
+ logger.error(f"❌ gRPC channel initialization failed: {str(e)}", exc_info=True)
184
253
  except Exception as e:
185
- logger.warning(f"❌ Unexpected error during channel initialization: {str(e)}")
254
+ logger.error(f"❌ Unexpected error during channel initialization: {str(e)}", exc_info=True)
186
255
 
187
256
  retry_count += 1
188
257
  if retry_count > self.max_retries:
258
+ logger.error(f"❌ Failed to initialize gRPC channel after {self.max_retries} retries.", exc_info=True)
189
259
  raise ConnectionError(f"❌ Failed to initialize gRPC channel after {self.max_retries} retries.")
190
260
 
191
261
  # 指数退避:延迟时间 = retry_delay * (2 ^ (retry_count - 1))
@@ -193,28 +263,38 @@ class AsyncTamarModelClient:
193
263
  logger.info(f"🚀 Retrying connection (attempt {retry_count}/{self.max_retries}) after {delay:.2f}s delay...")
194
264
  await asyncio.sleep(delay)
195
265
 
266
+ async def _stream_inner(self, model_request, metadata, invoke_timeout) -> AsyncIterator[ModelResponse]:
267
+ """Inner function to handle the actual streaming gRPC call."""
268
+ async for response in self.stub.Invoke(model_request, metadata=metadata, timeout=invoke_timeout):
269
+ yield ModelResponse(
270
+ content=response.content,
271
+ usage=json.loads(response.usage) if response.usage else None,
272
+ raw_response=json.loads(response.raw_response) if response.raw_response else None,
273
+ error=response.error or None,
274
+ )
275
+
196
276
  async def _stream(self, model_request, metadata, invoke_timeout) -> AsyncIterator[ModelResponse]:
197
- try:
198
- async for response in self.stub.Invoke(model_request, metadata=metadata, timeout=invoke_timeout):
199
- yield ModelResponse(
200
- content=response.content,
201
- usage=json.loads(response.usage) if response.usage else None,
202
- raw_response=json.loads(response.raw_response) if response.raw_response else None,
203
- error=response.error or None,
204
- )
205
- except grpc.RpcError as e:
206
- raise ConnectionError(f"gRPC call failed: {str(e)}")
207
- except Exception as e:
208
- raise ValidationError(f"Invalid input: {str(e)}")
277
+ return await self._retry_request(self._stream_inner, model_request, metadata, invoke_timeout)
278
+
279
+ async def _invoke_request(self, request, metadata, invoke_timeout):
280
+ async for response in self.stub.Invoke(request, metadata=metadata, timeout=invoke_timeout):
281
+ return ModelResponse(
282
+ content=response.content,
283
+ usage=json.loads(response.usage) if response.usage else None,
284
+ error=response.error or None,
285
+ request_id=response.request_id if response.request_id else None,
286
+ )
209
287
 
210
- async def invoke(self, model_request: ModelRequest, timeout: Optional[float] = None) -> Union[
288
+ async def invoke(self, model_request: ModelRequest, timeout: Optional[float] = None,
289
+ request_id: Optional[str] = None) -> Union[
211
290
  ModelResponse, AsyncIterator[ModelResponse]]:
212
291
  """
213
292
  通用调用模型方法。
214
293
 
215
294
  Args:
216
295
  model_request: ModelRequest 对象,包含请求参数。
217
-
296
+ timeout: Optional[float]
297
+ request_id: Optional[str]
218
298
  Yields:
219
299
  ModelResponse: 支持流式或非流式的模型响应
220
300
 
@@ -230,6 +310,15 @@ class AsyncTamarModelClient:
230
310
  "user_id": model_request.user_context.user_id or ""
231
311
  }
232
312
 
313
+ if not request_id:
314
+ request_id = generate_request_id() # 生成一个新的 request_id
315
+ set_request_id(request_id) # 设置当前请求的 request_id
316
+ metadata = self._build_auth_metadata(request_id) # 将 request_id 加入到请求头
317
+
318
+ # 记录开始日志
319
+ logger.info(
320
+ f"🔵 Request Start | request_id: {request_id} | provider: {model_request.provider} | invoke_type: {model_request.invoke_type} | model_request: {model_request}")
321
+
233
322
  # 动态根据 provider/invoke_type 决定使用哪个 input 字段
234
323
  try:
235
324
  # 选择需要校验的字段集合
@@ -281,23 +370,23 @@ class AsyncTamarModelClient:
281
370
  except Exception as e:
282
371
  raise ValueError(f"构建请求失败: {str(e)}") from e
283
372
 
284
- metadata = self._build_auth_metadata()
285
-
286
- invoke_timeout = timeout or self.default_invoke_timeout
287
- if model_request.stream:
288
- return self._stream(request, metadata, invoke_timeout)
289
- else:
290
- async for response in self.stub.Invoke(request, metadata=metadata, timeout=invoke_timeout):
291
- return ModelResponse(
292
- content=response.content,
293
- usage=json.loads(response.usage) if response.usage else None,
294
- raw_response=json.loads(response.raw_response) if response.raw_response else None,
295
- error=response.error or None,
296
- custom_id=None,
297
- request_id=response.request_id if response.request_id else None,
298
- )
299
-
300
- async def invoke_batch(self, batch_request_model: BatchModelRequest, timeout: Optional[float] = None) -> \
373
+ try:
374
+ invoke_timeout = timeout or self.default_invoke_timeout
375
+ if model_request.stream:
376
+ return await self._stream(request, metadata, invoke_timeout)
377
+ else:
378
+ return await self._retry_request(self._invoke_request, request, metadata, invoke_timeout)
379
+ except grpc.RpcError as e:
380
+ error_message = f"❌ Invoke gRPC failed: {str(e)}"
381
+ logger.error(error_message, exc_info=True)
382
+ raise e
383
+ except Exception as e:
384
+ error_message = f"❌ Invoke other error: {str(e)}"
385
+ logger.error(error_message, exc_info=True)
386
+ raise e
387
+
388
+ async def invoke_batch(self, batch_request_model: BatchModelRequest, timeout: Optional[float] = None,
389
+ request_id: Optional[str] = None) -> \
301
390
  BatchModelResponse:
302
391
  """
303
392
  批量模型调用接口
@@ -305,10 +394,11 @@ class AsyncTamarModelClient:
305
394
  Args:
306
395
  batch_request_model: 多条 BatchModelRequest 输入
307
396
  timeout: 调用超时,单位秒
308
-
397
+ request_id: 请求id
309
398
  Returns:
310
399
  BatchModelResponse: 批量请求的结果
311
400
  """
401
+
312
402
  await self._ensure_initialized()
313
403
 
314
404
  if not self.default_payload:
@@ -317,7 +407,14 @@ class AsyncTamarModelClient:
317
407
  "user_id": batch_request_model.user_context.user_id or ""
318
408
  }
319
409
 
320
- metadata = self._build_auth_metadata()
410
+ if not request_id:
411
+ request_id = generate_request_id() # 生成一个新的 request_id
412
+ set_request_id(request_id) # 设置当前请求的 request_id
413
+ metadata = self._build_auth_metadata(request_id) # 将 request_id 加入到请求头
414
+
415
+ # 记录开始日志
416
+ logger.info(
417
+ f"🔵 Batch Request Start | request_id: {request_id} | batch_size: {len(batch_request_model.items)} | batch_request_model: {batch_request_model}")
321
418
 
322
419
  # 构造批量请求
323
420
  items = []
@@ -378,11 +475,8 @@ class AsyncTamarModelClient:
378
475
  invoke_timeout = timeout or self.default_invoke_timeout
379
476
 
380
477
  # 调用 gRPC 接口
381
- response = await self.stub.BatchInvoke(
382
- model_service_pb2.ModelRequest(items=items),
383
- timeout=invoke_timeout,
384
- metadata=metadata
385
- )
478
+ response = await self._retry_request(self.stub.BatchInvoke, model_service_pb2.ModelRequest(items=items),
479
+ timeout=invoke_timeout, metadata=metadata)
386
480
 
387
481
  result = []
388
482
  for res_item in response.items:
@@ -398,14 +492,19 @@ class AsyncTamarModelClient:
398
492
  responses=result
399
493
  )
400
494
  except grpc.RpcError as e:
401
- raise ConnectionError(f"BatchInvoke failed: {str(e)}")
495
+ error_message = f"BatchInvoke gRPC failed: {str(e)}"
496
+ logger.error(error_message, exc_info=True)
497
+ raise e
498
+ except Exception as e:
499
+ error_message = f"❌ BatchInvoke other error: {str(e)}"
500
+ logger.error(error_message, exc_info=True)
501
+ raise e
402
502
 
403
503
  async def close(self):
404
504
  """关闭 gRPC 通道"""
405
505
  if self.channel and not self._closed:
406
506
  await self.channel.close()
407
507
  self._closed = True
408
- await self.channel.close()
409
508
  logger.info("✅ gRPC channel closed")
410
509
 
411
510
  def _safe_sync_close(self):
@@ -2,7 +2,7 @@
2
2
  # Generated by the protocol buffer compiler. DO NOT EDIT!
3
3
  # NO CHECKED-IN PROTOBUF GENCODE
4
4
  # source: model_service.proto
5
- # Protobuf Python Version: 5.29.0
5
+ # Protobuf Python Version: 5.27.2
6
6
  """Generated protocol buffer code."""
7
7
  from google.protobuf import descriptor as _descriptor
8
8
  from google.protobuf import descriptor_pool as _descriptor_pool
@@ -12,8 +12,8 @@ from google.protobuf.internal import builder as _builder
12
12
  _runtime_version.ValidateProtobufRuntimeVersion(
13
13
  _runtime_version.Domain.PUBLIC,
14
14
  5,
15
- 29,
16
- 0,
15
+ 27,
16
+ 2,
17
17
  '',
18
18
  'model_service.proto'
19
19
  )
@@ -5,7 +5,7 @@ import warnings
5
5
 
6
6
  import tamar_model_client.generated.model_service_pb2 as model__service__pb2
7
7
 
8
- GRPC_GENERATED_VERSION = '1.71.0'
8
+ GRPC_GENERATED_VERSION = '1.67.1'
9
9
  GRPC_VERSION = grpc.__version__
10
10
  _version_not_supported = False
11
11
 
@@ -127,11 +127,16 @@ class OpenAIChatCompletionsInput(BaseModel):
127
127
 
128
128
  class OpenAIImagesInput(BaseModel):
129
129
  prompt: str
130
+ background: Optional[Literal["transparent", "opaque", "auto"]] | NotGiven = NOT_GIVEN
130
131
  model: Union[str, ImageModel, None] | NotGiven = NOT_GIVEN
132
+ moderation: Optional[Literal["low", "auto"]] | NotGiven = NOT_GIVEN
131
133
  n: Optional[int] | NotGiven = NOT_GIVEN
134
+ output_compression: Optional[int] | NotGiven = NOT_GIVEN
135
+ output_format: Optional[Literal["png", "jpeg", "webp"]] | NotGiven = NOT_GIVEN
132
136
  quality: Literal["standard", "hd"] | NotGiven = NOT_GIVEN
133
137
  response_format: Optional[Literal["url", "b64_json"]] | NotGiven = NOT_GIVEN
134
- size: Optional[Literal["256x256", "512x512", "1024x1024", "1792x1024", "1024x1792"]] | NotGiven = NOT_GIVEN
138
+ size: Optional[Literal[
139
+ "auto", "1024x1024", "1536x1024", "1024x1536", "256x256", "512x512", "1792x1024", "1024x1792"]] | NotGiven = NOT_GIVEN
135
140
  style: Optional[Literal["vivid", "natural"]] | NotGiven = NOT_GIVEN
136
141
  user: str | NotGiven = NOT_GIVEN
137
142
  extra_headers: Headers | None = None
@@ -301,7 +306,7 @@ class BatchModelRequestItem(ModelRequestInput):
301
306
  def validate_by_provider_and_invoke_type(self) -> "BatchModelRequestItem":
302
307
  """根据 provider 和 invoke_type 动态校验具体输入模型字段。"""
303
308
  # 动态获取 allowed fields
304
- base_allowed = {"provider", "channel", "invoke_type", "user_context"}
309
+ base_allowed = {"provider", "channel", "invoke_type", "user_context", "custom_id"}
305
310
  google_allowed = base_allowed | set(GoogleGenAiInput.model_fields.keys())
306
311
  openai_responses_allowed = base_allowed | set(OpenAIResponsesInput.model_fields.keys())
307
312
  openai_chat_allowed = base_allowed | set(OpenAIChatCompletionsInput.model_fields.keys())
@@ -0,0 +1,509 @@
1
+ import base64
2
+ import json
3
+ import logging
4
+ import os
5
+ import time
6
+ import uuid
7
+ import grpc
8
+ from typing import Optional, Union, Iterable, Iterator
9
+ from contextvars import ContextVar
10
+
11
+ from openai import NOT_GIVEN
12
+ from pydantic import BaseModel
13
+
14
+ from .auth import JWTAuthHandler
15
+ from .enums import ProviderType, InvokeType
16
+ from .exceptions import ConnectionError
17
+ from .generated import model_service_pb2, model_service_pb2_grpc
18
+ from .schemas import BatchModelResponse, ModelResponse
19
+ from .schemas.inputs import GoogleGenAiInput, GoogleVertexAIImagesInput, OpenAIResponsesInput, \
20
+ OpenAIChatCompletionsInput, OpenAIImagesInput, BatchModelRequest, ModelRequest
21
+
22
+ logger = logging.getLogger(__name__)
23
+
24
+ _request_id: ContextVar[str] = ContextVar('request_id', default='-')
25
+
26
+
27
+ class RequestIdFilter(logging.Filter):
28
+ """自定义日志过滤器,向日志中添加 request_id"""
29
+
30
+ def filter(self, record):
31
+ # 从 ContextVar 中获取当前的 request_id
32
+ record.request_id = _request_id.get()
33
+ return True
34
+
35
+
36
+ if not logger.hasHandlers():
37
+ # 创建日志处理器,输出到控制台
38
+ console_handler = logging.StreamHandler()
39
+
40
+ # 设置日志格式
41
+ formatter = logging.Formatter('%(asctime)s [%(levelname)s] [%(request_id)s] %(message)s')
42
+ console_handler.setFormatter(formatter)
43
+
44
+ # 为当前记录器添加处理器
45
+ logger.addHandler(console_handler)
46
+
47
+ # 设置日志级别
48
+ logger.setLevel(logging.INFO)
49
+
50
+ # 将自定义的 RequestIdFilter 添加到 logger 中
51
+ logger.addFilter(RequestIdFilter())
52
+
53
+ MAX_MESSAGE_LENGTH = 2 ** 31 - 1 # 对于32位系统
54
+
55
+
56
+ def is_effective_value(value) -> bool:
57
+ """
58
+ 递归判断value是否是有意义的有效值
59
+ """
60
+ if value is None or value is NOT_GIVEN:
61
+ return False
62
+
63
+ if isinstance(value, str):
64
+ return value.strip() != ""
65
+
66
+ if isinstance(value, bytes):
67
+ return len(value) > 0
68
+
69
+ if isinstance(value, dict):
70
+ for v in value.values():
71
+ if is_effective_value(v):
72
+ return True
73
+ return False
74
+
75
+ if isinstance(value, list):
76
+ for item in value:
77
+ if is_effective_value(item):
78
+ return True
79
+ return False
80
+
81
+ return True # 其他类型(int/float/bool)只要不是None就算有效
82
+
83
+
84
+ def serialize_value(value):
85
+ """递归处理单个值,处理BaseModel, dict, list, bytes"""
86
+ if not is_effective_value(value):
87
+ return None
88
+ if isinstance(value, BaseModel):
89
+ return serialize_value(value.model_dump())
90
+ if hasattr(value, "dict") and callable(value.dict):
91
+ return serialize_value(value.dict())
92
+ if isinstance(value, dict):
93
+ return {k: serialize_value(v) for k, v in value.items()}
94
+ if isinstance(value, list) or (isinstance(value, Iterable) and not isinstance(value, (str, bytes))):
95
+ return [serialize_value(v) for v in value]
96
+ if isinstance(value, bytes):
97
+ return f"bytes:{base64.b64encode(value).decode('utf-8')}"
98
+ return value
99
+
100
+
101
+ from typing import Any
102
+
103
+
104
+ def remove_none_from_dict(data: Any) -> Any:
105
+ """
106
+ 遍历 dict/list,递归删除 value 为 None 的字段
107
+ """
108
+ if isinstance(data, dict):
109
+ new_dict = {}
110
+ for key, value in data.items():
111
+ if value is None:
112
+ continue
113
+ cleaned_value = remove_none_from_dict(value)
114
+ new_dict[key] = cleaned_value
115
+ return new_dict
116
+ elif isinstance(data, list):
117
+ return [remove_none_from_dict(item) for item in data]
118
+ else:
119
+ return data
120
+
121
+
122
+ def generate_request_id():
123
+ """生成一个唯一的request_id"""
124
+ return str(uuid.uuid4())
125
+
126
+
127
+ def set_request_id(request_id: str):
128
+ """设置当前请求的 request_id"""
129
+ _request_id.set(request_id)
130
+
131
+
132
+ class TamarModelClient:
133
+ def __init__(
134
+ self,
135
+ server_address: Optional[str] = None,
136
+ jwt_secret_key: Optional[str] = None,
137
+ jwt_token: Optional[str] = None,
138
+ default_payload: Optional[dict] = None,
139
+ token_expires_in: int = 3600,
140
+ max_retries: Optional[int] = None, # 最大重试次数
141
+ retry_delay: Optional[float] = None, # 初始重试延迟(秒)
142
+ ):
143
+ self.server_address = server_address or os.getenv("MODEL_MANAGER_SERVER_ADDRESS")
144
+ if not self.server_address:
145
+ raise ValueError("Server address must be provided via argument or environment variable.")
146
+ self.default_invoke_timeout = float(os.getenv("MODEL_MANAGER_SERVER_INVOKE_TIMEOUT", 30.0))
147
+
148
+ # JWT 配置
149
+ self.jwt_secret_key = jwt_secret_key or os.getenv("MODEL_MANAGER_SERVER_JWT_SECRET_KEY")
150
+ self.jwt_handler = JWTAuthHandler(self.jwt_secret_key)
151
+ self.jwt_token = jwt_token # 用户传入的 Token(可选)
152
+ self.default_payload = default_payload
153
+ self.token_expires_in = token_expires_in
154
+
155
+ # === TLS/Authority 配置 ===
156
+ self.use_tls = os.getenv("MODEL_MANAGER_SERVER_GRPC_USE_TLS", "true").lower() == "true"
157
+ self.default_authority = os.getenv("MODEL_MANAGER_SERVER_GRPC_DEFAULT_AUTHORITY")
158
+
159
+ # === 重试配置 ===
160
+ self.max_retries = max_retries if max_retries is not None else int(
161
+ os.getenv("MODEL_MANAGER_SERVER_GRPC_MAX_RETRIES", 3))
162
+ self.retry_delay = retry_delay if retry_delay is not None else float(
163
+ os.getenv("MODEL_MANAGER_SERVER_GRPC_RETRY_DELAY", 1.0))
164
+
165
+ # === gRPC 通道相关 ===
166
+ self.channel: Optional[grpc.Channel] = None
167
+ self.stub: Optional[model_service_pb2_grpc.ModelServiceStub] = None
168
+ self._closed = False
169
+
170
+ def _retry_request(self, func, *args, **kwargs):
171
+ retry_count = 0
172
+ while retry_count < self.max_retries:
173
+ try:
174
+ return func(*args, **kwargs)
175
+ except (grpc.RpcError) as e:
176
+ if e.code() in {grpc.StatusCode.UNAVAILABLE, grpc.StatusCode.DEADLINE_EXCEEDED}:
177
+ retry_count += 1
178
+ logger.error(f"❌ gRPC error {e.code()}, retrying {retry_count}/{self.max_retries}...")
179
+ if retry_count < self.max_retries:
180
+ delay = self.retry_delay * (2 ** (retry_count - 1))
181
+ time.sleep(delay)
182
+ else:
183
+ logger.error(f"❌ Max retry reached for {e.code()}")
184
+ raise
185
+ else:
186
+ logger.error(f"❌ Non-retryable gRPC error: {e}", exc_info=True)
187
+ raise
188
+
189
+ def _build_auth_metadata(self, request_id: str) -> list:
190
+ metadata = [("x-request-id", request_id)] # 将 request_id 添加到 headers
191
+ if self.jwt_handler:
192
+ self.jwt_token = self.jwt_handler.encode_token(self.default_payload, expires_in=self.token_expires_in)
193
+ metadata.append(("authorization", f"Bearer {self.jwt_token}"))
194
+ return metadata
195
+
196
+ def _ensure_initialized(self):
197
+ """初始化 gRPC 通道,支持 TLS 与重试机制"""
198
+ if self.channel and self.stub:
199
+ return
200
+
201
+ retry_count = 0
202
+ options = [
203
+ ('grpc.max_send_message_length', MAX_MESSAGE_LENGTH),
204
+ ('grpc.max_receive_message_length', MAX_MESSAGE_LENGTH),
205
+ ('grpc.keepalive_permit_without_calls', True) # 即使没有活跃请求也保持连接
206
+ ]
207
+ if self.default_authority:
208
+ options.append(("grpc.default_authority", self.default_authority))
209
+
210
+ while retry_count <= self.max_retries:
211
+ try:
212
+ if self.use_tls:
213
+ credentials = grpc.ssl_channel_credentials()
214
+ self.channel = grpc.secure_channel(
215
+ self.server_address,
216
+ credentials,
217
+ options=options
218
+ )
219
+ logger.info("🔐 Using secure gRPC channel (TLS enabled)")
220
+ else:
221
+ self.channel = grpc.insecure_channel(
222
+ self.server_address,
223
+ options=options
224
+ )
225
+ logger.info("🔓 Using insecure gRPC channel (TLS disabled)")
226
+
227
+ # Wait for the channel to be ready (synchronously)
228
+ grpc.channel_ready_future(self.channel).result() # This is blocking in sync mode
229
+
230
+ self.stub = model_service_pb2_grpc.ModelServiceStub(self.channel)
231
+ logger.info(f"✅ gRPC channel initialized to {self.server_address}")
232
+ return
233
+ except grpc.FutureTimeoutError as e:
234
+ logger.error(f"❌ gRPC channel initialization timed out: {str(e)}", exc_info=True)
235
+ except grpc.RpcError as e:
236
+ logger.error(f"❌ gRPC channel initialization failed: {str(e)}", exc_info=True)
237
+ except Exception as e:
238
+ logger.error(f"❌ Unexpected error during channel initialization: {str(e)}", exc_info=True)
239
+
240
+ retry_count += 1
241
+ if retry_count > self.max_retries:
242
+ logger.error(f"❌ Failed to initialize gRPC channel after {self.max_retries} retries.", exc_info=True)
243
+ raise ConnectionError(f"❌ Failed to initialize gRPC channel after {self.max_retries} retries.")
244
+
245
+ # 指数退避:延迟时间 = retry_delay * (2 ^ (retry_count - 1))
246
+ delay = self.retry_delay * (2 ** (retry_count - 1))
247
+ logger.info(f"🚀 Retrying connection (attempt {retry_count}/{self.max_retries}) after {delay:.2f}s delay...")
248
+ time.sleep(delay) # Blocking sleep in sync version
249
+
250
+ def _stream_inner(self, model_request, metadata, invoke_timeout) -> Iterator[ModelResponse]:
251
+ """Inner function to handle the actual streaming gRPC call."""
252
+ response = self.stub.Invoke(model_request, metadata=metadata, timeout=invoke_timeout)
253
+ for res in response:
254
+ yield ModelResponse(
255
+ content=res.content,
256
+ usage=json.loads(res.usage) if res.usage else None,
257
+ raw_response=json.loads(res.raw_response) if res.raw_response else None,
258
+ error=res.error or None,
259
+ )
260
+
261
+ def _stream(self, model_request, metadata, invoke_timeout) -> Iterator[ModelResponse]:
262
+ return self._retry_request(self._stream_inner, model_request, metadata, invoke_timeout)
263
+
264
+ def _invoke_request(self, request, metadata, invoke_timeout):
265
+ response = self.stub.Invoke(request, metadata=metadata, timeout=invoke_timeout)
266
+ for response in response:
267
+ return ModelResponse(
268
+ content=response.content,
269
+ usage=json.loads(response.usage) if response.usage else None,
270
+ error=response.error or None,
271
+ request_id=response.request_id if response.request_id else None,
272
+ )
273
+
274
+ def invoke(self, model_request: ModelRequest, timeout: Optional[float] = None, request_id: Optional[str] = None) -> \
275
+ Union[ModelResponse, Iterator[ModelResponse]]:
276
+ """
277
+ 通用调用模型方法。
278
+
279
+ Args:
280
+ model_request: ModelRequest 对象,包含请求参数。
281
+ timeout: Optional[float]
282
+ request_id: Optional[str]
283
+ Yields:
284
+ ModelResponse: 支持流式或非流式的模型响应
285
+
286
+ Raises:
287
+ ValidationError: 输入验证失败。
288
+ ConnectionError: 连接服务端失败。
289
+ """
290
+ self._ensure_initialized()
291
+
292
+ if not self.default_payload:
293
+ self.default_payload = {
294
+ "org_id": model_request.user_context.org_id or "",
295
+ "user_id": model_request.user_context.user_id or ""
296
+ }
297
+
298
+ if not request_id:
299
+ request_id = generate_request_id() # 生成一个新的 request_id
300
+ set_request_id(request_id) # 设置当前请求的 request_id
301
+ metadata = self._build_auth_metadata(request_id) # 将 request_id 加入到请求头
302
+
303
+ # 记录开始日志
304
+ logger.info(
305
+ f"🔵 Request Start | request_id: {request_id} | provider: {model_request.provider} | invoke_type: {model_request.invoke_type} | model_request: {model_request}")
306
+
307
+ # 动态根据 provider/invoke_type 决定使用哪个 input 字段
308
+ try:
309
+ # 选择需要校验的字段集合
310
+ # 动态分支逻辑
311
+ match (model_request.provider, model_request.invoke_type):
312
+ case (ProviderType.GOOGLE, InvokeType.GENERATION):
313
+ allowed_fields = GoogleGenAiInput.model_fields.keys()
314
+ case (ProviderType.GOOGLE, InvokeType.IMAGE_GENERATION):
315
+ allowed_fields = GoogleVertexAIImagesInput.model_fields.keys()
316
+ case ((ProviderType.OPENAI | ProviderType.AZURE), InvokeType.RESPONSES | InvokeType.GENERATION):
317
+ allowed_fields = OpenAIResponsesInput.model_fields.keys()
318
+ case ((ProviderType.OPENAI | ProviderType.AZURE), InvokeType.CHAT_COMPLETIONS):
319
+ allowed_fields = OpenAIChatCompletionsInput.model_fields.keys()
320
+ case ((ProviderType.OPENAI | ProviderType.AZURE), InvokeType.IMAGE_GENERATION):
321
+ allowed_fields = OpenAIImagesInput.model_fields.keys()
322
+ case _:
323
+ raise ValueError(
324
+ f"Unsupported provider/invoke_type combination: {model_request.provider} + {model_request.invoke_type}")
325
+
326
+ # 将 ModelRequest 转 dict,过滤只保留 base + allowed 的字段
327
+ model_request_dict = model_request.model_dump(exclude_unset=True)
328
+
329
+ grpc_request_kwargs = {}
330
+ for field in allowed_fields:
331
+ if field in model_request_dict:
332
+ value = model_request_dict[field]
333
+
334
+ # 跳过无效的值
335
+ if not is_effective_value(value):
336
+ continue
337
+
338
+ # 序列化grpc不支持的类型
339
+ grpc_request_kwargs[field] = serialize_value(value)
340
+
341
+ # 清理 serialize后的 grpc_request_kwargs
342
+ grpc_request_kwargs = remove_none_from_dict(grpc_request_kwargs)
343
+
344
+ request = model_service_pb2.ModelRequestItem(
345
+ provider=model_request.provider.value,
346
+ channel=model_request.channel.value,
347
+ invoke_type=model_request.invoke_type.value,
348
+ stream=model_request.stream or False,
349
+ org_id=model_request.user_context.org_id or "",
350
+ user_id=model_request.user_context.user_id or "",
351
+ client_type=model_request.user_context.client_type or "",
352
+ extra=grpc_request_kwargs
353
+ )
354
+
355
+ except Exception as e:
356
+ raise ValueError(f"构建请求失败: {str(e)}") from e
357
+
358
+ try:
359
+ invoke_timeout = timeout or self.default_invoke_timeout
360
+ if model_request.stream:
361
+ return self._stream(request, metadata, invoke_timeout)
362
+ else:
363
+ return self._retry_request(self._invoke_request, request, metadata, invoke_timeout)
364
+ except grpc.RpcError as e:
365
+ error_message = f"❌ Invoke gRPC failed: {str(e)}"
366
+ logger.error(error_message, exc_info=True)
367
+ raise e
368
+ except Exception as e:
369
+ error_message = f"❌ Invoke other error: {str(e)}"
370
+ logger.error(error_message, exc_info=True)
371
+ raise e
372
+
373
+ def invoke_batch(self, batch_request_model: BatchModelRequest, timeout: Optional[float] = None,
374
+ request_id: Optional[str] = None) -> BatchModelResponse:
375
+ """
376
+ 批量模型调用接口
377
+
378
+ Args:
379
+ batch_request_model: 多条 BatchModelRequest 输入
380
+ timeout: 调用超时,单位秒
381
+ request_id: 请求id
382
+ Returns:
383
+ BatchModelResponse: 批量请求的结果
384
+ """
385
+
386
+ self._ensure_initialized()
387
+
388
+ if not self.default_payload:
389
+ self.default_payload = {
390
+ "org_id": batch_request_model.user_context.org_id or "",
391
+ "user_id": batch_request_model.user_context.user_id or ""
392
+ }
393
+
394
+ if not request_id:
395
+ request_id = generate_request_id() # 生成一个新的 request_id
396
+ set_request_id(request_id) # 设置当前请求的 request_id
397
+ metadata = self._build_auth_metadata(request_id) # 将 request_id 加入到请求头
398
+
399
+ # 记录开始日志
400
+ logger.info(
401
+ f"🔵 Batch Request Start | request_id: {request_id} | batch_size: {len(batch_request_model.items)} | batch_request_model: {batch_request_model}")
402
+
403
+ # 构造批量请求
404
+ items = []
405
+ for model_request_item in batch_request_model.items:
406
+ # 动态根据 provider/invoke_type 决定使用哪个 input 字段
407
+ try:
408
+ match (model_request_item.provider, model_request_item.invoke_type):
409
+ case (ProviderType.GOOGLE, InvokeType.GENERATION):
410
+ allowed_fields = GoogleGenAiInput.model_fields.keys()
411
+ case (ProviderType.GOOGLE, InvokeType.IMAGE_GENERATION):
412
+ allowed_fields = GoogleVertexAIImagesInput.model_fields.keys()
413
+ case ((ProviderType.OPENAI | ProviderType.AZURE), InvokeType.RESPONSES | InvokeType.GENERATION):
414
+ allowed_fields = OpenAIResponsesInput.model_fields.keys()
415
+ case ((ProviderType.OPENAI | ProviderType.AZURE), InvokeType.CHAT_COMPLETIONS):
416
+ allowed_fields = OpenAIChatCompletionsInput.model_fields.keys()
417
+ case ((ProviderType.OPENAI | ProviderType.AZURE), InvokeType.IMAGE_GENERATION):
418
+ allowed_fields = OpenAIImagesInput.model_fields.keys()
419
+ case _:
420
+ raise ValueError(
421
+ f"Unsupported provider/invoke_type combination: {model_request_item.provider} + {model_request_item.invoke_type}")
422
+
423
+ # 将 ModelRequest 转 dict,过滤只保留 base + allowed 的字段
424
+ model_request_dict = model_request_item.model_dump(exclude_unset=True)
425
+
426
+ grpc_request_kwargs = {}
427
+ for field in allowed_fields:
428
+ if field in model_request_dict:
429
+ value = model_request_dict[field]
430
+
431
+ # 跳过无效的值
432
+ if not is_effective_value(value):
433
+ continue
434
+
435
+ # 序列化grpc不支持的类型
436
+ grpc_request_kwargs[field] = serialize_value(value)
437
+
438
+ # 清理 serialize后的 grpc_request_kwargs
439
+ grpc_request_kwargs = remove_none_from_dict(grpc_request_kwargs)
440
+
441
+ items.append(model_service_pb2.ModelRequestItem(
442
+ provider=model_request_item.provider.value,
443
+ channel=model_request_item.channel.value,
444
+ invoke_type=model_request_item.invoke_type.value,
445
+ stream=model_request_item.stream or False,
446
+ custom_id=model_request_item.custom_id or "",
447
+ priority=model_request_item.priority or 1,
448
+ org_id=batch_request_model.user_context.org_id or "",
449
+ user_id=batch_request_model.user_context.user_id or "",
450
+ client_type=batch_request_model.user_context.client_type or "",
451
+ extra=grpc_request_kwargs,
452
+ ))
453
+
454
+ except Exception as e:
455
+ raise ValueError(f"构建请求失败: {str(e)},item={model_request_item.custom_id}") from e
456
+
457
+ try:
458
+ # 超时处理逻辑
459
+ invoke_timeout = timeout or self.default_invoke_timeout
460
+
461
+ # 调用 gRPC 接口
462
+ response = self._retry_request(self.stub.BatchInvoke, model_service_pb2.ModelRequest(items=items),
463
+ timeout=invoke_timeout, metadata=metadata)
464
+
465
+ result = []
466
+ for res_item in response.items:
467
+ result.append(ModelResponse(
468
+ content=res_item.content,
469
+ usage=json.loads(res_item.usage) if res_item.usage else None,
470
+ raw_response=json.loads(res_item.raw_response) if res_item.raw_response else None,
471
+ error=res_item.error or None,
472
+ custom_id=res_item.custom_id if res_item.custom_id else None
473
+ ))
474
+ return BatchModelResponse(
475
+ request_id=response.request_id if response.request_id else None,
476
+ responses=result
477
+ )
478
+ except grpc.RpcError as e:
479
+ error_message = f"❌ BatchInvoke gRPC failed: {str(e)}"
480
+ logger.error(error_message, exc_info=True)
481
+ raise e
482
+ except Exception as e:
483
+ error_message = f"❌ BatchInvoke other error: {str(e)}"
484
+ logger.error(error_message, exc_info=True)
485
+ raise e
486
+
487
+ def close(self):
488
+ """关闭 gRPC 通道"""
489
+ if self.channel and not self._closed:
490
+ self.channel.close()
491
+ self._closed = True
492
+ logger.info("✅ gRPC channel closed")
493
+
494
+ def _safe_sync_close(self):
495
+ """进程退出时自动关闭 channel(事件循环处理兼容)"""
496
+ if self.channel and not self._closed:
497
+ try:
498
+ self.close() # 直接调用关闭方法
499
+ except Exception as e:
500
+ logger.error(f"❌ gRPC channel close failed at exit: {e}")
501
+
502
+ def __enter__(self):
503
+ """同步初始化连接"""
504
+ self._ensure_initialized()
505
+ return self
506
+
507
+ def __exit__(self, exc_type, exc_val, exc_tb):
508
+ """同步关闭连接"""
509
+ self.close()
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: tamar-model-client
3
- Version: 0.1.8
3
+ Version: 0.1.15
4
4
  Summary: A Python SDK for interacting with the Model Manager gRPC service
5
5
  Home-page: http://gitlab.tamaredge.top/project-tap/AgentOS/model-manager-client
6
6
  Author: Oscar Ou
@@ -11,8 +11,8 @@ Classifier: License :: OSI Approved :: MIT License
11
11
  Classifier: Operating System :: OS Independent
12
12
  Requires-Python: >=3.8
13
13
  Description-Content-Type: text/markdown
14
- Requires-Dist: grpcio
15
- Requires-Dist: grpcio-tools
14
+ Requires-Dist: grpcio~=1.67.1
15
+ Requires-Dist: grpcio-tools~=1.67.1
16
16
  Requires-Dist: pydantic
17
17
  Requires-Dist: PyJWT
18
18
  Requires-Dist: nest_asyncio
@@ -528,6 +528,13 @@ pip install -e .
528
528
  python make_grpc.py
529
529
  ```
530
530
 
531
+ ### 部署到 pip
532
+ ```bash
533
+ python setup.py sdist bdist_wheel
534
+ twine check dist/*
535
+
536
+ ```
537
+
531
538
  ## 许可证
532
539
 
533
540
  MIT License
@@ -1,5 +1,5 @@
1
- grpcio
2
- grpcio-tools
1
+ grpcio~=1.67.1
2
+ grpcio-tools~=1.67.1
3
3
  pydantic
4
4
  PyJWT
5
5
  nest_asyncio
@@ -1,111 +0,0 @@
1
- import asyncio
2
- import atexit
3
- import logging
4
- from typing import Optional, Union, Iterator
5
-
6
- from .async_client import AsyncTamarModelClient
7
- from .schemas import ModelRequest, BatchModelRequest, ModelResponse, BatchModelResponse
8
-
9
- logger = logging.getLogger(__name__)
10
-
11
-
12
- class TamarModelClient:
13
- """
14
- 同步版本的模型管理客户端,用于非异步环境(如 Flask、Django、脚本)。
15
- 内部封装 AsyncTamarModelClient 并处理事件循环兼容性。
16
- """
17
- _loop: Optional[asyncio.AbstractEventLoop] = None
18
-
19
- def __init__(
20
- self,
21
- server_address: Optional[str] = None,
22
- jwt_secret_key: Optional[str] = None,
23
- jwt_token: Optional[str] = None,
24
- default_payload: Optional[dict] = None,
25
- token_expires_in: int = 3600,
26
- max_retries: int = 3,
27
- retry_delay: float = 1.0,
28
- ):
29
- # 初始化全局事件循环,仅创建一次
30
- if not TamarModelClient._loop:
31
- try:
32
- TamarModelClient._loop = asyncio.get_running_loop()
33
- except RuntimeError:
34
- TamarModelClient._loop = asyncio.new_event_loop()
35
- asyncio.set_event_loop(TamarModelClient._loop)
36
-
37
- self._loop = TamarModelClient._loop
38
-
39
- self._async_client = AsyncTamarModelClient(
40
- server_address=server_address,
41
- jwt_secret_key=jwt_secret_key,
42
- jwt_token=jwt_token,
43
- default_payload=default_payload,
44
- token_expires_in=token_expires_in,
45
- max_retries=max_retries,
46
- retry_delay=retry_delay,
47
- )
48
- atexit.register(self._safe_sync_close)
49
-
50
- def invoke(self, model_request: ModelRequest, timeout: Optional[float] = None) -> Union[
51
- ModelResponse, Iterator[ModelResponse]]:
52
- """
53
- 同步调用单个模型任务
54
- """
55
- if model_request.stream:
56
- async def stream():
57
- async for r in await self._async_client.invoke(model_request, timeout=timeout):
58
- yield r
59
-
60
- return self._sync_wrap_async_generator(stream())
61
- return self._run_async(self._async_client.invoke(model_request, timeout=timeout))
62
-
63
- def invoke_batch(self, batch_model_request: BatchModelRequest,
64
- timeout: Optional[float] = None) -> BatchModelResponse:
65
- """
66
- 同步调用批量模型任务
67
- """
68
- return self._run_async(self._async_client.invoke_batch(batch_model_request, timeout=timeout))
69
-
70
- def close(self):
71
- """手动关闭 gRPC 通道"""
72
- self._run_async(self._async_client.close())
73
-
74
- def _safe_sync_close(self):
75
- """退出时自动关闭"""
76
- try:
77
- self._run_async(self._async_client.close())
78
- logger.info("✅ gRPC channel closed at exit")
79
- except Exception as e:
80
- logger.warning(f"❌ gRPC channel close failed at exit: {e}")
81
-
82
- def _run_async(self, coro):
83
- """统一运行协程,兼容已存在的事件循环"""
84
- try:
85
- loop = asyncio.get_running_loop()
86
- import nest_asyncio
87
- nest_asyncio.apply()
88
- return loop.run_until_complete(coro)
89
- except RuntimeError:
90
- return self._loop.run_until_complete(coro)
91
-
92
- def _sync_wrap_async_generator(self, async_gen_func):
93
- """
94
- 将 async generator 转换为同步 generator,逐条 yield。
95
- """
96
- loop = self._loop
97
-
98
- # 创建异步生成器对象
99
- agen = async_gen_func
100
-
101
- class SyncGenerator:
102
- def __iter__(self_inner):
103
- return self_inner
104
-
105
- def __next__(self_inner):
106
- try:
107
- return loop.run_until_complete(agen.__anext__())
108
- except StopAsyncIteration:
109
- raise StopIteration
110
-
111
- return SyncGenerator()