tabpfn-time-series 1.0.0__tar.gz → 1.0.1__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (33) hide show
  1. tabpfn_time_series-1.0.1/.cache/huggingface/.gitignore +1 -0
  2. tabpfn_time_series-1.0.1/.cache/huggingface/download/config.json.lock +0 -0
  3. tabpfn_time_series-1.0.1/.cache/huggingface/download/config.json.metadata +3 -0
  4. tabpfn_time_series-1.0.1/.cache/huggingface/download/tabpfn-v2-regressor-2noar4o2.ckpt.lock +0 -0
  5. tabpfn_time_series-1.0.1/.cache/huggingface/download/tabpfn-v2-regressor-2noar4o2.ckpt.metadata +3 -0
  6. tabpfn_time_series-1.0.1/.cache/huggingface/download/tabpfn-v2-regressor.ckpt.lock +0 -0
  7. tabpfn_time_series-1.0.1/.cache/huggingface/download/tabpfn-v2-regressor.ckpt.metadata +3 -0
  8. tabpfn_time_series-1.0.1/.github/workflows/pull_request.yml +61 -0
  9. {tabpfn_time_series-1.0.0 → tabpfn_time_series-1.0.1}/.pre-commit-config.yaml +3 -3
  10. {tabpfn_time_series-1.0.0 → tabpfn_time_series-1.0.1}/PKG-INFO +28 -7
  11. {tabpfn_time_series-1.0.0 → tabpfn_time_series-1.0.1}/README.md +22 -4
  12. tabpfn_time_series-1.0.1/demo.ipynb +1078 -0
  13. {tabpfn_time_series-1.0.0 → tabpfn_time_series-1.0.1}/pyproject.toml +27 -11
  14. {tabpfn_time_series-1.0.0 → tabpfn_time_series-1.0.1}/tabpfn_time_series/__init__.py +11 -2
  15. {tabpfn_time_series-1.0.0 → tabpfn_time_series-1.0.1}/tabpfn_time_series/defaults.py +1 -3
  16. {tabpfn_time_series-1.0.0 → tabpfn_time_series-1.0.1}/tabpfn_time_series/features/feature_transformer.py +3 -3
  17. {tabpfn_time_series-1.0.0 → tabpfn_time_series-1.0.1}/tabpfn_time_series/tabpfn_worker.py +46 -10
  18. tabpfn_time_series-1.0.1/uv.lock +5716 -0
  19. tabpfn_time_series-1.0.0/.github/workflows/pull_request.yml +0 -59
  20. tabpfn_time_series-1.0.0/demo.ipynb +0 -1137
  21. tabpfn_time_series-1.0.0/requirements-dev.txt +0 -8
  22. tabpfn_time_series-1.0.0/requirements.txt +0 -11
  23. {tabpfn_time_series-1.0.0 → tabpfn_time_series-1.0.1}/.gitignore +0 -0
  24. {tabpfn_time_series-1.0.0 → tabpfn_time_series-1.0.1}/LICENSE.txt +0 -0
  25. {tabpfn_time_series-1.0.0 → tabpfn_time_series-1.0.1}/ruff.toml +0 -0
  26. {tabpfn_time_series-1.0.0 → tabpfn_time_series-1.0.1}/tabpfn_time_series/data_preparation.py +0 -0
  27. {tabpfn_time_series-1.0.0 → tabpfn_time_series-1.0.1}/tabpfn_time_series/features/__init__.py +0 -0
  28. {tabpfn_time_series-1.0.0 → tabpfn_time_series-1.0.1}/tabpfn_time_series/features/auto_features.py +0 -0
  29. {tabpfn_time_series-1.0.0 → tabpfn_time_series-1.0.1}/tabpfn_time_series/features/basic_features.py +0 -0
  30. {tabpfn_time_series-1.0.0 → tabpfn_time_series-1.0.1}/tabpfn_time_series/features/feature_generator_base.py +0 -0
  31. {tabpfn_time_series-1.0.0 → tabpfn_time_series-1.0.1}/tabpfn_time_series/plot.py +0 -0
  32. {tabpfn_time_series-1.0.0 → tabpfn_time_series-1.0.1}/tabpfn_time_series/predictor.py +0 -0
  33. {tabpfn_time_series-1.0.0 → tabpfn_time_series-1.0.1}/tests/test_predictor.py +0 -0
@@ -0,0 +1,3 @@
1
+ 213f8e38ec399a2a385fa46cab6f22b95cd90de8
2
+ 4ebfea74ce718dc9c31a353082ca83c9f2ecf6a8
3
+ 1752652785.4350562
@@ -0,0 +1,3 @@
1
+ 213f8e38ec399a2a385fa46cab6f22b95cd90de8
2
+ e2d4a06eeb4521dee71fc68d819e277ffb97614cc3695dc9ac3030dd9da36c21
3
+ 1752652785.2545302
@@ -0,0 +1,3 @@
1
+ 213f8e38ec399a2a385fa46cab6f22b95cd90de8
2
+ 2ab5a07d5c41dfe6db9aa7ae106fc6de898326c2765be66505a07e2868c10736
3
+ 1752652266.7761772
@@ -0,0 +1,61 @@
1
+ name: In pull request
2
+ on:
3
+ pull_request_target:
4
+ branches:
5
+ - main
6
+ - beta
7
+ - dev
8
+
9
+ jobs:
10
+ check_python_linting_formatting:
11
+ name: Ruff Linting & Formatting
12
+ runs-on: ubuntu-latest
13
+ steps:
14
+ - name: Checkout PR code safely
15
+ uses: actions/checkout@v4
16
+ with:
17
+ repository: ${{ github.event.pull_request.head.repo.full_name }}
18
+ ref: ${{ github.event.pull_request.head.ref }}
19
+
20
+ - name: Ruff Linting
21
+ uses: astral-sh/ruff-action@v3
22
+ with:
23
+ src: "./"
24
+ version: "0.12.0"
25
+ - name: Ruff Formatting
26
+ uses: astral-sh/ruff-action@v3
27
+ with:
28
+ src: "./"
29
+ version: "0.12.0"
30
+ args: 'format --check'
31
+
32
+ test_compatibility:
33
+ name: Test Package Compatibility
34
+ strategy:
35
+ fail-fast: false
36
+ matrix:
37
+ os: [ubuntu-latest, macos-latest, windows-latest]
38
+ python-version: ["3.10", "3.11", "3.12"]
39
+ runs-on: ${{ matrix.os }}
40
+ steps:
41
+ - name: Checkout PR code safely
42
+ uses: actions/checkout@v4
43
+ with:
44
+ repository: ${{ github.event.pull_request.head.repo.full_name }}
45
+ ref: ${{ github.event.pull_request.head.ref }}
46
+
47
+ - name: Set up Python ${{ matrix.python-version }}
48
+ uses: actions/setup-python@v5
49
+ with:
50
+ python-version: ${{ matrix.python-version }}
51
+
52
+ - name: Set up uv
53
+ uses: astral-sh/setup-uv@v5
54
+
55
+ - name: Install the project
56
+ run: uv sync --locked --all-extras --dev
57
+
58
+ - name: Run Tests
59
+ env:
60
+ TABPFN_CLIENT_API_KEY: ${{ secrets.TABPFN_CLIENT_API_KEY }}
61
+ run: uv run pytest tests
@@ -1,14 +1,14 @@
1
1
  repos:
2
2
  - repo: https://github.com/astral-sh/ruff-pre-commit
3
3
  # Ruff version.
4
- rev: v0.3.3
4
+ rev: v0.12.0
5
5
  hooks:
6
6
  # Run the linter.
7
- - id: ruff
7
+ - id: ruff-check
8
8
  # Run the formatter.
9
9
  - id: ruff-format
10
10
  - repo: https://github.com/pre-commit/pre-commit-hooks
11
- rev: 'v3.1.0'
11
+ rev: v4.6.0
12
12
  hooks:
13
13
  - id: no-commit-to-branch
14
14
  args: ['--branch', 'main']
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: tabpfn_time_series
3
- Version: 1.0.0
3
+ Version: 1.0.1
4
4
  Summary: Zero-shot time series forecasting with TabPFNv2
5
5
  Project-URL: Homepage, https://github.com/liam-sbhoo/tabpfn-time-series
6
6
  Project-URL: Bug Tracker, https://github.com/liam-sbhoo/tabpfn-time-series/issues
@@ -11,19 +11,22 @@ Classifier: Operating System :: OS Independent
11
11
  Classifier: Programming Language :: Python :: 3
12
12
  Requires-Python: >=3.10
13
13
  Requires-Dist: autogluon-timeseries>=1.2
14
- Requires-Dist: datasets>=3.3.2
14
+ Requires-Dist: datasets>=4.0
15
15
  Requires-Dist: gluonts>=0.16.0
16
16
  Requires-Dist: pandas<2.2.0,>=2.1.2
17
17
  Requires-Dist: python-dotenv>=1.1.0
18
18
  Requires-Dist: pyyaml>=6.0.1
19
19
  Requires-Dist: tabpfn-client>=0.1.7
20
20
  Requires-Dist: tabpfn>=2.0.9
21
+ Requires-Dist: tomli>=2.2.1
21
22
  Requires-Dist: tqdm
22
23
  Provides-Extra: dev
23
24
  Requires-Dist: build; extra == 'dev'
25
+ Requires-Dist: ipykernel>=6.29.5; extra == 'dev'
24
26
  Requires-Dist: jupyter; extra == 'dev'
25
27
  Requires-Dist: pre-commit; extra == 'dev'
26
- Requires-Dist: ruff; extra == 'dev'
28
+ Requires-Dist: pytest; extra == 'dev'
29
+ Requires-Dist: ruff~=0.12.0; extra == 'dev'
27
30
  Requires-Dist: submitit>=1.5.2; extra == 'dev'
28
31
  Requires-Dist: twine; extra == 'dev'
29
32
  Requires-Dist: wandb>=0.19.8; extra == 'dev'
@@ -34,7 +37,7 @@ Description-Content-Type: text/markdown
34
37
  > Zero-Shot Time Series Forecasting with TabPFNv2
35
38
 
36
39
  [![PyPI version](https://badge.fury.io/py/tabpfn-time-series.svg)](https://badge.fury.io/py/tabpfn-time-series)
37
- [![colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/liam-sbhoo/tabpfn-time-series/blob/main/demo.ipynb)
40
+ [![colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/PriorLabs/tabpfn-time-series/blob/main/demo.ipynb)
38
41
  [![Discord](https://img.shields.io/discord/1285598202732482621?color=7289da&label=Discord&logo=discord&logoColor=ffffff)](https://discord.com/channels/1285598202732482621/)
39
42
  [![arXiv](https://img.shields.io/badge/arXiv-2501.02945-<COLOR>.svg)](https://arxiv.org/abs/2501.02945v3)
40
43
 
@@ -63,15 +66,33 @@ Concretely, we:
63
66
  For more details, please refer to our [paper](https://arxiv.org/abs/2501.02945v3).
64
67
  <!-- and our [poster](docs/tabpfn-ts-neurips-poster.pdf) (presented at NeurIPS 2024 TRL and TSALM workshops). -->
65
68
 
66
- ## 👉 **Why gives us a try?**
69
+ ## 👉 **Why give us a try?**
67
70
  - **Zero-shot forecasting**: this method is extremely fast and requires no training, making it highly accessible for experimenting with your own problems.
68
71
  - **Point and probabilistic forecasting**: it provides accurate point forecasts as well as probabilistic forecasts.
69
72
  - **Support for exogenous variables**: if you have exogenous variables, this method can seemlessly incorporate them into the forecasting model.
70
73
 
71
- On top of that, thanks to **[tabpfn-client](https://github.com/automl/tabpfn-client)** from **[Prior Labs](https://priorlabs.ai)**, you wont even need your own GPU to run fast inference with TabPFNv2. 😉 We have included `tabpfn-client` as the default engine in our implementation.
74
+ On top of that, thanks to **[tabpfn-client](https://github.com/automl/tabpfn-client)** from **[Prior Labs](https://priorlabs.ai)**, you won't even need your own GPU to run fast inference with TabPFNv2. 😉 We have included `tabpfn-client` as the default engine in our implementation.
75
+
76
+ ## ⚙️ Installation
77
+
78
+ You can install the package via pip:
79
+
80
+ ```bash
81
+ pip install tabpfn-time-series
82
+ ```
83
+
84
+ ### For Developers
85
+
86
+ To install the package in editable mode with all development dependencies, run the following command in your terminal:
87
+
88
+ ```bash
89
+ pip install -e ".[dev]"
90
+ # or with uv
91
+ uv pip install -e ".[dev]"
92
+ ```
72
93
 
73
94
  ## How to use it?
74
95
 
75
- [![colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/liam-sbhoo/tabpfn-time-series/blob/main/demo.ipynb)
96
+ [![colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/PriorLabs/tabpfn-time-series/blob/main/demo.ipynb)
76
97
 
77
98
  The demo should explain it all. 😉
@@ -3,7 +3,7 @@
3
3
  > Zero-Shot Time Series Forecasting with TabPFNv2
4
4
 
5
5
  [![PyPI version](https://badge.fury.io/py/tabpfn-time-series.svg)](https://badge.fury.io/py/tabpfn-time-series)
6
- [![colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/liam-sbhoo/tabpfn-time-series/blob/main/demo.ipynb)
6
+ [![colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/PriorLabs/tabpfn-time-series/blob/main/demo.ipynb)
7
7
  [![Discord](https://img.shields.io/discord/1285598202732482621?color=7289da&label=Discord&logo=discord&logoColor=ffffff)](https://discord.com/channels/1285598202732482621/)
8
8
  [![arXiv](https://img.shields.io/badge/arXiv-2501.02945-<COLOR>.svg)](https://arxiv.org/abs/2501.02945v3)
9
9
 
@@ -32,15 +32,33 @@ Concretely, we:
32
32
  For more details, please refer to our [paper](https://arxiv.org/abs/2501.02945v3).
33
33
  <!-- and our [poster](docs/tabpfn-ts-neurips-poster.pdf) (presented at NeurIPS 2024 TRL and TSALM workshops). -->
34
34
 
35
- ## 👉 **Why gives us a try?**
35
+ ## 👉 **Why give us a try?**
36
36
  - **Zero-shot forecasting**: this method is extremely fast and requires no training, making it highly accessible for experimenting with your own problems.
37
37
  - **Point and probabilistic forecasting**: it provides accurate point forecasts as well as probabilistic forecasts.
38
38
  - **Support for exogenous variables**: if you have exogenous variables, this method can seemlessly incorporate them into the forecasting model.
39
39
 
40
- On top of that, thanks to **[tabpfn-client](https://github.com/automl/tabpfn-client)** from **[Prior Labs](https://priorlabs.ai)**, you wont even need your own GPU to run fast inference with TabPFNv2. 😉 We have included `tabpfn-client` as the default engine in our implementation.
40
+ On top of that, thanks to **[tabpfn-client](https://github.com/automl/tabpfn-client)** from **[Prior Labs](https://priorlabs.ai)**, you won't even need your own GPU to run fast inference with TabPFNv2. 😉 We have included `tabpfn-client` as the default engine in our implementation.
41
+
42
+ ## ⚙️ Installation
43
+
44
+ You can install the package via pip:
45
+
46
+ ```bash
47
+ pip install tabpfn-time-series
48
+ ```
49
+
50
+ ### For Developers
51
+
52
+ To install the package in editable mode with all development dependencies, run the following command in your terminal:
53
+
54
+ ```bash
55
+ pip install -e ".[dev]"
56
+ # or with uv
57
+ uv pip install -e ".[dev]"
58
+ ```
41
59
 
42
60
  ## How to use it?
43
61
 
44
- [![colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/liam-sbhoo/tabpfn-time-series/blob/main/demo.ipynb)
62
+ [![colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/PriorLabs/tabpfn-time-series/blob/main/demo.ipynb)
45
63
 
46
64
  The demo should explain it all. 😉