tabpfn-time-series 0.1.1__tar.gz → 0.1.3__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (39) hide show
  1. tabpfn_time_series-0.1.3/.cache/huggingface/.gitignore +1 -0
  2. tabpfn_time_series-0.1.3/.cache/huggingface/download/config.json.lock +0 -0
  3. tabpfn_time_series-0.1.3/.cache/huggingface/download/config.json.metadata +3 -0
  4. tabpfn_time_series-0.1.3/.cache/huggingface/download/tabpfn-v2-regressor-2noar4o2.ckpt.lock +0 -0
  5. tabpfn_time_series-0.1.3/.cache/huggingface/download/tabpfn-v2-regressor-2noar4o2.ckpt.metadata +3 -0
  6. tabpfn_time_series-0.1.3/.github/workflows/pull_request.yml +59 -0
  7. tabpfn_time_series-0.1.3/.gitignore +6 -0
  8. {tabpfn_time_series-0.1.1 → tabpfn_time_series-0.1.3}/PKG-INFO +25 -9
  9. {tabpfn_time_series-0.1.1 → tabpfn_time_series-0.1.3}/README.md +17 -4
  10. tabpfn_time_series-0.1.3/demo.ipynb +1137 -0
  11. tabpfn_time_series-0.1.3/local_notebooks/analysis.ipynb +1193 -0
  12. tabpfn_time_series-0.1.3/local_notebooks/figures/performance_by_dataset_MASE.pdf +0 -0
  13. tabpfn_time_series-0.1.3/local_notebooks/figures/performance_by_domain_MASE.pdf +0 -0
  14. tabpfn_time_series-0.1.3/local_notebooks/figures/performance_by_freq_MASE.pdf +0 -0
  15. tabpfn_time_series-0.1.3/local_notebooks/figures/performance_by_num_variates_MASE.pdf +0 -0
  16. tabpfn_time_series-0.1.3/local_notebooks/trend_column.ipynb +1055 -0
  17. tabpfn_time_series-0.1.3/local_scripts/aggregate_result.py +112 -0
  18. tabpfn_time_series-0.1.3/local_scripts/run_eval_on_slurm.py +111 -0
  19. tabpfn_time_series-0.1.3/playground.ipynb +470 -0
  20. {tabpfn_time_series-0.1.1 → tabpfn_time_series-0.1.3}/pyproject.toml +3 -3
  21. {tabpfn_time_series-0.1.1 → tabpfn_time_series-0.1.3}/requirements-dev.txt +1 -0
  22. tabpfn_time_series-0.1.3/requirements.txt +7 -0
  23. tabpfn_time_series-0.1.3/tabpfn-v2-regressor-2noar4o2.ckpt +0 -0
  24. {tabpfn_time_series-0.1.1 → tabpfn_time_series-0.1.3}/tabpfn_time_series/__init__.py +3 -1
  25. tabpfn_time_series-0.1.3/tabpfn_time_series/defaults.py +7 -0
  26. {tabpfn_time_series-0.1.1 → tabpfn_time_series-0.1.3}/tabpfn_time_series/predictor.py +9 -8
  27. tabpfn_time_series-0.1.3/tabpfn_time_series/tabpfn_worker.py +259 -0
  28. tabpfn_time_series-0.1.3/tests/test_predictor.py +115 -0
  29. tabpfn_time_series-0.1.1/.gitignore +0 -1
  30. tabpfn_time_series-0.1.1/demo.ipynb +0 -1159
  31. tabpfn_time_series-0.1.1/requirements.txt +0 -5
  32. tabpfn_time_series-0.1.1/tabpfn_time_series/defaults.py +0 -5
  33. tabpfn_time_series-0.1.1/tabpfn_time_series/tabpfn_worker.py +0 -224
  34. {tabpfn_time_series-0.1.1 → tabpfn_time_series-0.1.3}/.pre-commit-config.yaml +0 -0
  35. {tabpfn_time_series-0.1.1 → tabpfn_time_series-0.1.3}/LICENSE.txt +0 -0
  36. {tabpfn_time_series-0.1.1 → tabpfn_time_series-0.1.3}/ruff.toml +0 -0
  37. {tabpfn_time_series-0.1.1 → tabpfn_time_series-0.1.3}/tabpfn_time_series/data_preparation.py +0 -0
  38. {tabpfn_time_series-0.1.1 → tabpfn_time_series-0.1.3}/tabpfn_time_series/feature.py +0 -0
  39. {tabpfn_time_series-0.1.1 → tabpfn_time_series-0.1.3}/tabpfn_time_series/plot.py +0 -0
@@ -0,0 +1,3 @@
1
+ 2274b01195d59dd91c77548f2eb0a4efa535d525
2
+ 4ebfea74ce718dc9c31a353082ca83c9f2ecf6a8
3
+ 1736408702.332118
@@ -0,0 +1,3 @@
1
+ 2274b01195d59dd91c77548f2eb0a4efa535d525
2
+ e2d4a06eeb4521dee71fc68d819e277ffb97614cc3695dc9ac3030dd9da36c21
3
+ 1736408701.88352
@@ -0,0 +1,59 @@
1
+ name: In pull request
2
+ on:
3
+ pull_request:
4
+ branches:
5
+ - main
6
+ - dev
7
+
8
+ jobs:
9
+ check_python_linting:
10
+ name: Ruff Linting & Formatting
11
+ runs-on: ubuntu-latest
12
+ steps:
13
+ - uses: actions/checkout@v4
14
+ - uses: chartboost/ruff-action@v1
15
+ with:
16
+ src: "./"
17
+ version: 0.3.3
18
+ - uses: chartboost/ruff-action@v1
19
+ with:
20
+ src: "./"
21
+ version: 0.3.3
22
+ args: 'format --check'
23
+
24
+ test_compatibility:
25
+ name: Test Package Compatibility
26
+ strategy:
27
+ fail-fast: false
28
+ matrix:
29
+ os: [ubuntu-latest, macos-latest, windows-latest]
30
+ python-version: ["3.9", "3.10"]
31
+ runs-on: ${{ matrix.os }}
32
+ steps:
33
+ - uses: actions/checkout@v4
34
+
35
+ - name: Set up Python ${{ matrix.python-version }}
36
+ uses: actions/setup-python@v5
37
+ with:
38
+ python-version: ${{ matrix.python-version }}
39
+ cache: 'pip'
40
+
41
+ - name: Cache dependencies
42
+ uses: actions/cache@v3
43
+ with:
44
+ path: ~/.cache/pip
45
+ key: ${{ runner.os }}-pip-${{ matrix.python-version }}-${{ hashFiles('requirements.txt') }}
46
+ restore-keys: |
47
+ ${{ runner.os }}-pip-${{ matrix.python-version }}-
48
+ ${{ runner.os }}-pip-
49
+
50
+ - name: Install dependencies
51
+ run: |
52
+ python -m pip install --upgrade pip
53
+ pip install -r requirements.txt
54
+
55
+ - name: Run Tests
56
+ env:
57
+ TABPFN_CLIENT_API_KEY: ${{ secrets.TABPFN_CLIENT_API_KEY }}
58
+ run: |
59
+ python -m unittest discover -s tests -t tests
@@ -0,0 +1,6 @@
1
+ *.pyc
2
+ *.DS_Store
3
+ gift_eval/data
4
+ gift_eval/results
5
+ wandb
6
+ results
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: tabpfn_time_series
3
- Version: 0.1.1
3
+ Version: 0.1.3
4
4
  Summary: Zero-shot time series forecasting with TabPFN
5
5
  Project-URL: Homepage, https://github.com/liam-sbhoo/tabpfn-time-series
6
6
  Project-URL: Bug Tracker, https://github.com/liam-sbhoo/tabpfn-time-series/issues
@@ -10,26 +10,36 @@ Classifier: License :: OSI Approved :: Apache Software License
10
10
  Classifier: Operating System :: OS Independent
11
11
  Classifier: Programming Language :: Python :: 3
12
12
  Requires-Python: >=3.10
13
- Requires-Dist: autogluon-timeseries
14
- Requires-Dist: gluonts
15
- Requires-Dist: pandas
16
- Requires-Dist: tabpfn-client
13
+ Requires-Dist: autogluon-timeseries>=1.2
14
+ Requires-Dist: datasets>=3.3.2
15
+ Requires-Dist: gluonts>=0.16.0
16
+ Requires-Dist: pandas<2.2.0,>=2.1.2
17
+ Requires-Dist: tabpfn-client>=0.1.1
18
+ Requires-Dist: tabpfn>=2.0.0
17
19
  Requires-Dist: tqdm
18
20
  Provides-Extra: dev
19
21
  Requires-Dist: build; extra == 'dev'
22
+ Requires-Dist: jupyter; extra == 'dev'
20
23
  Requires-Dist: pre-commit; extra == 'dev'
21
24
  Requires-Dist: ruff; extra == 'dev'
22
25
  Requires-Dist: twine; extra == 'dev'
23
26
  Description-Content-Type: text/markdown
24
27
 
25
- # Time Series Forecasting with TabPFN
28
+ # Zero-Shot Time Series Forecasting with TabPFN
26
29
 
30
+ [![PyPI version](https://badge.fury.io/py/tabpfn-time-series.svg)](https://badge.fury.io/py/tabpfn-time-series)
27
31
  [![colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/liam-sbhoo/tabpfn-time-series/blob/main/demo.ipynb)
28
32
  [![Discord](https://img.shields.io/discord/1285598202732482621?color=7289da&label=Discord&logo=discord&logoColor=ffffff)](https://discord.com/channels/1285598202732482621/)
29
- [![arXiv](https://img.shields.io/badge/arXiv-<INDEX>-<COLOR>.svg)](https://arxiv.org/abs/2501.02945)
33
+ [![arXiv](https://img.shields.io/badge/arXiv-2501.02945-<COLOR>.svg)](https://arxiv.org/abs/2501.02945)
30
34
 
35
+ ## 📌 News
36
+ - **27-01-2025**: 🚀 Ranked _**1st**_ on [GIFT-EVAL](https://huggingface.co/spaces/Salesforce/GIFT-Eval) benchmark<sup>[1]</sup>!
37
+ - **10-10-2024**: 🚀 TabPFN-TS [paper](https://arxiv.org/abs/2501.02945) accepted to NeurIPS 2024 [TRL](https://table-representation-learning.github.io/NeurIPS2024/) and [TSALM](https://neurips-time-series-workshop.github.io/) workshops!
31
38
 
32
- We demonstrate that the tabular foundation model **TabPFN**, when paired with minimal featurization, can perform zero-shot time series forecasting. Its performance on point forecasting matches or even slightly outperforms state-of-the-art methods.
39
+ _[1] Last checked on: 10/03/2025_
40
+
41
+ ## ✨ Introduction
42
+ We demonstrate that the tabular foundation model **[TabPFN](https://github.com/PriorLabs/TabPFN)**, when paired with minimal featurization, can perform zero-shot time series forecasting. Its performance on point forecasting matches or even slightly outperforms state-of-the-art methods.
33
43
 
34
44
  ## 📖 How does it work?
35
45
 
@@ -50,10 +60,16 @@ For more details, please refer to our [paper](https://arxiv.org/abs/2501.02945)
50
60
  - **Point and probabilistic forecasting**: it provides accurate point forecasts as well as probabilistic forecasts.
51
61
  - **Support for exogenous variables**: if you have exogenous variables, this method can seemlessly incorporate them into the forecasting model.
52
62
 
53
- On top of that, thanks to [tabpfn-client](https://github.com/automl/tabpfn-client) from [Prior Labs](https://priorlabs.ai), you won’t even need your own GPU to run fast inference with TabPFN. 😉 We have included `tabpfn-client` as the default engine in our implementation.
63
+ On top of that, thanks to **[tabpfn-client](https://github.com/automl/tabpfn-client)** from **[Prior Labs](https://priorlabs.ai)**, you won’t even need your own GPU to run fast inference with TabPFN. 😉 We have included `tabpfn-client` as the default engine in our implementation.
54
64
 
55
65
  ## How to use it?
56
66
 
57
67
  [![colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/liam-sbhoo/tabpfn-time-series/blob/main/demo.ipynb)
58
68
 
59
69
  The demo should explain it all. 😉
70
+
71
+ ## 📊 GIFT-EVAL Benchmark
72
+
73
+ We have submitted our results to the [GIFT-EVAL](https://huggingface.co/spaces/Salesforce/GIFT-Eval) benchmark. Stay tuned for results!
74
+
75
+ For more details regarding the evaluation setup, please refer to [README.md](gift_eval/README.md).
@@ -1,11 +1,18 @@
1
- # Time Series Forecasting with TabPFN
1
+ # Zero-Shot Time Series Forecasting with TabPFN
2
2
 
3
+ [![PyPI version](https://badge.fury.io/py/tabpfn-time-series.svg)](https://badge.fury.io/py/tabpfn-time-series)
3
4
  [![colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/liam-sbhoo/tabpfn-time-series/blob/main/demo.ipynb)
4
5
  [![Discord](https://img.shields.io/discord/1285598202732482621?color=7289da&label=Discord&logo=discord&logoColor=ffffff)](https://discord.com/channels/1285598202732482621/)
5
- [![arXiv](https://img.shields.io/badge/arXiv-<INDEX>-<COLOR>.svg)](https://arxiv.org/abs/2501.02945)
6
+ [![arXiv](https://img.shields.io/badge/arXiv-2501.02945-<COLOR>.svg)](https://arxiv.org/abs/2501.02945)
6
7
 
8
+ ## 📌 News
9
+ - **27-01-2025**: 🚀 Ranked _**1st**_ on [GIFT-EVAL](https://huggingface.co/spaces/Salesforce/GIFT-Eval) benchmark<sup>[1]</sup>!
10
+ - **10-10-2024**: 🚀 TabPFN-TS [paper](https://arxiv.org/abs/2501.02945) accepted to NeurIPS 2024 [TRL](https://table-representation-learning.github.io/NeurIPS2024/) and [TSALM](https://neurips-time-series-workshop.github.io/) workshops!
7
11
 
8
- We demonstrate that the tabular foundation model **TabPFN**, when paired with minimal featurization, can perform zero-shot time series forecasting. Its performance on point forecasting matches or even slightly outperforms state-of-the-art methods.
12
+ _[1] Last checked on: 10/03/2025_
13
+
14
+ ## ✨ Introduction
15
+ We demonstrate that the tabular foundation model **[TabPFN](https://github.com/PriorLabs/TabPFN)**, when paired with minimal featurization, can perform zero-shot time series forecasting. Its performance on point forecasting matches or even slightly outperforms state-of-the-art methods.
9
16
 
10
17
  ## 📖 How does it work?
11
18
 
@@ -26,10 +33,16 @@ For more details, please refer to our [paper](https://arxiv.org/abs/2501.02945)
26
33
  - **Point and probabilistic forecasting**: it provides accurate point forecasts as well as probabilistic forecasts.
27
34
  - **Support for exogenous variables**: if you have exogenous variables, this method can seemlessly incorporate them into the forecasting model.
28
35
 
29
- On top of that, thanks to [tabpfn-client](https://github.com/automl/tabpfn-client) from [Prior Labs](https://priorlabs.ai), you won’t even need your own GPU to run fast inference with TabPFN. 😉 We have included `tabpfn-client` as the default engine in our implementation.
36
+ On top of that, thanks to **[tabpfn-client](https://github.com/automl/tabpfn-client)** from **[Prior Labs](https://priorlabs.ai)**, you won’t even need your own GPU to run fast inference with TabPFN. 😉 We have included `tabpfn-client` as the default engine in our implementation.
30
37
 
31
38
  ## How to use it?
32
39
 
33
40
  [![colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/liam-sbhoo/tabpfn-time-series/blob/main/demo.ipynb)
34
41
 
35
42
  The demo should explain it all. 😉
43
+
44
+ ## 📊 GIFT-EVAL Benchmark
45
+
46
+ We have submitted our results to the [GIFT-EVAL](https://huggingface.co/spaces/Salesforce/GIFT-Eval) benchmark. Stay tuned for results!
47
+
48
+ For more details regarding the evaluation setup, please refer to [README.md](gift_eval/README.md).