tabpfn-time-series 0.1.0__tar.gz → 0.1.2__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (30) hide show
  1. tabpfn_time_series-0.1.2/.cache/huggingface/.gitignore +1 -0
  2. tabpfn_time_series-0.1.2/.cache/huggingface/download/config.json.lock +0 -0
  3. tabpfn_time_series-0.1.2/.cache/huggingface/download/config.json.metadata +3 -0
  4. tabpfn_time_series-0.1.2/.cache/huggingface/download/tabpfn-v2-regressor-2noar4o2.ckpt.lock +0 -0
  5. tabpfn_time_series-0.1.2/.cache/huggingface/download/tabpfn-v2-regressor-2noar4o2.ckpt.metadata +3 -0
  6. tabpfn_time_series-0.1.2/.gitignore +2 -0
  7. {tabpfn_time_series-0.1.0 → tabpfn_time_series-0.1.2}/PKG-INFO +9 -7
  8. {tabpfn_time_series-0.1.0 → tabpfn_time_series-0.1.2}/README.md +3 -3
  9. tabpfn_time_series-0.1.2/demo.ipynb +1153 -0
  10. tabpfn_time_series-0.1.2/playground.ipynb +759 -0
  11. {tabpfn_time_series-0.1.0 → tabpfn_time_series-0.1.2}/pyproject.toml +7 -1
  12. {tabpfn_time_series-0.1.0 → tabpfn_time_series-0.1.2}/requirements-dev.txt +1 -0
  13. tabpfn_time_series-0.1.2/requirements.txt +6 -0
  14. tabpfn_time_series-0.1.2/tabpfn-v2-regressor-2noar4o2.ckpt +0 -0
  15. {tabpfn_time_series-0.1.0 → tabpfn_time_series-0.1.2}/tabpfn_time_series/__init__.py +1 -1
  16. tabpfn_time_series-0.1.2/tabpfn_time_series/defaults.py +7 -0
  17. {tabpfn_time_series-0.1.0 → tabpfn_time_series-0.1.2}/tabpfn_time_series/predictor.py +9 -6
  18. {tabpfn_time_series-0.1.0 → tabpfn_time_series-0.1.2}/tabpfn_time_series/tabpfn_worker.py +32 -99
  19. tabpfn_time_series-0.1.0/.gitignore +0 -1
  20. tabpfn_time_series-0.1.0/demo.ipynb +0 -1171
  21. tabpfn_time_series-0.1.0/docs/tabpfn-ts-method-overview.png +0 -0
  22. tabpfn_time_series-0.1.0/docs/tabpfn-ts-neurips-poster.pdf +0 -0
  23. tabpfn_time_series-0.1.0/requirements.txt +0 -6
  24. tabpfn_time_series-0.1.0/tabpfn_time_series/defaults.py +0 -5
  25. {tabpfn_time_series-0.1.0 → tabpfn_time_series-0.1.2}/.pre-commit-config.yaml +0 -0
  26. {tabpfn_time_series-0.1.0 → tabpfn_time_series-0.1.2}/LICENSE.txt +0 -0
  27. {tabpfn_time_series-0.1.0 → tabpfn_time_series-0.1.2}/ruff.toml +0 -0
  28. {tabpfn_time_series-0.1.0 → tabpfn_time_series-0.1.2}/tabpfn_time_series/data_preparation.py +0 -0
  29. {tabpfn_time_series-0.1.0 → tabpfn_time_series-0.1.2}/tabpfn_time_series/feature.py +0 -0
  30. {tabpfn_time_series-0.1.0 → tabpfn_time_series-0.1.2}/tabpfn_time_series/plot.py +0 -0
@@ -0,0 +1,3 @@
1
+ 2274b01195d59dd91c77548f2eb0a4efa535d525
2
+ 4ebfea74ce718dc9c31a353082ca83c9f2ecf6a8
3
+ 1736408702.332118
@@ -0,0 +1,3 @@
1
+ 2274b01195d59dd91c77548f2eb0a4efa535d525
2
+ e2d4a06eeb4521dee71fc68d819e277ffb97614cc3695dc9ac3030dd9da36c21
3
+ 1736408701.88352
@@ -0,0 +1,2 @@
1
+ *.pyc
2
+ *.DS_Store
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: tabpfn_time_series
3
- Version: 0.1.0
3
+ Version: 0.1.2
4
4
  Summary: Zero-shot time series forecasting with TabPFN
5
5
  Project-URL: Homepage, https://github.com/liam-sbhoo/tabpfn-time-series
6
6
  Project-URL: Bug Tracker, https://github.com/liam-sbhoo/tabpfn-time-series/issues
@@ -10,13 +10,15 @@ Classifier: License :: OSI Approved :: Apache Software License
10
10
  Classifier: Operating System :: OS Independent
11
11
  Classifier: Programming Language :: Python :: 3
12
12
  Requires-Python: >=3.10
13
- Requires-Dist: autogluon-timeseries
14
- Requires-Dist: gluonts
13
+ Requires-Dist: autogluon-timeseries==1.2
14
+ Requires-Dist: gluonts==0.16.0
15
15
  Requires-Dist: pandas
16
- Requires-Dist: tabpfn-client
16
+ Requires-Dist: tabpfn-client==0.1.1
17
+ Requires-Dist: tabpfn==2.0.0
17
18
  Requires-Dist: tqdm
18
19
  Provides-Extra: dev
19
20
  Requires-Dist: build; extra == 'dev'
21
+ Requires-Dist: jupyter; extra == 'dev'
20
22
  Requires-Dist: pre-commit; extra == 'dev'
21
23
  Requires-Dist: ruff; extra == 'dev'
22
24
  Requires-Dist: twine; extra == 'dev'
@@ -26,10 +28,10 @@ Description-Content-Type: text/markdown
26
28
 
27
29
  [![colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/liam-sbhoo/tabpfn-time-series/blob/main/demo.ipynb)
28
30
  [![Discord](https://img.shields.io/discord/1285598202732482621?color=7289da&label=Discord&logo=discord&logoColor=ffffff)](https://discord.com/channels/1285598202732482621/)
29
- [![arXiv](https://img.shields.io/badge/arXiv-<INDEX>-<COLOR>.svg)](https://arxiv.org/abs/2501.02945)
31
+ [![arXiv](https://img.shields.io/badge/arXiv-2501.02945-<COLOR>.svg)](https://arxiv.org/abs/2501.02945)
30
32
 
31
33
 
32
- We demonstrate that the tabular foundation model **TabPFN**, when paired with minimal featurization, can perform zero-shot time series forecasting. Its performance on point forecasting matches or even slightly outperforms state-of-the-art methods.
34
+ We demonstrate that the tabular foundation model **[TabPFN](https://github.com/PriorLabs/TabPFN)**, when paired with minimal featurization, can perform zero-shot time series forecasting. Its performance on point forecasting matches or even slightly outperforms state-of-the-art methods.
33
35
 
34
36
  ## 📖 How does it work?
35
37
 
@@ -50,7 +52,7 @@ For more details, please refer to our [paper](https://arxiv.org/abs/2501.02945)
50
52
  - **Point and probabilistic forecasting**: it provides accurate point forecasts as well as probabilistic forecasts.
51
53
  - **Support for exogenous variables**: if you have exogenous variables, this method can seemlessly incorporate them into the forecasting model.
52
54
 
53
- On top of that, thanks to [tabpfn-client](https://github.com/automl/tabpfn-client) from [Prior Labs](https://priorlabs.ai), you won’t even need your own GPU to run fast inference with TabPFN. 😉 We have included `tabpfn-client` as the default engine in our implementation.
55
+ On top of that, thanks to **[tabpfn-client](https://github.com/automl/tabpfn-client)** from **[Prior Labs](https://priorlabs.ai)**, you won’t even need your own GPU to run fast inference with TabPFN. 😉 We have included `tabpfn-client` as the default engine in our implementation.
54
56
 
55
57
  ## How to use it?
56
58
 
@@ -2,10 +2,10 @@
2
2
 
3
3
  [![colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/liam-sbhoo/tabpfn-time-series/blob/main/demo.ipynb)
4
4
  [![Discord](https://img.shields.io/discord/1285598202732482621?color=7289da&label=Discord&logo=discord&logoColor=ffffff)](https://discord.com/channels/1285598202732482621/)
5
- [![arXiv](https://img.shields.io/badge/arXiv-<INDEX>-<COLOR>.svg)](https://arxiv.org/abs/2501.02945)
5
+ [![arXiv](https://img.shields.io/badge/arXiv-2501.02945-<COLOR>.svg)](https://arxiv.org/abs/2501.02945)
6
6
 
7
7
 
8
- We demonstrate that the tabular foundation model **TabPFN**, when paired with minimal featurization, can perform zero-shot time series forecasting. Its performance on point forecasting matches or even slightly outperforms state-of-the-art methods.
8
+ We demonstrate that the tabular foundation model **[TabPFN](https://github.com/PriorLabs/TabPFN)**, when paired with minimal featurization, can perform zero-shot time series forecasting. Its performance on point forecasting matches or even slightly outperforms state-of-the-art methods.
9
9
 
10
10
  ## 📖 How does it work?
11
11
 
@@ -26,7 +26,7 @@ For more details, please refer to our [paper](https://arxiv.org/abs/2501.02945)
26
26
  - **Point and probabilistic forecasting**: it provides accurate point forecasts as well as probabilistic forecasts.
27
27
  - **Support for exogenous variables**: if you have exogenous variables, this method can seemlessly incorporate them into the forecasting model.
28
28
 
29
- On top of that, thanks to [tabpfn-client](https://github.com/automl/tabpfn-client) from [Prior Labs](https://priorlabs.ai), you won’t even need your own GPU to run fast inference with TabPFN. 😉 We have included `tabpfn-client` as the default engine in our implementation.
29
+ On top of that, thanks to **[tabpfn-client](https://github.com/automl/tabpfn-client)** from **[Prior Labs](https://priorlabs.ai)**, you won’t even need your own GPU to run fast inference with TabPFN. 😉 We have included `tabpfn-client` as the default engine in our implementation.
30
30
 
31
31
  ## How to use it?
32
32