tabpfn-time-series 0.1.0__tar.gz → 0.1.2__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- tabpfn_time_series-0.1.2/.cache/huggingface/.gitignore +1 -0
- tabpfn_time_series-0.1.2/.cache/huggingface/download/config.json.lock +0 -0
- tabpfn_time_series-0.1.2/.cache/huggingface/download/config.json.metadata +3 -0
- tabpfn_time_series-0.1.2/.cache/huggingface/download/tabpfn-v2-regressor-2noar4o2.ckpt.lock +0 -0
- tabpfn_time_series-0.1.2/.cache/huggingface/download/tabpfn-v2-regressor-2noar4o2.ckpt.metadata +3 -0
- tabpfn_time_series-0.1.2/.gitignore +2 -0
- {tabpfn_time_series-0.1.0 → tabpfn_time_series-0.1.2}/PKG-INFO +9 -7
- {tabpfn_time_series-0.1.0 → tabpfn_time_series-0.1.2}/README.md +3 -3
- tabpfn_time_series-0.1.2/demo.ipynb +1153 -0
- tabpfn_time_series-0.1.2/playground.ipynb +759 -0
- {tabpfn_time_series-0.1.0 → tabpfn_time_series-0.1.2}/pyproject.toml +7 -1
- {tabpfn_time_series-0.1.0 → tabpfn_time_series-0.1.2}/requirements-dev.txt +1 -0
- tabpfn_time_series-0.1.2/requirements.txt +6 -0
- tabpfn_time_series-0.1.2/tabpfn-v2-regressor-2noar4o2.ckpt +0 -0
- {tabpfn_time_series-0.1.0 → tabpfn_time_series-0.1.2}/tabpfn_time_series/__init__.py +1 -1
- tabpfn_time_series-0.1.2/tabpfn_time_series/defaults.py +7 -0
- {tabpfn_time_series-0.1.0 → tabpfn_time_series-0.1.2}/tabpfn_time_series/predictor.py +9 -6
- {tabpfn_time_series-0.1.0 → tabpfn_time_series-0.1.2}/tabpfn_time_series/tabpfn_worker.py +32 -99
- tabpfn_time_series-0.1.0/.gitignore +0 -1
- tabpfn_time_series-0.1.0/demo.ipynb +0 -1171
- tabpfn_time_series-0.1.0/docs/tabpfn-ts-method-overview.png +0 -0
- tabpfn_time_series-0.1.0/docs/tabpfn-ts-neurips-poster.pdf +0 -0
- tabpfn_time_series-0.1.0/requirements.txt +0 -6
- tabpfn_time_series-0.1.0/tabpfn_time_series/defaults.py +0 -5
- {tabpfn_time_series-0.1.0 → tabpfn_time_series-0.1.2}/.pre-commit-config.yaml +0 -0
- {tabpfn_time_series-0.1.0 → tabpfn_time_series-0.1.2}/LICENSE.txt +0 -0
- {tabpfn_time_series-0.1.0 → tabpfn_time_series-0.1.2}/ruff.toml +0 -0
- {tabpfn_time_series-0.1.0 → tabpfn_time_series-0.1.2}/tabpfn_time_series/data_preparation.py +0 -0
- {tabpfn_time_series-0.1.0 → tabpfn_time_series-0.1.2}/tabpfn_time_series/feature.py +0 -0
- {tabpfn_time_series-0.1.0 → tabpfn_time_series-0.1.2}/tabpfn_time_series/plot.py +0 -0
@@ -0,0 +1 @@
|
|
1
|
+
*
|
File without changes
|
File without changes
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: tabpfn_time_series
|
3
|
-
Version: 0.1.
|
3
|
+
Version: 0.1.2
|
4
4
|
Summary: Zero-shot time series forecasting with TabPFN
|
5
5
|
Project-URL: Homepage, https://github.com/liam-sbhoo/tabpfn-time-series
|
6
6
|
Project-URL: Bug Tracker, https://github.com/liam-sbhoo/tabpfn-time-series/issues
|
@@ -10,13 +10,15 @@ Classifier: License :: OSI Approved :: Apache Software License
|
|
10
10
|
Classifier: Operating System :: OS Independent
|
11
11
|
Classifier: Programming Language :: Python :: 3
|
12
12
|
Requires-Python: >=3.10
|
13
|
-
Requires-Dist: autogluon-timeseries
|
14
|
-
Requires-Dist: gluonts
|
13
|
+
Requires-Dist: autogluon-timeseries==1.2
|
14
|
+
Requires-Dist: gluonts==0.16.0
|
15
15
|
Requires-Dist: pandas
|
16
|
-
Requires-Dist: tabpfn-client
|
16
|
+
Requires-Dist: tabpfn-client==0.1.1
|
17
|
+
Requires-Dist: tabpfn==2.0.0
|
17
18
|
Requires-Dist: tqdm
|
18
19
|
Provides-Extra: dev
|
19
20
|
Requires-Dist: build; extra == 'dev'
|
21
|
+
Requires-Dist: jupyter; extra == 'dev'
|
20
22
|
Requires-Dist: pre-commit; extra == 'dev'
|
21
23
|
Requires-Dist: ruff; extra == 'dev'
|
22
24
|
Requires-Dist: twine; extra == 'dev'
|
@@ -26,10 +28,10 @@ Description-Content-Type: text/markdown
|
|
26
28
|
|
27
29
|
[](https://colab.research.google.com/github/liam-sbhoo/tabpfn-time-series/blob/main/demo.ipynb)
|
28
30
|
[](https://discord.com/channels/1285598202732482621/)
|
29
|
-
[](https://arxiv.org/abs/2501.02945)
|
30
32
|
|
31
33
|
|
32
|
-
We demonstrate that the tabular foundation model **TabPFN**, when paired with minimal featurization, can perform zero-shot time series forecasting. Its performance on point forecasting matches or even slightly outperforms state-of-the-art methods.
|
34
|
+
We demonstrate that the tabular foundation model **[TabPFN](https://github.com/PriorLabs/TabPFN)**, when paired with minimal featurization, can perform zero-shot time series forecasting. Its performance on point forecasting matches or even slightly outperforms state-of-the-art methods.
|
33
35
|
|
34
36
|
## 📖 How does it work?
|
35
37
|
|
@@ -50,7 +52,7 @@ For more details, please refer to our [paper](https://arxiv.org/abs/2501.02945)
|
|
50
52
|
- **Point and probabilistic forecasting**: it provides accurate point forecasts as well as probabilistic forecasts.
|
51
53
|
- **Support for exogenous variables**: if you have exogenous variables, this method can seemlessly incorporate them into the forecasting model.
|
52
54
|
|
53
|
-
On top of that, thanks to [tabpfn-client](https://github.com/automl/tabpfn-client) from [Prior Labs](https://priorlabs.ai)
|
55
|
+
On top of that, thanks to **[tabpfn-client](https://github.com/automl/tabpfn-client)** from **[Prior Labs](https://priorlabs.ai)**, you won’t even need your own GPU to run fast inference with TabPFN. 😉 We have included `tabpfn-client` as the default engine in our implementation.
|
54
56
|
|
55
57
|
## How to use it?
|
56
58
|
|
@@ -2,10 +2,10 @@
|
|
2
2
|
|
3
3
|
[](https://colab.research.google.com/github/liam-sbhoo/tabpfn-time-series/blob/main/demo.ipynb)
|
4
4
|
[](https://discord.com/channels/1285598202732482621/)
|
5
|
-
[](https://arxiv.org/abs/2501.02945)
|
6
6
|
|
7
7
|
|
8
|
-
We demonstrate that the tabular foundation model **TabPFN**, when paired with minimal featurization, can perform zero-shot time series forecasting. Its performance on point forecasting matches or even slightly outperforms state-of-the-art methods.
|
8
|
+
We demonstrate that the tabular foundation model **[TabPFN](https://github.com/PriorLabs/TabPFN)**, when paired with minimal featurization, can perform zero-shot time series forecasting. Its performance on point forecasting matches or even slightly outperforms state-of-the-art methods.
|
9
9
|
|
10
10
|
## 📖 How does it work?
|
11
11
|
|
@@ -26,7 +26,7 @@ For more details, please refer to our [paper](https://arxiv.org/abs/2501.02945)
|
|
26
26
|
- **Point and probabilistic forecasting**: it provides accurate point forecasts as well as probabilistic forecasts.
|
27
27
|
- **Support for exogenous variables**: if you have exogenous variables, this method can seemlessly incorporate them into the forecasting model.
|
28
28
|
|
29
|
-
On top of that, thanks to [tabpfn-client](https://github.com/automl/tabpfn-client) from [Prior Labs](https://priorlabs.ai)
|
29
|
+
On top of that, thanks to **[tabpfn-client](https://github.com/automl/tabpfn-client)** from **[Prior Labs](https://priorlabs.ai)**, you won’t even need your own GPU to run fast inference with TabPFN. 😉 We have included `tabpfn-client` as the default engine in our implementation.
|
30
30
|
|
31
31
|
## How to use it?
|
32
32
|
|