ta-lib 0.5.1__tar.gz → 0.5.3__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {ta_lib-0.5.1 → ta_lib-0.5.3}/PKG-INFO +14 -3
- {ta_lib-0.5.1 → ta_lib-0.5.3}/README.md +12 -2
- ta_lib-0.5.3/pyproject.toml +8 -0
- {ta_lib-0.5.1 → ta_lib-0.5.3}/setup.py +4 -3
- {ta_lib-0.5.1 → ta_lib-0.5.3}/ta_lib.egg-info/PKG-INFO +14 -3
- {ta_lib-0.5.1 → ta_lib-0.5.3}/ta_lib.egg-info/SOURCES.txt +2 -0
- ta_lib-0.5.3/ta_lib.egg-info/requires.txt +2 -0
- {ta_lib-0.5.1 → ta_lib-0.5.3}/talib/__init__.py +1 -1
- ta_lib-0.5.3/talib/_ta_lib.pyi +981 -0
- ta_lib-0.5.3/talib/py.typed +0 -0
- ta_lib-0.5.1/pyproject.toml +0 -8
- ta_lib-0.5.1/ta_lib.egg-info/requires.txt +0 -1
- {ta_lib-0.5.1 → ta_lib-0.5.3}/AUTHORS +0 -0
- {ta_lib-0.5.1 → ta_lib-0.5.3}/COPYRIGHT +0 -0
- {ta_lib-0.5.1 → ta_lib-0.5.3}/LICENSE +0 -0
- {ta_lib-0.5.1 → ta_lib-0.5.3}/MANIFEST.in +0 -0
- {ta_lib-0.5.1 → ta_lib-0.5.3}/setup.cfg +0 -0
- {ta_lib-0.5.1 → ta_lib-0.5.3}/ta_lib.egg-info/dependency_links.txt +0 -0
- {ta_lib-0.5.1 → ta_lib-0.5.3}/ta_lib.egg-info/top_level.txt +0 -0
- {ta_lib-0.5.1 → ta_lib-0.5.3}/talib/_abstract.pxi +0 -0
- {ta_lib-0.5.1 → ta_lib-0.5.3}/talib/_common.pxi +0 -0
- {ta_lib-0.5.1 → ta_lib-0.5.3}/talib/_func.pxi +0 -0
- {ta_lib-0.5.1 → ta_lib-0.5.3}/talib/_stream.pxi +0 -0
- {ta_lib-0.5.1 → ta_lib-0.5.3}/talib/_ta_lib.c +0 -0
- {ta_lib-0.5.1 → ta_lib-0.5.3}/talib/_ta_lib.pyx +0 -0
- {ta_lib-0.5.1 → ta_lib-0.5.3}/talib/abstract.py +0 -0
- {ta_lib-0.5.1 → ta_lib-0.5.3}/talib/deprecated.py +0 -0
- {ta_lib-0.5.1 → ta_lib-0.5.3}/talib/stream.py +0 -0
- {ta_lib-0.5.1 → ta_lib-0.5.3}/tests/conftest.py +0 -0
- {ta_lib-0.5.1 → ta_lib-0.5.3}/tests/test_abstract.py +0 -0
- {ta_lib-0.5.1 → ta_lib-0.5.3}/tests/test_func.py +0 -0
- {ta_lib-0.5.1 → ta_lib-0.5.3}/tests/test_pandas.py +0 -0
- {ta_lib-0.5.1 → ta_lib-0.5.3}/tests/test_polars.py +0 -0
- {ta_lib-0.5.1 → ta_lib-0.5.3}/tests/test_stream.py +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: ta-lib
|
3
|
-
Version: 0.5.
|
3
|
+
Version: 0.5.3
|
4
4
|
Summary: Python wrapper for TA-Lib
|
5
5
|
Home-page: http://github.com/ta-lib/ta-lib-python
|
6
6
|
Download-URL: https://github.com/ta-lib/ta-lib-python/releases
|
@@ -37,6 +37,7 @@ Classifier: Intended Audience :: Financial and Insurance Industry
|
|
37
37
|
Description-Content-Type: text/markdown
|
38
38
|
License-File: LICENSE
|
39
39
|
License-File: AUTHORS
|
40
|
+
Requires-Dist: setuptools
|
40
41
|
Requires-Dist: numpy
|
41
42
|
|
42
43
|
# TA-Lib
|
@@ -142,8 +143,7 @@ and unzip to ``C:\ta-lib``.
|
|
142
143
|
> 3. Download and Install Visual Studio Community (2015 or later)
|
143
144
|
> * Remember to Select ``[Visual C++]`` Feature
|
144
145
|
> 4. Build TA-Lib Library
|
145
|
-
> * From Windows Start Menu, Start ``[
|
146
|
-
> Prompt]``
|
146
|
+
> * From Windows Start Menu, Start ``[x64 Native Tools Command Prompt]``
|
147
147
|
> * Move to ``C:\ta-lib\c\make\cdr\win32\msvc``
|
148
148
|
> * Build the Library ``nmake``
|
149
149
|
|
@@ -376,6 +376,17 @@ If you want to use ``numpy<2``, then you should use ``ta-lib<0.5``.
|
|
376
376
|
|
377
377
|
If you want to use ``numpy>=2``, then you should use ``ta-lib>=0.5``.
|
378
378
|
|
379
|
+
---
|
380
|
+
|
381
|
+
If you have trouble getting the code autocompletions to work in Visual
|
382
|
+
Studio Code, a suggestion was made to look for the ``Python`` extension
|
383
|
+
settings, and an option for ``Language Server``, and change it from
|
384
|
+
``Default`` (which means ``Pylance if it is installed, Jedi otherwise``, to
|
385
|
+
manually set ``Jedi`` and the completions should work. It is possible that
|
386
|
+
you might need to [install it
|
387
|
+
manually](https://github.com/pappasam/jedi-language-server) for this to
|
388
|
+
work.
|
389
|
+
|
379
390
|
## Function API
|
380
391
|
|
381
392
|
Similar to TA-Lib, the Function API provides a lightweight wrapper of the
|
@@ -101,8 +101,7 @@ and unzip to ``C:\ta-lib``.
|
|
101
101
|
> 3. Download and Install Visual Studio Community (2015 or later)
|
102
102
|
> * Remember to Select ``[Visual C++]`` Feature
|
103
103
|
> 4. Build TA-Lib Library
|
104
|
-
> * From Windows Start Menu, Start ``[
|
105
|
-
> Prompt]``
|
104
|
+
> * From Windows Start Menu, Start ``[x64 Native Tools Command Prompt]``
|
106
105
|
> * Move to ``C:\ta-lib\c\make\cdr\win32\msvc``
|
107
106
|
> * Build the Library ``nmake``
|
108
107
|
|
@@ -335,6 +334,17 @@ If you want to use ``numpy<2``, then you should use ``ta-lib<0.5``.
|
|
335
334
|
|
336
335
|
If you want to use ``numpy>=2``, then you should use ``ta-lib>=0.5``.
|
337
336
|
|
337
|
+
---
|
338
|
+
|
339
|
+
If you have trouble getting the code autocompletions to work in Visual
|
340
|
+
Studio Code, a suggestion was made to look for the ``Python`` extension
|
341
|
+
settings, and an option for ``Language Server``, and change it from
|
342
|
+
``Default`` (which means ``Pylance if it is installed, Jedi otherwise``, to
|
343
|
+
manually set ``Jedi`` and the completions should work. It is possible that
|
344
|
+
you might need to [install it
|
345
|
+
manually](https://github.com/pappasam/jedi-language-server) for this to
|
346
|
+
work.
|
347
|
+
|
338
348
|
## Function API
|
339
349
|
|
340
350
|
Similar to TA-Lib, the Function API provides a lightweight wrapper of the
|
@@ -18,8 +18,6 @@ except ImportError:
|
|
18
18
|
from distutils.extension import Extension
|
19
19
|
requires = {"requires": ["numpy"]}
|
20
20
|
|
21
|
-
lib_talib_name = 'ta_lib' # the underlying C library's name
|
22
|
-
|
23
21
|
platform_supported = False
|
24
22
|
|
25
23
|
if any(s in sys.platform for s in ['darwin', 'linux', 'bsd', 'sunos']):
|
@@ -64,6 +62,8 @@ try:
|
|
64
62
|
except ImportError:
|
65
63
|
has_cython = False
|
66
64
|
|
65
|
+
lib_talib_name = 'ta_lib' # the name as of TA-Lib 0.4.0
|
66
|
+
|
67
67
|
for path in library_dirs:
|
68
68
|
try:
|
69
69
|
files = os.listdir(path)
|
@@ -143,7 +143,7 @@ with open(path.join(this_directory, 'README.md'), encoding='utf-8') as f:
|
|
143
143
|
|
144
144
|
setup(
|
145
145
|
name='TA-Lib',
|
146
|
-
version='0.5.
|
146
|
+
version='0.5.3',
|
147
147
|
description='Python wrapper for TA-Lib',
|
148
148
|
long_description=long_description,
|
149
149
|
long_description_content_type='text/markdown',
|
@@ -183,5 +183,6 @@ setup(
|
|
183
183
|
],
|
184
184
|
packages=['talib'],
|
185
185
|
ext_modules=ext_modules,
|
186
|
+
package_data={ 'talib': ['_ta_lib.pyi', 'py.typed'], },
|
186
187
|
cmdclass=cmdclass,
|
187
188
|
**requires)
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: ta-lib
|
3
|
-
Version: 0.5.
|
3
|
+
Version: 0.5.3
|
4
4
|
Summary: Python wrapper for TA-Lib
|
5
5
|
Home-page: http://github.com/ta-lib/ta-lib-python
|
6
6
|
Download-URL: https://github.com/ta-lib/ta-lib-python/releases
|
@@ -37,6 +37,7 @@ Classifier: Intended Audience :: Financial and Insurance Industry
|
|
37
37
|
Description-Content-Type: text/markdown
|
38
38
|
License-File: LICENSE
|
39
39
|
License-File: AUTHORS
|
40
|
+
Requires-Dist: setuptools
|
40
41
|
Requires-Dist: numpy
|
41
42
|
|
42
43
|
# TA-Lib
|
@@ -142,8 +143,7 @@ and unzip to ``C:\ta-lib``.
|
|
142
143
|
> 3. Download and Install Visual Studio Community (2015 or later)
|
143
144
|
> * Remember to Select ``[Visual C++]`` Feature
|
144
145
|
> 4. Build TA-Lib Library
|
145
|
-
> * From Windows Start Menu, Start ``[
|
146
|
-
> Prompt]``
|
146
|
+
> * From Windows Start Menu, Start ``[x64 Native Tools Command Prompt]``
|
147
147
|
> * Move to ``C:\ta-lib\c\make\cdr\win32\msvc``
|
148
148
|
> * Build the Library ``nmake``
|
149
149
|
|
@@ -376,6 +376,17 @@ If you want to use ``numpy<2``, then you should use ``ta-lib<0.5``.
|
|
376
376
|
|
377
377
|
If you want to use ``numpy>=2``, then you should use ``ta-lib>=0.5``.
|
378
378
|
|
379
|
+
---
|
380
|
+
|
381
|
+
If you have trouble getting the code autocompletions to work in Visual
|
382
|
+
Studio Code, a suggestion was made to look for the ``Python`` extension
|
383
|
+
settings, and an option for ``Language Server``, and change it from
|
384
|
+
``Default`` (which means ``Pylance if it is installed, Jedi otherwise``, to
|
385
|
+
manually set ``Jedi`` and the completions should work. It is possible that
|
386
|
+
you might need to [install it
|
387
|
+
manually](https://github.com/pappasam/jedi-language-server) for this to
|
388
|
+
work.
|
389
|
+
|
379
390
|
## Function API
|
380
391
|
|
381
392
|
Similar to TA-Lib, the Function API provides a lightweight wrapper of the
|
@@ -132,7 +132,7 @@ for func_name, stream_func_name in zip(__TA_FUNCTION_NAMES__, stream_func_names)
|
|
132
132
|
setattr(stream, func_name, wrapped_func)
|
133
133
|
globals()[stream_func_name] = wrapped_func
|
134
134
|
|
135
|
-
__version__ = '0.5.
|
135
|
+
__version__ = '0.5.3'
|
136
136
|
|
137
137
|
# In order to use this python library, talib (i.e. this __file__) will be
|
138
138
|
# imported at some point, either explicitly or indirectly via talib.func
|
@@ -0,0 +1,981 @@
|
|
1
|
+
import numpy as np
|
2
|
+
from enum import Enum
|
3
|
+
from typing import Tuple
|
4
|
+
from numpy.typing import NDArray
|
5
|
+
|
6
|
+
class MA_Type(Enum):
|
7
|
+
SMA = 0
|
8
|
+
EMA = 1
|
9
|
+
WMA = 2
|
10
|
+
DEMA = 3
|
11
|
+
TEMA = 4
|
12
|
+
TRIMA = 5
|
13
|
+
KAMA = 6
|
14
|
+
MAMA = 7
|
15
|
+
T3 = 8
|
16
|
+
|
17
|
+
#Overlap Studies Functions
|
18
|
+
|
19
|
+
def BBANDS(
|
20
|
+
real: NDArray[np.float64],
|
21
|
+
timeperiod: int= 5,
|
22
|
+
nbdevup: float= 2,
|
23
|
+
nbdevdn: float= 2,
|
24
|
+
matype: MA_Type = MA_Type.SMA
|
25
|
+
)-> Tuple[NDArray[np.float64], NDArray[np.float64], NDArray[np.float64]]: ...
|
26
|
+
|
27
|
+
def DEMA(
|
28
|
+
real: NDArray[np.float64],
|
29
|
+
timeperiod: int= 30
|
30
|
+
)-> NDArray[np.float64]: ...
|
31
|
+
|
32
|
+
def EMA(
|
33
|
+
real: NDArray[np.float64],
|
34
|
+
timeperiod: int= 30
|
35
|
+
)-> NDArray[np.float64]: ...
|
36
|
+
|
37
|
+
def HT_TRENDLINE(real: NDArray[np.float64])-> NDArray[np.float64]: ...
|
38
|
+
|
39
|
+
def KAMA(
|
40
|
+
real: NDArray[np.float64],
|
41
|
+
timeperiod: int= 30
|
42
|
+
)-> NDArray[np.float64]: ...
|
43
|
+
|
44
|
+
def MA(
|
45
|
+
real: NDArray[np.float64],
|
46
|
+
timeperiod: int= 30,
|
47
|
+
matype: MA_Type = MA_Type.SMA
|
48
|
+
)-> NDArray[np.float64]: ...
|
49
|
+
|
50
|
+
def MAMA(
|
51
|
+
real: NDArray[np.float64],
|
52
|
+
fastlimit: float= 0,
|
53
|
+
slowlimit: float= 0
|
54
|
+
)-> Tuple[NDArray[np.float64], NDArray[np.float64]]: ...
|
55
|
+
|
56
|
+
def MAVP(
|
57
|
+
real: NDArray[np.float64],
|
58
|
+
periods: float,
|
59
|
+
minperiod: int= 2,
|
60
|
+
maxperiod: int= 30,
|
61
|
+
matype: MA_Type = MA_Type.SMA
|
62
|
+
)-> NDArray[np.float64]: ...
|
63
|
+
|
64
|
+
def MIDPOINT(
|
65
|
+
real: NDArray[np.float64],
|
66
|
+
timeperiod: int= 14
|
67
|
+
)-> NDArray[np.float64]: ...
|
68
|
+
|
69
|
+
def MIDPRICE(
|
70
|
+
high: NDArray[np.float64],
|
71
|
+
low: NDArray[np.float64],
|
72
|
+
timeperiod: int= 14
|
73
|
+
)-> NDArray[np.float64]: ...
|
74
|
+
|
75
|
+
def SAR(
|
76
|
+
high: NDArray[np.float64],
|
77
|
+
low: NDArray[np.float64],
|
78
|
+
acceleration: float= 0,
|
79
|
+
maximum: float= 0
|
80
|
+
)-> NDArray[np.float64]: ...
|
81
|
+
|
82
|
+
def SAREXT(
|
83
|
+
high: NDArray[np.float64],
|
84
|
+
low: NDArray[np.float64],
|
85
|
+
startvalue: float= 0,
|
86
|
+
offsetonreverse: float= 0,
|
87
|
+
accelerationinitlong: float= 0,
|
88
|
+
accelerationlong: float= 0,
|
89
|
+
accelerationmaxlong: float= 0,
|
90
|
+
accelerationinitshort: float= 0,
|
91
|
+
accelerationshort: float= 0,
|
92
|
+
accelerationmaxshort: float= 0
|
93
|
+
)-> NDArray[np.float64]: ...
|
94
|
+
|
95
|
+
def SMA(
|
96
|
+
real: NDArray[np.float64],
|
97
|
+
timeperiod: int= 30
|
98
|
+
)-> NDArray[np.float64]: ...
|
99
|
+
|
100
|
+
def T3(
|
101
|
+
real: NDArray[np.float64],
|
102
|
+
timeperiod: int= 5,
|
103
|
+
vfactor: float= 0
|
104
|
+
)-> NDArray[np.float64]: ...
|
105
|
+
|
106
|
+
def TEMA(
|
107
|
+
real: NDArray[np.float64],
|
108
|
+
timeperiod: int= 30
|
109
|
+
)-> NDArray[np.float64]: ...
|
110
|
+
|
111
|
+
def TRIMA(
|
112
|
+
real: NDArray[np.float64],
|
113
|
+
timeperiod: int= 30
|
114
|
+
)-> NDArray[np.float64]: ...
|
115
|
+
|
116
|
+
def WMA(
|
117
|
+
real: NDArray[np.float64],
|
118
|
+
timeperiod: int= 30
|
119
|
+
)-> NDArray[np.float64]: ...
|
120
|
+
|
121
|
+
#Momentum Indicator Functions
|
122
|
+
|
123
|
+
def ADX(
|
124
|
+
high: NDArray[np.float64],
|
125
|
+
low: NDArray[np.float64],
|
126
|
+
close: NDArray[np.float64],
|
127
|
+
timeperiod: int= 14
|
128
|
+
)-> NDArray[np.float64]: ...
|
129
|
+
|
130
|
+
def ADXR(
|
131
|
+
high: NDArray[np.float64],
|
132
|
+
low: NDArray[np.float64],
|
133
|
+
close: NDArray[np.float64],
|
134
|
+
timeperiod: int= 14
|
135
|
+
)-> NDArray[np.float64]: ...
|
136
|
+
|
137
|
+
def APO(
|
138
|
+
real: NDArray[np.float64],
|
139
|
+
fastperiod: int= 12,
|
140
|
+
slowperiod: int= 26,
|
141
|
+
matype: MA_Type = MA_Type.SMA
|
142
|
+
)-> NDArray[np.float64]: ...
|
143
|
+
|
144
|
+
def AROON(
|
145
|
+
high: NDArray[np.float64],
|
146
|
+
low: NDArray[np.float64],
|
147
|
+
timeperiod: int= 14
|
148
|
+
)-> Tuple[NDArray[np.float64], NDArray[np.float64]]: ...
|
149
|
+
|
150
|
+
def AROONOSC(
|
151
|
+
high: NDArray[np.float64],
|
152
|
+
low: NDArray[np.float64],
|
153
|
+
timeperiod: int= 14
|
154
|
+
)-> NDArray[np.float64]: ...
|
155
|
+
|
156
|
+
def BOP(
|
157
|
+
open: NDArray[np.float64],
|
158
|
+
high: NDArray[np.float64],
|
159
|
+
low: NDArray[np.float64],
|
160
|
+
close: NDArray[np.float64]
|
161
|
+
)-> NDArray[np.float64]: ...
|
162
|
+
|
163
|
+
def CCI(
|
164
|
+
high: NDArray[np.float64],
|
165
|
+
low: NDArray[np.float64],
|
166
|
+
close: NDArray[np.float64],
|
167
|
+
timeperiod: int= 14
|
168
|
+
)-> NDArray[np.float64]: ...
|
169
|
+
|
170
|
+
def CMO(
|
171
|
+
real: NDArray[np.float64],
|
172
|
+
timeperiod: int= 14
|
173
|
+
)-> NDArray[np.float64]: ...
|
174
|
+
|
175
|
+
def DX(
|
176
|
+
high: NDArray[np.float64],
|
177
|
+
low: NDArray[np.float64],
|
178
|
+
close: NDArray[np.float64],
|
179
|
+
timeperiod: int= 14
|
180
|
+
)-> NDArray[np.float64]: ...
|
181
|
+
|
182
|
+
def MACD(
|
183
|
+
real: NDArray[np.float64],
|
184
|
+
fastperiod: int= 12,
|
185
|
+
slowperiod: int= 26,
|
186
|
+
signalperiod: int= 9
|
187
|
+
)-> Tuple[NDArray[np.float64], NDArray[np.float64], NDArray[np.float64]]: ...
|
188
|
+
|
189
|
+
def MACDEXT(
|
190
|
+
real: NDArray[np.float64],
|
191
|
+
fastperiod: int= 12,
|
192
|
+
fastmatype: MA_Type = MA_Type.SMA,
|
193
|
+
slowperiod: int= 26,
|
194
|
+
slowmatype: MA_Type = MA_Type.SMA,
|
195
|
+
signalperiod: int= 9,
|
196
|
+
signalmatype: MA_Type = MA_Type.SMA
|
197
|
+
)-> Tuple[NDArray[np.float64], NDArray[np.float64], NDArray[np.float64]]: ...
|
198
|
+
|
199
|
+
def MACDFIX(
|
200
|
+
real: NDArray[np.float64],
|
201
|
+
signalperiod: int= 9
|
202
|
+
)-> Tuple[NDArray[np.float64], NDArray[np.float64], NDArray[np.float64]]: ...
|
203
|
+
|
204
|
+
def MFI(
|
205
|
+
high: NDArray[np.float64],
|
206
|
+
low: NDArray[np.float64],
|
207
|
+
close: NDArray[np.float64],
|
208
|
+
volume: NDArray[np.float64],
|
209
|
+
timeperiod: int= 14
|
210
|
+
)-> NDArray[np.float64]: ...
|
211
|
+
|
212
|
+
def MINUS_DI(
|
213
|
+
high: NDArray[np.float64],
|
214
|
+
low: NDArray[np.float64],
|
215
|
+
close: NDArray[np.float64],
|
216
|
+
timeperiod: int= 14
|
217
|
+
)-> NDArray[np.float64]: ...
|
218
|
+
|
219
|
+
def MINUS_DM(
|
220
|
+
high: NDArray[np.float64],
|
221
|
+
low: NDArray[np.float64],
|
222
|
+
timeperiod: int= 14
|
223
|
+
)-> NDArray[np.float64]: ...
|
224
|
+
|
225
|
+
def MOM(
|
226
|
+
real: NDArray[np.float64],
|
227
|
+
timeperiod: int= 10
|
228
|
+
)-> NDArray[np.float64]: ...
|
229
|
+
|
230
|
+
def PLUS_DI(
|
231
|
+
high: NDArray[np.float64],
|
232
|
+
low: NDArray[np.float64],
|
233
|
+
close: NDArray[np.float64],
|
234
|
+
timeperiod: int= 14
|
235
|
+
)-> NDArray[np.float64]: ...
|
236
|
+
|
237
|
+
def PLUS_DM(
|
238
|
+
high: NDArray[np.float64],
|
239
|
+
low: NDArray[np.float64],
|
240
|
+
timeperiod: int= 14
|
241
|
+
)-> NDArray[np.float64]: ...
|
242
|
+
|
243
|
+
def PPO(
|
244
|
+
real: NDArray[np.float64],
|
245
|
+
fastperiod: int= 12,
|
246
|
+
slowperiod: int= 26,
|
247
|
+
matype: MA_Type = MA_Type.SMA
|
248
|
+
)-> NDArray[np.float64]: ...
|
249
|
+
|
250
|
+
def ROC(
|
251
|
+
real: NDArray[np.float64],
|
252
|
+
timeperiod: int= 10
|
253
|
+
)-> NDArray[np.float64]: ...
|
254
|
+
|
255
|
+
def ROCP(
|
256
|
+
real: NDArray[np.float64],
|
257
|
+
timeperiod: int= 10
|
258
|
+
)-> NDArray[np.float64]: ...
|
259
|
+
|
260
|
+
def ROCR(
|
261
|
+
real: NDArray[np.float64],
|
262
|
+
timeperiod: int= 10
|
263
|
+
)-> NDArray[np.float64]: ...
|
264
|
+
|
265
|
+
def ROCR100(
|
266
|
+
real: NDArray[np.float64],
|
267
|
+
timeperiod: int= 10
|
268
|
+
)-> NDArray[np.float64]: ...
|
269
|
+
|
270
|
+
def RSI(
|
271
|
+
real: NDArray[np.float64],
|
272
|
+
timeperiod: int= 14
|
273
|
+
)-> NDArray[np.float64]: ...
|
274
|
+
|
275
|
+
def STOCH(
|
276
|
+
high: NDArray[np.float64],
|
277
|
+
low: NDArray[np.float64],
|
278
|
+
close: NDArray[np.float64],
|
279
|
+
fastk_period: int= 5,
|
280
|
+
slowk_period: int= 3,
|
281
|
+
slowk_matype: MA_Type = MA_Type.SMA,
|
282
|
+
slowd_period: int= 3,
|
283
|
+
slowd_matype: MA_Type = MA_Type.SMA
|
284
|
+
)-> Tuple[NDArray[np.float64], NDArray[np.float64]]: ...
|
285
|
+
|
286
|
+
def STOCHF(
|
287
|
+
high: NDArray[np.float64],
|
288
|
+
low: NDArray[np.float64],
|
289
|
+
close: NDArray[np.float64],
|
290
|
+
fastk_period: int= 5,
|
291
|
+
fastd_period: int= 3,
|
292
|
+
fastd_matype: MA_Type = MA_Type.SMA
|
293
|
+
)-> Tuple[NDArray[np.float64], NDArray[np.float64]]: ...
|
294
|
+
|
295
|
+
def STOCHRSI(
|
296
|
+
real: NDArray[np.float64],
|
297
|
+
timeperiod: int= 14,
|
298
|
+
fastk_period: int= 5,
|
299
|
+
fastd_period: int= 3,
|
300
|
+
fastd_matype: MA_Type = MA_Type.SMA
|
301
|
+
)-> Tuple[NDArray[np.float64], NDArray[np.float64]]: ...
|
302
|
+
|
303
|
+
def TRIX(
|
304
|
+
real: NDArray[np.float64],
|
305
|
+
timeperiod: int= 30
|
306
|
+
)-> NDArray[np.float64]: ...
|
307
|
+
|
308
|
+
def ULTOSC(
|
309
|
+
high: NDArray[np.float64],
|
310
|
+
low: NDArray[np.float64],
|
311
|
+
close: NDArray[np.float64],
|
312
|
+
timeperiod1: int= 7,
|
313
|
+
timeperiod2: int= 14,
|
314
|
+
timeperiod3: int= 28
|
315
|
+
)-> NDArray[np.float64]: ...
|
316
|
+
|
317
|
+
def WILLR(
|
318
|
+
high: NDArray[np.float64],
|
319
|
+
low: NDArray[np.float64],
|
320
|
+
close: NDArray[np.float64],
|
321
|
+
timeperiod: int= 14
|
322
|
+
)-> NDArray[np.float64]: ...
|
323
|
+
|
324
|
+
#Volume Indicator Functions
|
325
|
+
|
326
|
+
def AD(
|
327
|
+
high: NDArray[np.float64],
|
328
|
+
low: NDArray[np.float64],
|
329
|
+
close: NDArray[np.float64],
|
330
|
+
volume: NDArray[np.float64]
|
331
|
+
)-> NDArray[np.float64]: ...
|
332
|
+
|
333
|
+
def ADOSC(
|
334
|
+
high: NDArray[np.float64],
|
335
|
+
low: NDArray[np.float64],
|
336
|
+
close: NDArray[np.float64],
|
337
|
+
volume: NDArray[np.float64],
|
338
|
+
fastperiod: int= 3,
|
339
|
+
slowperiod: int= 10
|
340
|
+
)-> NDArray[np.float64]: ...
|
341
|
+
|
342
|
+
def OBV(
|
343
|
+
close: NDArray[np.float64],
|
344
|
+
volume: NDArray[np.float64]
|
345
|
+
)-> NDArray[np.float64]: ...
|
346
|
+
|
347
|
+
#Volatility Indicator Functions
|
348
|
+
|
349
|
+
def ATR(
|
350
|
+
high: NDArray[np.float64],
|
351
|
+
low: NDArray[np.float64],
|
352
|
+
close: NDArray[np.float64],
|
353
|
+
timeperiod: int= 14
|
354
|
+
)-> NDArray[np.float64]: ...
|
355
|
+
|
356
|
+
def NATR(
|
357
|
+
high: NDArray[np.float64],
|
358
|
+
low: NDArray[np.float64],
|
359
|
+
close: NDArray[np.float64],
|
360
|
+
timeperiod: int= 14
|
361
|
+
)-> NDArray[np.float64]: ...
|
362
|
+
|
363
|
+
def TRANGE(
|
364
|
+
high: NDArray[np.float64],
|
365
|
+
low: NDArray[np.float64],
|
366
|
+
close: NDArray[np.float64]
|
367
|
+
)-> NDArray[np.float64]: ...
|
368
|
+
|
369
|
+
# Price Transform Functions
|
370
|
+
|
371
|
+
def AVGPRICE(
|
372
|
+
open: NDArray[np.float64],
|
373
|
+
high: NDArray[np.float64],
|
374
|
+
low: NDArray[np.float64],
|
375
|
+
close: NDArray[np.float64]
|
376
|
+
)-> NDArray[np.float64]: ...
|
377
|
+
|
378
|
+
def MEDPRICE(
|
379
|
+
high: NDArray[np.float64],
|
380
|
+
low: NDArray[np.float64]
|
381
|
+
)-> NDArray[np.float64]: ...
|
382
|
+
|
383
|
+
def TYPPRICE(
|
384
|
+
high: NDArray[np.float64],
|
385
|
+
low: NDArray[np.float64],
|
386
|
+
close: NDArray[np.float64]
|
387
|
+
)-> NDArray[np.float64]: ...
|
388
|
+
|
389
|
+
def WCLPRICE(
|
390
|
+
high: NDArray[np.float64],
|
391
|
+
low: NDArray[np.float64],
|
392
|
+
close: NDArray[np.float64]
|
393
|
+
)-> NDArray[np.float64]: ...
|
394
|
+
|
395
|
+
# Cycle Indicator Functions
|
396
|
+
|
397
|
+
def HT_DCPERIOD(real: NDArray[np.float64])-> NDArray[np.float64]: ...
|
398
|
+
|
399
|
+
def HT_DCPHASE(real: NDArray[np.float64])-> NDArray[np.float64]: ...
|
400
|
+
|
401
|
+
def HT_PHASOR(real: NDArray[np.float64])-> Tuple[NDArray[np.float64], NDArray[np.float64]]: ...
|
402
|
+
|
403
|
+
def HT_SINE(real: NDArray[np.float64])-> Tuple[NDArray[np.float64], NDArray[np.float64]]: ...
|
404
|
+
|
405
|
+
def HT_TRENDMODE(real: NDArray[np.float64])-> Tuple[NDArray[np.float64], NDArray[np.int32]]: ...
|
406
|
+
|
407
|
+
#Pattern Recognition Functions
|
408
|
+
|
409
|
+
def CDL2CROWS(
|
410
|
+
open: NDArray[np.float64],
|
411
|
+
high: NDArray[np.float64],
|
412
|
+
low: NDArray[np.float64],
|
413
|
+
close: NDArray[np.float64]
|
414
|
+
)-> NDArray[np.int32]: ...
|
415
|
+
|
416
|
+
def CDL3BLACKCROWS(
|
417
|
+
open: NDArray[np.float64],
|
418
|
+
high: NDArray[np.float64],
|
419
|
+
low: NDArray[np.float64],
|
420
|
+
close: NDArray[np.float64]
|
421
|
+
)-> NDArray[np.int32]: ...
|
422
|
+
|
423
|
+
def CDL3INSIDE(
|
424
|
+
open: NDArray[np.float64],
|
425
|
+
high: NDArray[np.float64],
|
426
|
+
low: NDArray[np.float64],
|
427
|
+
close: NDArray[np.float64]
|
428
|
+
)-> NDArray[np.int32]: ...
|
429
|
+
|
430
|
+
def CDL3LINESTRIKE(
|
431
|
+
open: NDArray[np.float64],
|
432
|
+
high: NDArray[np.float64],
|
433
|
+
low: NDArray[np.float64],
|
434
|
+
close: NDArray[np.float64]
|
435
|
+
)-> NDArray[np.int32]: ...
|
436
|
+
|
437
|
+
def CDL3OUTSIDE(
|
438
|
+
open: NDArray[np.float64],
|
439
|
+
high: NDArray[np.float64],
|
440
|
+
low: NDArray[np.float64],
|
441
|
+
close: NDArray[np.float64]
|
442
|
+
)-> NDArray[np.int32]: ...
|
443
|
+
|
444
|
+
def CDL3STARSINSOUTH(
|
445
|
+
open: NDArray[np.float64],
|
446
|
+
high: NDArray[np.float64],
|
447
|
+
low: NDArray[np.float64],
|
448
|
+
close: NDArray[np.float64]
|
449
|
+
)-> NDArray[np.int32]: ...
|
450
|
+
|
451
|
+
def CDL3WHITESOLDIERS(
|
452
|
+
open: NDArray[np.float64],
|
453
|
+
high: NDArray[np.float64],
|
454
|
+
low: NDArray[np.float64],
|
455
|
+
close: NDArray[np.float64]
|
456
|
+
)-> NDArray[np.int32]: ...
|
457
|
+
|
458
|
+
def CDLABANDONEDBABY(
|
459
|
+
open: NDArray[np.float64],
|
460
|
+
high: NDArray[np.float64],
|
461
|
+
low: NDArray[np.float64],
|
462
|
+
close: NDArray[np.float64],
|
463
|
+
penetration: float= 0
|
464
|
+
)-> NDArray[np.int32]: ...
|
465
|
+
|
466
|
+
def CDLADVANCEBLOCK(
|
467
|
+
open: NDArray[np.float64],
|
468
|
+
high: NDArray[np.float64],
|
469
|
+
low: NDArray[np.float64],
|
470
|
+
close: NDArray[np.float64]
|
471
|
+
)-> NDArray[np.int32]: ...
|
472
|
+
|
473
|
+
def CDLBELTHOLD(
|
474
|
+
open: NDArray[np.float64],
|
475
|
+
high: NDArray[np.float64],
|
476
|
+
low: NDArray[np.float64],
|
477
|
+
close: NDArray[np.float64]
|
478
|
+
)-> NDArray[np.int32]: ...
|
479
|
+
|
480
|
+
def CDLBREAKAWAY(
|
481
|
+
open: NDArray[np.float64],
|
482
|
+
high: NDArray[np.float64],
|
483
|
+
low: NDArray[np.float64],
|
484
|
+
close: NDArray[np.float64]
|
485
|
+
)-> NDArray[np.int32]: ...
|
486
|
+
|
487
|
+
def CDLCLOSINGMARUBOZU(
|
488
|
+
open: NDArray[np.float64],
|
489
|
+
high: NDArray[np.float64],
|
490
|
+
low: NDArray[np.float64],
|
491
|
+
close: NDArray[np.float64]
|
492
|
+
)-> NDArray[np.int32]: ...
|
493
|
+
|
494
|
+
def CDLCONCEALBABYSWALL(
|
495
|
+
open: NDArray[np.float64],
|
496
|
+
high: NDArray[np.float64],
|
497
|
+
low: NDArray[np.float64],
|
498
|
+
close: NDArray[np.float64]
|
499
|
+
)-> NDArray[np.int32]: ...
|
500
|
+
|
501
|
+
def CDLCOUNTERATTACK(
|
502
|
+
open: NDArray[np.float64],
|
503
|
+
high: NDArray[np.float64],
|
504
|
+
low: NDArray[np.float64],
|
505
|
+
close: NDArray[np.float64]
|
506
|
+
)-> NDArray[np.int32]: ...
|
507
|
+
|
508
|
+
def CDLDARKCLOUDCOVER(
|
509
|
+
open: NDArray[np.float64],
|
510
|
+
high: NDArray[np.float64],
|
511
|
+
low: NDArray[np.float64],
|
512
|
+
close: NDArray[np.float64],
|
513
|
+
penetration: float= 0
|
514
|
+
)-> NDArray[np.int32]: ...
|
515
|
+
|
516
|
+
def CDLDOJI(
|
517
|
+
open: NDArray[np.float64],
|
518
|
+
high: NDArray[np.float64],
|
519
|
+
low: NDArray[np.float64],
|
520
|
+
close: NDArray[np.float64]
|
521
|
+
)-> NDArray[np.int32]: ...
|
522
|
+
|
523
|
+
def CDLDOJISTAR(
|
524
|
+
open: NDArray[np.float64],
|
525
|
+
high: NDArray[np.float64],
|
526
|
+
low: NDArray[np.float64],
|
527
|
+
close: NDArray[np.float64]
|
528
|
+
)-> NDArray[np.int32]: ...
|
529
|
+
|
530
|
+
def CDLDRAGONFLYDOJI(
|
531
|
+
open: NDArray[np.float64],
|
532
|
+
high: NDArray[np.float64],
|
533
|
+
low: NDArray[np.float64],
|
534
|
+
close: NDArray[np.float64]
|
535
|
+
)-> NDArray[np.int32]: ...
|
536
|
+
|
537
|
+
def CDLENGULFING(
|
538
|
+
open: NDArray[np.float64],
|
539
|
+
high: NDArray[np.float64],
|
540
|
+
low: NDArray[np.float64],
|
541
|
+
close: NDArray[np.float64]
|
542
|
+
)-> NDArray[np.int32]: ...
|
543
|
+
|
544
|
+
def CDLEVENINGDOJISTAR(
|
545
|
+
open: NDArray[np.float64],
|
546
|
+
high: NDArray[np.float64],
|
547
|
+
low: NDArray[np.float64],
|
548
|
+
close: NDArray[np.float64],
|
549
|
+
penetration: float= 0
|
550
|
+
)-> NDArray[np.int32]: ...
|
551
|
+
|
552
|
+
def CDLEVENINGSTAR(
|
553
|
+
open: NDArray[np.float64],
|
554
|
+
high: NDArray[np.float64],
|
555
|
+
low: NDArray[np.float64],
|
556
|
+
close: NDArray[np.float64],
|
557
|
+
penetration: float= 0
|
558
|
+
)-> NDArray[np.int32]: ...
|
559
|
+
|
560
|
+
def CDLGAPSIDESIDEWHITE(
|
561
|
+
open: NDArray[np.float64],
|
562
|
+
high: NDArray[np.float64],
|
563
|
+
low: NDArray[np.float64],
|
564
|
+
close: NDArray[np.float64]
|
565
|
+
)-> NDArray[np.int32]: ...
|
566
|
+
|
567
|
+
def CDLGRAVESTONEDOJI(
|
568
|
+
open: NDArray[np.float64],
|
569
|
+
high: NDArray[np.float64],
|
570
|
+
low: NDArray[np.float64],
|
571
|
+
close: NDArray[np.float64]
|
572
|
+
)-> NDArray[np.int32]: ...
|
573
|
+
|
574
|
+
def CDLHAMMER(
|
575
|
+
open: NDArray[np.float64],
|
576
|
+
high: NDArray[np.float64],
|
577
|
+
low: NDArray[np.float64],
|
578
|
+
close: NDArray[np.float64]
|
579
|
+
)-> NDArray[np.int32]: ...
|
580
|
+
|
581
|
+
def CDLHANGINGMAN(
|
582
|
+
open: NDArray[np.float64],
|
583
|
+
high: NDArray[np.float64],
|
584
|
+
low: NDArray[np.float64],
|
585
|
+
close: NDArray[np.float64]
|
586
|
+
)-> NDArray[np.int32]: ...
|
587
|
+
|
588
|
+
def CDLHARAMI(
|
589
|
+
open: NDArray[np.float64],
|
590
|
+
high: NDArray[np.float64],
|
591
|
+
low: NDArray[np.float64],
|
592
|
+
close: NDArray[np.float64]
|
593
|
+
)-> NDArray[np.int32]: ...
|
594
|
+
|
595
|
+
def CDLHARAMICROSS(
|
596
|
+
open: NDArray[np.float64],
|
597
|
+
high: NDArray[np.float64],
|
598
|
+
low: NDArray[np.float64],
|
599
|
+
close: NDArray[np.float64]
|
600
|
+
)-> NDArray[np.int32]: ...
|
601
|
+
|
602
|
+
def CDLHIGHWAVE(
|
603
|
+
open: NDArray[np.float64],
|
604
|
+
high: NDArray[np.float64],
|
605
|
+
low: NDArray[np.float64],
|
606
|
+
close: NDArray[np.float64]
|
607
|
+
)-> NDArray[np.int32]: ...
|
608
|
+
|
609
|
+
def CDLHIKKAKE(
|
610
|
+
open: NDArray[np.float64],
|
611
|
+
high: NDArray[np.float64],
|
612
|
+
low: NDArray[np.float64],
|
613
|
+
close: NDArray[np.float64]
|
614
|
+
)-> NDArray[np.int32]: ...
|
615
|
+
|
616
|
+
def CDLHIKKAKEMOD(
|
617
|
+
open: NDArray[np.float64],
|
618
|
+
high: NDArray[np.float64],
|
619
|
+
low: NDArray[np.float64],
|
620
|
+
close: NDArray[np.float64]
|
621
|
+
)-> NDArray[np.int32]: ...
|
622
|
+
|
623
|
+
def CDLHOMINGPIGEON(
|
624
|
+
open: NDArray[np.float64],
|
625
|
+
high: NDArray[np.float64],
|
626
|
+
low: NDArray[np.float64],
|
627
|
+
close: NDArray[np.float64]
|
628
|
+
)-> NDArray[np.int32]: ...
|
629
|
+
|
630
|
+
def CDLIDENTICAL3CROWS(
|
631
|
+
open: NDArray[np.float64],
|
632
|
+
high: NDArray[np.float64],
|
633
|
+
low: NDArray[np.float64],
|
634
|
+
close: NDArray[np.float64]
|
635
|
+
)-> NDArray[np.int32]: ...
|
636
|
+
|
637
|
+
def CDLINNECK(
|
638
|
+
open: NDArray[np.float64],
|
639
|
+
high: NDArray[np.float64],
|
640
|
+
low: NDArray[np.float64],
|
641
|
+
close: NDArray[np.float64]
|
642
|
+
)-> NDArray[np.int32]: ...
|
643
|
+
|
644
|
+
def CDLINVERTEDHAMMER(
|
645
|
+
open: NDArray[np.float64],
|
646
|
+
high: NDArray[np.float64],
|
647
|
+
low: NDArray[np.float64],
|
648
|
+
close: NDArray[np.float64]
|
649
|
+
)-> NDArray[np.int32]: ...
|
650
|
+
|
651
|
+
def CDLKICKING(
|
652
|
+
open: NDArray[np.float64],
|
653
|
+
high: NDArray[np.float64],
|
654
|
+
low: NDArray[np.float64],
|
655
|
+
close: NDArray[np.float64]
|
656
|
+
)-> NDArray[np.int32]: ...
|
657
|
+
|
658
|
+
def CDLKICKINGBYLENGTH(
|
659
|
+
open: NDArray[np.float64],
|
660
|
+
high: NDArray[np.float64],
|
661
|
+
low: NDArray[np.float64],
|
662
|
+
close: NDArray[np.float64]
|
663
|
+
)-> NDArray[np.int32]: ...
|
664
|
+
|
665
|
+
def CDLLADDERBOTTOM(
|
666
|
+
open: NDArray[np.float64],
|
667
|
+
high: NDArray[np.float64],
|
668
|
+
low: NDArray[np.float64],
|
669
|
+
close: NDArray[np.float64]
|
670
|
+
)-> NDArray[np.int32]: ...
|
671
|
+
|
672
|
+
def CDLLONGLEGGEDDOJI(
|
673
|
+
open: NDArray[np.float64],
|
674
|
+
high: NDArray[np.float64],
|
675
|
+
low: NDArray[np.float64],
|
676
|
+
close: NDArray[np.float64]
|
677
|
+
)-> NDArray[np.int32]: ...
|
678
|
+
|
679
|
+
def CDLLONGLINE(
|
680
|
+
open: NDArray[np.float64],
|
681
|
+
high: NDArray[np.float64],
|
682
|
+
low: NDArray[np.float64],
|
683
|
+
close: NDArray[np.float64]
|
684
|
+
)-> NDArray[np.int32]: ...
|
685
|
+
|
686
|
+
def CDLMARUBOZU(
|
687
|
+
open: NDArray[np.float64],
|
688
|
+
high: NDArray[np.float64],
|
689
|
+
low: NDArray[np.float64],
|
690
|
+
close: NDArray[np.float64]
|
691
|
+
)-> NDArray[np.int32]: ...
|
692
|
+
|
693
|
+
def CDLMATCHINGLOW(
|
694
|
+
open: NDArray[np.float64],
|
695
|
+
high: NDArray[np.float64],
|
696
|
+
low: NDArray[np.float64],
|
697
|
+
close: NDArray[np.float64]
|
698
|
+
)-> NDArray[np.int32]: ...
|
699
|
+
|
700
|
+
def CDLMATHOLD(
|
701
|
+
open: NDArray[np.float64],
|
702
|
+
high: NDArray[np.float64],
|
703
|
+
low: NDArray[np.float64],
|
704
|
+
close: NDArray[np.float64],
|
705
|
+
penetration: float= 0
|
706
|
+
)-> NDArray[np.int32]: ...
|
707
|
+
|
708
|
+
def CDLMORNINGDOJISTAR(
|
709
|
+
open: NDArray[np.float64],
|
710
|
+
high: NDArray[np.float64],
|
711
|
+
low: NDArray[np.float64],
|
712
|
+
close: NDArray[np.float64],
|
713
|
+
penetration: float= 0
|
714
|
+
)-> NDArray[np.int32]: ...
|
715
|
+
|
716
|
+
def CDLMORNINGSTAR(
|
717
|
+
open: NDArray[np.float64],
|
718
|
+
high: NDArray[np.float64],
|
719
|
+
low: NDArray[np.float64],
|
720
|
+
close: NDArray[np.float64],
|
721
|
+
penetration: float= 0
|
722
|
+
)-> NDArray[np.int32]: ...
|
723
|
+
|
724
|
+
def CDLONNECK(
|
725
|
+
open: NDArray[np.float64],
|
726
|
+
high: NDArray[np.float64],
|
727
|
+
low: NDArray[np.float64],
|
728
|
+
close: NDArray[np.float64]
|
729
|
+
)-> NDArray[np.int32]: ...
|
730
|
+
|
731
|
+
def CDLPIERCING(
|
732
|
+
open: NDArray[np.float64],
|
733
|
+
high: NDArray[np.float64],
|
734
|
+
low: NDArray[np.float64],
|
735
|
+
close: NDArray[np.float64]
|
736
|
+
)-> NDArray[np.int32]: ...
|
737
|
+
|
738
|
+
def CDLRICKSHAWMAN(
|
739
|
+
open: NDArray[np.float64],
|
740
|
+
high: NDArray[np.float64],
|
741
|
+
low: NDArray[np.float64],
|
742
|
+
close: NDArray[np.float64]
|
743
|
+
)-> NDArray[np.int32]: ...
|
744
|
+
|
745
|
+
def CDLRISEFALL3METHODS(
|
746
|
+
open: NDArray[np.float64],
|
747
|
+
high: NDArray[np.float64],
|
748
|
+
low: NDArray[np.float64],
|
749
|
+
close: NDArray[np.float64]
|
750
|
+
)-> NDArray[np.int32]: ...
|
751
|
+
|
752
|
+
def CDLSEPARATINGLINES(
|
753
|
+
open: NDArray[np.float64],
|
754
|
+
high: NDArray[np.float64],
|
755
|
+
low: NDArray[np.float64],
|
756
|
+
close: NDArray[np.float64]
|
757
|
+
)-> NDArray[np.int32]: ...
|
758
|
+
|
759
|
+
def CDLSHOOTINGSTAR(
|
760
|
+
open: NDArray[np.float64],
|
761
|
+
high: NDArray[np.float64],
|
762
|
+
low: NDArray[np.float64],
|
763
|
+
close: NDArray[np.float64]
|
764
|
+
)-> NDArray[np.int32]: ...
|
765
|
+
|
766
|
+
def CDLSHORTLINE(
|
767
|
+
open: NDArray[np.float64],
|
768
|
+
high: NDArray[np.float64],
|
769
|
+
low: NDArray[np.float64],
|
770
|
+
close: NDArray[np.float64]
|
771
|
+
)-> NDArray[np.int32]: ...
|
772
|
+
|
773
|
+
def CDLSPINNINGTOP(
|
774
|
+
open: NDArray[np.float64],
|
775
|
+
high: NDArray[np.float64],
|
776
|
+
low: NDArray[np.float64],
|
777
|
+
close: NDArray[np.float64]
|
778
|
+
)-> NDArray[np.int32]: ...
|
779
|
+
|
780
|
+
def CDLSTALLEDPATTERN(
|
781
|
+
open: NDArray[np.float64],
|
782
|
+
high: NDArray[np.float64],
|
783
|
+
low: NDArray[np.float64],
|
784
|
+
close: NDArray[np.float64]
|
785
|
+
)-> NDArray[np.int32]: ...
|
786
|
+
|
787
|
+
def CDLSTICKSANDWICH(
|
788
|
+
open: NDArray[np.float64],
|
789
|
+
high: NDArray[np.float64],
|
790
|
+
low: NDArray[np.float64],
|
791
|
+
close: NDArray[np.float64]
|
792
|
+
)-> NDArray[np.int32]: ...
|
793
|
+
|
794
|
+
def CDLTAKURI(
|
795
|
+
open: NDArray[np.float64],
|
796
|
+
high: NDArray[np.float64],
|
797
|
+
low: NDArray[np.float64],
|
798
|
+
close: NDArray[np.float64]
|
799
|
+
)-> NDArray[np.int32]: ...
|
800
|
+
|
801
|
+
def CDLTASUKIGAP(
|
802
|
+
open: NDArray[np.float64],
|
803
|
+
high: NDArray[np.float64],
|
804
|
+
low: NDArray[np.float64],
|
805
|
+
close: NDArray[np.float64]
|
806
|
+
)-> NDArray[np.int32]: ...
|
807
|
+
|
808
|
+
def CDLTHRUSTING(
|
809
|
+
open: NDArray[np.float64],
|
810
|
+
high: NDArray[np.float64],
|
811
|
+
low: NDArray[np.float64],
|
812
|
+
close: NDArray[np.float64]
|
813
|
+
)-> NDArray[np.int32]: ...
|
814
|
+
|
815
|
+
def CDLTRISTAR(
|
816
|
+
open: NDArray[np.float64],
|
817
|
+
high: NDArray[np.float64],
|
818
|
+
low: NDArray[np.float64],
|
819
|
+
close: NDArray[np.float64]
|
820
|
+
)-> NDArray[np.int32]: ...
|
821
|
+
|
822
|
+
def CDLUNIQUE3RIVER(
|
823
|
+
open: NDArray[np.float64],
|
824
|
+
high: NDArray[np.float64],
|
825
|
+
low: NDArray[np.float64],
|
826
|
+
close: NDArray[np.float64]
|
827
|
+
)-> NDArray[np.int32]: ...
|
828
|
+
|
829
|
+
def CDLUPSIDEGAP2CROWS(
|
830
|
+
open: NDArray[np.float64],
|
831
|
+
high: NDArray[np.float64],
|
832
|
+
low: NDArray[np.float64],
|
833
|
+
close: NDArray[np.float64]
|
834
|
+
)-> NDArray[np.int32]: ...
|
835
|
+
|
836
|
+
def CDLXSIDEGAP3METHODS(
|
837
|
+
open: NDArray[np.float64],
|
838
|
+
high: NDArray[np.float64],
|
839
|
+
low: NDArray[np.float64],
|
840
|
+
close: NDArray[np.float64]
|
841
|
+
)-> NDArray[np.int32]: ...
|
842
|
+
|
843
|
+
# Statistic Functions
|
844
|
+
|
845
|
+
def BETA(
|
846
|
+
real0: NDArray[np.float64],
|
847
|
+
real1: NDArray[np.float64],
|
848
|
+
timeperiod: int= 5
|
849
|
+
)-> NDArray[np.float64]: ...
|
850
|
+
|
851
|
+
def CORREL(
|
852
|
+
real0: NDArray[np.float64],
|
853
|
+
real1: NDArray[np.float64],
|
854
|
+
timeperiod: int= 30
|
855
|
+
)-> NDArray[np.float64]: ...
|
856
|
+
|
857
|
+
def LINEARREG(
|
858
|
+
real: NDArray[np.float64],
|
859
|
+
timeperiod: int= 14
|
860
|
+
)-> NDArray[np.float64]: ...
|
861
|
+
|
862
|
+
def LINEARREG_ANGLE(
|
863
|
+
real: NDArray[np.float64],
|
864
|
+
timeperiod: int= 14
|
865
|
+
)-> NDArray[np.float64]: ...
|
866
|
+
|
867
|
+
def LINEARREG_INTERCEPT(
|
868
|
+
real: NDArray[np.float64],
|
869
|
+
timeperiod: int= 14
|
870
|
+
)-> NDArray[np.float64]: ...
|
871
|
+
|
872
|
+
def LINEARREG_SLOPE(
|
873
|
+
real: NDArray[np.float64],
|
874
|
+
timeperiod: int= 14
|
875
|
+
)-> NDArray[np.float64]: ...
|
876
|
+
|
877
|
+
def STDDEV(
|
878
|
+
real: NDArray[np.float64],
|
879
|
+
timeperiod: int= 5,
|
880
|
+
nbdev: float= 1
|
881
|
+
)-> NDArray[np.float64]: ...
|
882
|
+
|
883
|
+
def TSF(
|
884
|
+
real: NDArray[np.float64],
|
885
|
+
timeperiod: int= 14
|
886
|
+
)-> NDArray[np.float64]: ...
|
887
|
+
|
888
|
+
def VAR(
|
889
|
+
real: NDArray[np.float64],
|
890
|
+
timeperiod: int= 5,
|
891
|
+
nbdev: float= 1
|
892
|
+
)-> NDArray[np.float64]: ...
|
893
|
+
|
894
|
+
# Math Transform Functions
|
895
|
+
|
896
|
+
def ACOS(real: NDArray[np.float64])-> NDArray[np.float64]: ...
|
897
|
+
|
898
|
+
def ASIN(real: NDArray[np.float64])-> NDArray[np.float64]: ...
|
899
|
+
|
900
|
+
def ATAN(real: NDArray[np.float64])-> NDArray[np.float64]: ...
|
901
|
+
|
902
|
+
def CEIL(real: NDArray[np.float64])-> NDArray[np.float64]: ...
|
903
|
+
|
904
|
+
def COS(real: NDArray[np.float64])-> NDArray[np.float64]: ...
|
905
|
+
|
906
|
+
def COSH(real: NDArray[np.float64])-> NDArray[np.float64]: ...
|
907
|
+
|
908
|
+
def EXP(real: NDArray[np.float64])-> NDArray[np.float64]: ...
|
909
|
+
|
910
|
+
def FLOOR(real: NDArray[np.float64])-> NDArray[np.float64]: ...
|
911
|
+
|
912
|
+
def LN(real: NDArray[np.float64])-> NDArray[np.float64]: ...
|
913
|
+
|
914
|
+
def LOG10(real: NDArray[np.float64])-> NDArray[np.float64]: ...
|
915
|
+
|
916
|
+
def SIN(real: NDArray[np.float64])-> NDArray[np.float64]: ...
|
917
|
+
|
918
|
+
def SINH(real: NDArray[np.float64])-> NDArray[np.float64]: ...
|
919
|
+
|
920
|
+
def SQRT(real: NDArray[np.float64])-> NDArray[np.float64]: ...
|
921
|
+
|
922
|
+
def TAN(real: NDArray[np.float64])-> NDArray[np.float64]: ...
|
923
|
+
|
924
|
+
def TANH(real: NDArray[np.float64])-> NDArray[np.float64]: ...
|
925
|
+
|
926
|
+
#Math Operator Functions
|
927
|
+
|
928
|
+
def ADD(
|
929
|
+
real0: NDArray[np.float64],
|
930
|
+
real1: NDArray[np.float64]
|
931
|
+
)-> NDArray[np.float64]: ...
|
932
|
+
|
933
|
+
def DIV(
|
934
|
+
real0: NDArray[np.float64],
|
935
|
+
real1: NDArray[np.float64]
|
936
|
+
)-> NDArray[np.float64]: ...
|
937
|
+
|
938
|
+
def MAX(
|
939
|
+
real: NDArray[np.float64],
|
940
|
+
timeperiod: int= 30
|
941
|
+
)-> NDArray[np.float64]: ...
|
942
|
+
|
943
|
+
def MAXINDEX(
|
944
|
+
real: NDArray[np.float64],
|
945
|
+
timeperiod: int= 30
|
946
|
+
)-> NDArray[np.int32]: ...
|
947
|
+
|
948
|
+
def MIN(
|
949
|
+
real: NDArray[np.float64],
|
950
|
+
timeperiod: int= 30
|
951
|
+
)-> NDArray[np.float64]: ...
|
952
|
+
|
953
|
+
def MININDEX(
|
954
|
+
real: NDArray[np.float64],
|
955
|
+
timeperiod: int= 30
|
956
|
+
)-> NDArray[np.int32]: ...
|
957
|
+
|
958
|
+
def MINMAX(
|
959
|
+
real: NDArray[np.float64],
|
960
|
+
timeperiod: int= 30
|
961
|
+
)-> Tuple[NDArray[np.float64], NDArray[np.float64]]: ...
|
962
|
+
|
963
|
+
def MINMAXINDEX(
|
964
|
+
real: NDArray[np.float64],
|
965
|
+
timeperiod: int= 30
|
966
|
+
)-> Tuple[NDArray[np.float64], NDArray[np.float64]]: ...
|
967
|
+
|
968
|
+
def MULT(
|
969
|
+
real0: NDArray[np.float64],
|
970
|
+
real1: NDArray[np.float64]
|
971
|
+
)-> NDArray[np.float64]: ...
|
972
|
+
|
973
|
+
def SUB(
|
974
|
+
real0: NDArray[np.float64],
|
975
|
+
real1: NDArray[np.float64]
|
976
|
+
)-> NDArray[np.float64]: ...
|
977
|
+
|
978
|
+
def SUM(
|
979
|
+
real: NDArray[np.float64],
|
980
|
+
timeperiod: int= 30
|
981
|
+
)-> NDArray[np.float64]: ...
|
File without changes
|
ta_lib-0.5.1/pyproject.toml
DELETED
@@ -1,8 +0,0 @@
|
|
1
|
-
[project]
|
2
|
-
name = "ta-lib"
|
3
|
-
version = "0.5.1"
|
4
|
-
dynamic = ["authors", "classifiers", "dependencies", "description", "license", "readme"]
|
5
|
-
|
6
|
-
[build-system]
|
7
|
-
requires = ["setuptools >= 51.0.0", "wheel", "numpy"]
|
8
|
-
build-backend = "setuptools.build_meta:__legacy__"
|
@@ -1 +0,0 @@
|
|
1
|
-
numpy
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|