syd 1.0.1__tar.gz → 1.0.2__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: syd
3
- Version: 1.0.1
3
+ Version: 1.0.2
4
4
  Summary: A Python package for making GUIs for data science easy.
5
5
  Project-URL: Homepage, https://github.com/landoskape/syd
6
6
  Author-email: Andrew Landau <andrew+tyler+landau+getridofthisanddtheplusses@gmail.com>
@@ -47,7 +47,7 @@ Have you ever wanted to look through all your data really quickly interactively?
47
47
 
48
48
  Syd is a system for creating a data viewing GUI that you can view in a jupyter notebook or in a web browser. And guess what? Since it can open in a web browser, you can even open it on any other computer on your local network! For example, your PI's computer. Gone are the days of single random examples that they make infinitely stubborn conclusions about. Now, you can look at all the examples, quickly and easily, on their computer. And that's why Syd stands for share your data!
49
49
 
50
- Okay, so what is it? Syd is an automated system to convert some basic python plotting code into an interactive GUI. This means you only have to think about _**what**_ you want to plot and _**which**_ parameters you want to be interactive. Syd handles all the behind-the-scenes action required to make an interface. And guess what? That means you get to spend your time _thinking_ about your data, rather than writing code to look at it. And that's why Syd stands for Science, Yes! Dayummmm!
50
+ Okay, so what is it? Syd is an automated system to convert some basic python plotting code into an interactive GUI. This means you only have to think about what you want to _**plot**_ and which _**parameters**_ you want to be interactive. Syd handles all the behind-the-scenes action required to make an interface. And guess what? That means you get to spend your time _**thinking**_ about your data, rather than writing code to look at it. And that's why Syd stands for Science, Yes! Dayummmm!
51
51
 
52
52
  ## Installation
53
53
  It's easy, just use pip install. The dependencies are light so it should work in most environments.
@@ -59,10 +59,6 @@ pip install syd
59
59
  The full documentation is available at [shareyourdata.readthedocs.io](https://shareyourdata.readthedocs.io/). It includes a quick start guide, a comprehensive tutorial, and an API reference for the different elements of Syd. If you have any questions or want to suggest improvements to the docs, please let us know on the [github issues page](https://github.com/landoskape/syd/issues)!
60
60
 
61
61
  ## Quick Start
62
- <!-- <div style="float: right; margin-left: 100px; margin-bottom: 10px;">
63
- <img src="./docs/assets/viewer_screenshots/readme_example_gif.gif" alt="Syd" width="300" align="right"/>
64
- </div> -->
65
-
66
62
  This is an example of a sine wave viewer which is about as simple as it gets. You can choose which env to use - if you use ``env="notebook"`` then the GUI will deploy as the output of a jupyter cell (this only works in jupyter!). If you use ``env="browser"`` then the GUI will open a page in your default web browser and you can interact with the data there (works in jupyter notebooks and also from python scripts!).
67
63
 
68
64
  ```python
@@ -82,12 +78,13 @@ viewer.add_float("amplitude", value=1.0, min=0.1, max=2.0)
82
78
  viewer.add_float("frequency", value=1.0, min=0.1, max=5.0)
83
79
  viewer.add_selection("color", value="red", options=["red", "blue", "green", "black"])
84
80
 
85
- # env = "browser" # for viewing in a web browser (accessible via an IP address)
81
+ # env = "browser" # for viewing in a web browser
86
82
  env = "notebook" # for viewing within a jupyter notebook
87
- viewer = viewer.deploy(env=env)
83
+ viewer.show()
88
84
  ```
89
85
 
90
86
  ![Quick Start Viewer](./docs/assets/viewer_screenshots/readme_example_gif.gif)
87
+
91
88
  ### More Examples
92
89
  We have several examples of more complex viewers with detailed explanations in the comments. Here are the links and descriptions to each of them:
93
90
 
@@ -101,7 +98,7 @@ We have several examples of more complex viewers with detailed explanations in t
101
98
 
102
99
 
103
100
  ### Data loading
104
- Thinking about how to get data into a Syd viewer can be non-intuitive. For some examples that showcase different ways to get your data into a Syd viewer, check out the [data loading example](examples/3-data_loading.ipynb). Or, if you just want a quick example, check this out:
101
+ Thinking about how to get data into a Syd viewer can be non-intuitive. For some examples that showcase different ways to get your data into a Syd viewer, check out the [data loading example](examples/3-data_loading.ipynb). Or, if you just want a quick and fast example, check this one out:
105
102
  ```python
106
103
  import numpy as np
107
104
  from matplotlib import pyplot as plt
@@ -122,15 +119,15 @@ def plot(state):
122
119
  # Since plot "knows" about the data variable, all you need to do is pass the plot
123
120
  # function to the syd viewer and it'll be able to access the data once deployed!
124
121
  viewer = make_viewer(plot)
125
- viewer.deploy(env="browser")
122
+ viewer.show()
126
123
  ```
127
124
 
128
125
  ### Handling Hierarchical Callbacks
129
- Syd dramatically reduces the amount of work you need to do to build a GUI for viewing your data. However, it can still be a bit complicated to think about callbacks. Below is a quick demonstration, to try it yourself, check out the full example [here](examples/4-hierarchical_callbacks.ipynb).
126
+ Syd dramatically reduces the amount of work you need to do to build a GUI for viewing your data. However, it can still be a bit complicated to think about callbacks. Below is a quick demonstration. To try it yourself, check out the full example [here](examples/4-hierarchical_callbacks.ipynb) or open it in colab [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/landoskape/syd/blob/main/examples/4-hierarchical_callbacks.ipynb).
130
127
 
131
- For example, suppose your dataset is composed of electrophysiology recordings from 3 mice, where each mouse has a different number of sesssions, and each session has a different number of neurons. You want to build a viewer to choose the mouse, then choose the session, and then view a particular neuron from within that session. But the viewer will break if you try to index to session 5 for mouse 2 but mouse 2 only has 4 sessions!
128
+ For example, suppose your dataset is composed of electrophysiology recordings from 3 mice, where each mouse has a different number of sesssions, and each session has a different number of neurons. You want to build a viewer to view a particular neuron from a particular session from a particular mouse. But the viewer will break if you try to index to session 5 for mouse 2 when mouse 2 has less than 5 sessions!
132
129
 
133
- This is where hierarchical callbacks come in. There's a straightforward pattern to handling this kind of situation that you can follow. You can write a callback for each **level** of the hierarchy. Then, each callback can call the next callback in the hierarchy. It looks like this:
130
+ This is where hierarchical callbacks come in. There's a straightforward pattern to handling this kind of situation that you can follow. You can write a callback for each **level** of the hierarchy. Then, each callback can **update** the state and call the next callback in the hierarchy once it's finished. It looks like this:
134
131
  ```python
135
132
  import numpy as np
136
133
  from syd import Viewer # Much easier to build a Viewer class for hierarchical callbacks
@@ -141,19 +138,22 @@ class MouseViewer(Viewer):
141
138
 
142
139
  self.add_selection("mouse", options=list(mice_names))
143
140
 
144
- # We don't know how many sessions or neurons to pick from yet!
141
+ # We don't know how many sessions or neurons to pick from yet,
142
+ # so just set the max to 1 for now.
145
143
  self.add_integer("session", min=0, max=1)
146
144
  self.add_integer("neuron", min=0, max=1)
147
145
 
148
- # Any time the mouse changes, update the sessions to pick from
146
+ # Any time the mouse changes, update the sessions to pick from!
149
147
  self.on_change("mouse", self.update_mouse)
150
148
 
151
- # Any time the session changes, update the neurons to pick from
149
+ # Any time the session changes, update the neurons to pick from!
152
150
  self.on_change("session", self.update_session)
153
151
 
154
152
  # Since we built callbacks for setting the range of the session
155
- # and neuron parameters, we can use them here!
156
- # To get the state, we can use self.state, which is the current
153
+ # and neuron parameters, we can use them here so the viewer is
154
+ # fully ready and up to date.
155
+
156
+ # To get the state, use self.state, which is the current
157
157
  # state of the viewer (in the init function, it'll just be the
158
158
  # default value for each parameter you've added already).
159
159
  self.update_mouse(self.state)
@@ -166,9 +166,13 @@ class MouseViewer(Viewer):
166
166
  self.update_integer("session", max=num_sessions - 1)
167
167
 
168
168
  # Now we need to update the neurons to choose from ....
169
- # But! Updating the session parameter might trigger a change to the
170
- # session value. So, instead of using the state dictionary that was
171
- # passed into the function, we can get the ~NEW~ state dictionary like this:
169
+
170
+ # But! Updating the session parameter's max value might trigger a change
171
+ # to the current session value. This ~won't be reflected~ in the state
172
+ # dictionary that was passed to this function.
173
+
174
+ # So, we need to load the ~NEW~ state dictionary, which is always
175
+ # accessible as self.state (or viewer.state if you're not using a class).
172
176
  new_state = self.state
173
177
 
174
178
  # Then perform the session update callback!
@@ -189,7 +193,7 @@ class MouseViewer(Viewer):
189
193
 
190
194
  # Now we can create a viewer and deploy it
191
195
  viewer = MouseViewer(["Mouse 1", "Mouse 2", "Mouse 3"])
192
- viewer.deploy(env="browser")
196
+ viewer.show()
193
197
  ```
194
198
 
195
199
  ## License
@@ -224,5 +228,4 @@ black . # from the root directory of the repo
224
228
  - [ ] Consider "app_deployed" context for each deployer...
225
229
  - Export options:
226
230
  - [ ] Export lite: export the viewer as a HTML/Java package that contains an incomplete set of renderings of figures -- using a certain set of parameters.
227
- - [ ] Export full: export the viewer in a way that contains the data to give full functionality.
228
- - [ ] Keep deploy() for backwards compatibility, but deprecate it in favor of show() and share() (for notebook and browser, respectively)
231
+ - [ ] Export full: export the viewer in a way that contains the data to give full functionality.
@@ -17,7 +17,7 @@ Have you ever wanted to look through all your data really quickly interactively?
17
17
 
18
18
  Syd is a system for creating a data viewing GUI that you can view in a jupyter notebook or in a web browser. And guess what? Since it can open in a web browser, you can even open it on any other computer on your local network! For example, your PI's computer. Gone are the days of single random examples that they make infinitely stubborn conclusions about. Now, you can look at all the examples, quickly and easily, on their computer. And that's why Syd stands for share your data!
19
19
 
20
- Okay, so what is it? Syd is an automated system to convert some basic python plotting code into an interactive GUI. This means you only have to think about _**what**_ you want to plot and _**which**_ parameters you want to be interactive. Syd handles all the behind-the-scenes action required to make an interface. And guess what? That means you get to spend your time _thinking_ about your data, rather than writing code to look at it. And that's why Syd stands for Science, Yes! Dayummmm!
20
+ Okay, so what is it? Syd is an automated system to convert some basic python plotting code into an interactive GUI. This means you only have to think about what you want to _**plot**_ and which _**parameters**_ you want to be interactive. Syd handles all the behind-the-scenes action required to make an interface. And guess what? That means you get to spend your time _**thinking**_ about your data, rather than writing code to look at it. And that's why Syd stands for Science, Yes! Dayummmm!
21
21
 
22
22
  ## Installation
23
23
  It's easy, just use pip install. The dependencies are light so it should work in most environments.
@@ -29,10 +29,6 @@ pip install syd
29
29
  The full documentation is available at [shareyourdata.readthedocs.io](https://shareyourdata.readthedocs.io/). It includes a quick start guide, a comprehensive tutorial, and an API reference for the different elements of Syd. If you have any questions or want to suggest improvements to the docs, please let us know on the [github issues page](https://github.com/landoskape/syd/issues)!
30
30
 
31
31
  ## Quick Start
32
- <!-- <div style="float: right; margin-left: 100px; margin-bottom: 10px;">
33
- <img src="./docs/assets/viewer_screenshots/readme_example_gif.gif" alt="Syd" width="300" align="right"/>
34
- </div> -->
35
-
36
32
  This is an example of a sine wave viewer which is about as simple as it gets. You can choose which env to use - if you use ``env="notebook"`` then the GUI will deploy as the output of a jupyter cell (this only works in jupyter!). If you use ``env="browser"`` then the GUI will open a page in your default web browser and you can interact with the data there (works in jupyter notebooks and also from python scripts!).
37
33
 
38
34
  ```python
@@ -52,12 +48,13 @@ viewer.add_float("amplitude", value=1.0, min=0.1, max=2.0)
52
48
  viewer.add_float("frequency", value=1.0, min=0.1, max=5.0)
53
49
  viewer.add_selection("color", value="red", options=["red", "blue", "green", "black"])
54
50
 
55
- # env = "browser" # for viewing in a web browser (accessible via an IP address)
51
+ # env = "browser" # for viewing in a web browser
56
52
  env = "notebook" # for viewing within a jupyter notebook
57
- viewer = viewer.deploy(env=env)
53
+ viewer.show()
58
54
  ```
59
55
 
60
56
  ![Quick Start Viewer](./docs/assets/viewer_screenshots/readme_example_gif.gif)
57
+
61
58
  ### More Examples
62
59
  We have several examples of more complex viewers with detailed explanations in the comments. Here are the links and descriptions to each of them:
63
60
 
@@ -71,7 +68,7 @@ We have several examples of more complex viewers with detailed explanations in t
71
68
 
72
69
 
73
70
  ### Data loading
74
- Thinking about how to get data into a Syd viewer can be non-intuitive. For some examples that showcase different ways to get your data into a Syd viewer, check out the [data loading example](examples/3-data_loading.ipynb). Or, if you just want a quick example, check this out:
71
+ Thinking about how to get data into a Syd viewer can be non-intuitive. For some examples that showcase different ways to get your data into a Syd viewer, check out the [data loading example](examples/3-data_loading.ipynb). Or, if you just want a quick and fast example, check this one out:
75
72
  ```python
76
73
  import numpy as np
77
74
  from matplotlib import pyplot as plt
@@ -92,15 +89,15 @@ def plot(state):
92
89
  # Since plot "knows" about the data variable, all you need to do is pass the plot
93
90
  # function to the syd viewer and it'll be able to access the data once deployed!
94
91
  viewer = make_viewer(plot)
95
- viewer.deploy(env="browser")
92
+ viewer.show()
96
93
  ```
97
94
 
98
95
  ### Handling Hierarchical Callbacks
99
- Syd dramatically reduces the amount of work you need to do to build a GUI for viewing your data. However, it can still be a bit complicated to think about callbacks. Below is a quick demonstration, to try it yourself, check out the full example [here](examples/4-hierarchical_callbacks.ipynb).
96
+ Syd dramatically reduces the amount of work you need to do to build a GUI for viewing your data. However, it can still be a bit complicated to think about callbacks. Below is a quick demonstration. To try it yourself, check out the full example [here](examples/4-hierarchical_callbacks.ipynb) or open it in colab [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/landoskape/syd/blob/main/examples/4-hierarchical_callbacks.ipynb).
100
97
 
101
- For example, suppose your dataset is composed of electrophysiology recordings from 3 mice, where each mouse has a different number of sesssions, and each session has a different number of neurons. You want to build a viewer to choose the mouse, then choose the session, and then view a particular neuron from within that session. But the viewer will break if you try to index to session 5 for mouse 2 but mouse 2 only has 4 sessions!
98
+ For example, suppose your dataset is composed of electrophysiology recordings from 3 mice, where each mouse has a different number of sesssions, and each session has a different number of neurons. You want to build a viewer to view a particular neuron from a particular session from a particular mouse. But the viewer will break if you try to index to session 5 for mouse 2 when mouse 2 has less than 5 sessions!
102
99
 
103
- This is where hierarchical callbacks come in. There's a straightforward pattern to handling this kind of situation that you can follow. You can write a callback for each **level** of the hierarchy. Then, each callback can call the next callback in the hierarchy. It looks like this:
100
+ This is where hierarchical callbacks come in. There's a straightforward pattern to handling this kind of situation that you can follow. You can write a callback for each **level** of the hierarchy. Then, each callback can **update** the state and call the next callback in the hierarchy once it's finished. It looks like this:
104
101
  ```python
105
102
  import numpy as np
106
103
  from syd import Viewer # Much easier to build a Viewer class for hierarchical callbacks
@@ -111,19 +108,22 @@ class MouseViewer(Viewer):
111
108
 
112
109
  self.add_selection("mouse", options=list(mice_names))
113
110
 
114
- # We don't know how many sessions or neurons to pick from yet!
111
+ # We don't know how many sessions or neurons to pick from yet,
112
+ # so just set the max to 1 for now.
115
113
  self.add_integer("session", min=0, max=1)
116
114
  self.add_integer("neuron", min=0, max=1)
117
115
 
118
- # Any time the mouse changes, update the sessions to pick from
116
+ # Any time the mouse changes, update the sessions to pick from!
119
117
  self.on_change("mouse", self.update_mouse)
120
118
 
121
- # Any time the session changes, update the neurons to pick from
119
+ # Any time the session changes, update the neurons to pick from!
122
120
  self.on_change("session", self.update_session)
123
121
 
124
122
  # Since we built callbacks for setting the range of the session
125
- # and neuron parameters, we can use them here!
126
- # To get the state, we can use self.state, which is the current
123
+ # and neuron parameters, we can use them here so the viewer is
124
+ # fully ready and up to date.
125
+
126
+ # To get the state, use self.state, which is the current
127
127
  # state of the viewer (in the init function, it'll just be the
128
128
  # default value for each parameter you've added already).
129
129
  self.update_mouse(self.state)
@@ -136,9 +136,13 @@ class MouseViewer(Viewer):
136
136
  self.update_integer("session", max=num_sessions - 1)
137
137
 
138
138
  # Now we need to update the neurons to choose from ....
139
- # But! Updating the session parameter might trigger a change to the
140
- # session value. So, instead of using the state dictionary that was
141
- # passed into the function, we can get the ~NEW~ state dictionary like this:
139
+
140
+ # But! Updating the session parameter's max value might trigger a change
141
+ # to the current session value. This ~won't be reflected~ in the state
142
+ # dictionary that was passed to this function.
143
+
144
+ # So, we need to load the ~NEW~ state dictionary, which is always
145
+ # accessible as self.state (or viewer.state if you're not using a class).
142
146
  new_state = self.state
143
147
 
144
148
  # Then perform the session update callback!
@@ -159,7 +163,7 @@ class MouseViewer(Viewer):
159
163
 
160
164
  # Now we can create a viewer and deploy it
161
165
  viewer = MouseViewer(["Mouse 1", "Mouse 2", "Mouse 3"])
162
- viewer.deploy(env="browser")
166
+ viewer.show()
163
167
  ```
164
168
 
165
169
  ## License
@@ -194,5 +198,4 @@ black . # from the root directory of the repo
194
198
  - [ ] Consider "app_deployed" context for each deployer...
195
199
  - Export options:
196
200
  - [ ] Export lite: export the viewer as a HTML/Java package that contains an incomplete set of renderings of figures -- using a certain set of parameters.
197
- - [ ] Export full: export the viewer in a way that contains the data to give full functionality.
198
- - [ ] Keep deploy() for backwards compatibility, but deprecate it in favor of show() and share() (for notebook and browser, respectively)
201
+ - [ ] Export full: export the viewer in a way that contains the data to give full functionality.
@@ -1,7 +1,7 @@
1
1
  from typing import Callable, Optional
2
2
  from .viewer import Viewer
3
3
 
4
- __version__ = "1.0.1"
4
+ __version__ = "1.0.2"
5
5
 
6
6
 
7
7
  def make_viewer(plot_func: Optional[Callable] = None):
@@ -1,4 +1,4 @@
1
- from typing import List, Any, Callable, Dict, Tuple, Union, Optional
1
+ from typing import List, Any, Callable, Dict, Tuple, Union, Optional, Literal
2
2
  from functools import wraps, partial
3
3
  import inspect
4
4
  from contextlib import contextmanager
@@ -212,6 +212,54 @@ class Viewer:
212
212
  """Set the plot method for the viewer"""
213
213
  self.plot = self._prepare_function(func, context="Setting plot:")
214
214
 
215
+ def show(
216
+ self,
217
+ controls_position: Literal["left", "top", "right", "bottom"] = "left",
218
+ controls_width_percent: int = 20,
219
+ continuous: bool = False,
220
+ suppress_warnings: bool = True,
221
+ update_threshold: float = 1.0,
222
+ ):
223
+ """Show the viewer in a notebook
224
+
225
+ Same as deploy(env="notebook") except it doesn't return the viewer object.
226
+ """
227
+ _ = self.deploy(
228
+ env="notebook",
229
+ controls_position=controls_position,
230
+ controls_width_percent=controls_width_percent,
231
+ continuous=continuous,
232
+ suppress_warnings=suppress_warnings,
233
+ update_threshold=update_threshold,
234
+ )
235
+
236
+ def share(
237
+ self,
238
+ controls_position: str = "left",
239
+ fig_dpi: int = 300,
240
+ controls_width_percent: int = 20,
241
+ suppress_warnings: bool = True,
242
+ debug: bool = False,
243
+ host: str = "127.0.0.1",
244
+ port: Optional[int] = None,
245
+ open_browser: bool = True,
246
+ ):
247
+ """Share the viewer on a web browser using Flask
248
+
249
+ Same as deploy(env="browser") except it doesn't return the viewer object.
250
+ """
251
+ _ = self.deploy(
252
+ env="browser",
253
+ controls_position=controls_position,
254
+ fig_dpi=fig_dpi,
255
+ controls_width_percent=controls_width_percent,
256
+ suppress_warnings=suppress_warnings,
257
+ debug=debug,
258
+ host=host,
259
+ port=port,
260
+ open_browser=open_browser,
261
+ )
262
+
215
263
  def deploy(self, env: str = "notebook", **kwargs):
216
264
  """Deploy the app in a notebook or standalone environment"""
217
265
  env = env.lower()
@@ -223,7 +271,7 @@ class Viewer:
223
271
  deployer.deploy()
224
272
  return self
225
273
 
226
- elif env == "browser" or env == "flask":
274
+ elif env == "browser":
227
275
  # On demand import because the deployers need to import the viewer
228
276
  from .flask_deployment.deployer import FlaskDeployer
229
277
 
@@ -238,7 +286,7 @@ class Viewer:
238
286
 
239
287
  else:
240
288
  raise ValueError(
241
- f"Unsupported environment: {env}, only 'notebook', 'flask'/'browser' are supported right now."
289
+ f"Unsupported environment: {env}, only 'notebook', 'browser' are supported right now."
242
290
  )
243
291
 
244
292
  @contextmanager
File without changes
File without changes
File without changes
File without changes
File without changes