sws-spark-dissemination-helper 0.0.176__tar.gz → 0.0.177__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (16) hide show
  1. {sws_spark_dissemination_helper-0.0.176 → sws_spark_dissemination_helper-0.0.177}/PKG-INFO +1 -1
  2. {sws_spark_dissemination_helper-0.0.176 → sws_spark_dissemination_helper-0.0.177}/pyproject.toml +1 -1
  3. {sws_spark_dissemination_helper-0.0.176 → sws_spark_dissemination_helper-0.0.177}/src/sws_spark_dissemination_helper/SWSGoldIcebergSparkHelper.py +52 -32
  4. {sws_spark_dissemination_helper-0.0.176 → sws_spark_dissemination_helper-0.0.177}/src/sws_spark_dissemination_helper/SWSPostgresSparkReader.py +42 -0
  5. {sws_spark_dissemination_helper-0.0.176 → sws_spark_dissemination_helper-0.0.177}/src/sws_spark_dissemination_helper/constants.py +22 -3
  6. {sws_spark_dissemination_helper-0.0.176 → sws_spark_dissemination_helper-0.0.177}/.gitignore +0 -0
  7. {sws_spark_dissemination_helper-0.0.176 → sws_spark_dissemination_helper-0.0.177}/LICENSE +0 -0
  8. {sws_spark_dissemination_helper-0.0.176 → sws_spark_dissemination_helper-0.0.177}/README.md +0 -0
  9. {sws_spark_dissemination_helper-0.0.176 → sws_spark_dissemination_helper-0.0.177}/src/sws_spark_dissemination_helper/SWSBronzeIcebergSparkHelper.py +0 -0
  10. {sws_spark_dissemination_helper-0.0.176 → sws_spark_dissemination_helper-0.0.177}/src/sws_spark_dissemination_helper/SWSDatatablesExportHelper.py +0 -0
  11. {sws_spark_dissemination_helper-0.0.176 → sws_spark_dissemination_helper-0.0.177}/src/sws_spark_dissemination_helper/SWSEasyIcebergSparkHelper.py +0 -0
  12. {sws_spark_dissemination_helper-0.0.176 → sws_spark_dissemination_helper-0.0.177}/src/sws_spark_dissemination_helper/SWSSilverIcebergSparkHelper.py +0 -0
  13. {sws_spark_dissemination_helper-0.0.176 → sws_spark_dissemination_helper-0.0.177}/src/sws_spark_dissemination_helper/__init__.py +0 -0
  14. {sws_spark_dissemination_helper-0.0.176 → sws_spark_dissemination_helper-0.0.177}/src/sws_spark_dissemination_helper/utils.py +0 -0
  15. {sws_spark_dissemination_helper-0.0.176 → sws_spark_dissemination_helper-0.0.177}/tests/__init__.py +0 -0
  16. {sws_spark_dissemination_helper-0.0.176 → sws_spark_dissemination_helper-0.0.177}/tests/test.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: sws-spark-dissemination-helper
3
- Version: 0.0.176
3
+ Version: 0.0.177
4
4
  Summary: A Python helper package providing streamlined Spark functions for efficient data dissemination processes
5
5
  Project-URL: Repository, https://github.com/un-fao/fao-sws-it-python-spark-dissemination-helper
6
6
  Author-email: Daniele Mansillo <danielemansillo@gmail.com>
@@ -4,7 +4,7 @@ build-backend = "hatchling.build"
4
4
 
5
5
  [project]
6
6
  name = "sws-spark-dissemination-helper"
7
- version = "0.0.176"
7
+ version = "0.0.177"
8
8
  dependencies = [
9
9
  "annotated-types==0.7.0",
10
10
  "boto3>=1.40.0",
@@ -8,13 +8,9 @@ from pyspark.sql.functions import col, lit
8
8
  from sws_api_client import Tags
9
9
  from sws_api_client.tags import BaseDisseminatedTagTable, TableLayer, TableType
10
10
 
11
- from .constants import IcebergDatabases, IcebergTables
11
+ from .constants import IcebergDatabases, IcebergTables, DatasetDatatables
12
12
  from .SWSPostgresSparkReader import SWSPostgresSparkReader
13
- from .utils import (
14
- get_or_create_tag,
15
- save_cache_csv,
16
- upsert_disseminated_table,
17
- )
13
+ from .utils import get_or_create_tag, save_cache_csv, upsert_disseminated_table
18
14
 
19
15
 
20
16
  class SWSGoldIcebergSparkHelper:
@@ -66,6 +62,12 @@ class SWSGoldIcebergSparkHelper:
66
62
  if col_name in self.dim_columns
67
63
  }
68
64
 
65
+ self.display_decimals = (
66
+ self.sws_postgres_spark_reader.get_display_decimals_datatable(
67
+ domain_code=domain_code
68
+ )
69
+ )
70
+
69
71
  def _get_dim_time_flag_columns(self) -> Tuple[List[str], List[str], str, List[str]]:
70
72
  """Extract the dimension columns with time, without time, the time column and the flag columns names."""
71
73
  dim_columns_w_time = [
@@ -94,6 +96,50 @@ class SWSGoldIcebergSparkHelper:
94
96
  cols_to_keep_sws = cols_to_keep_sws + ["unit_of_measure_symbol"]
95
97
  return df.select(*cols_to_keep_sws)
96
98
 
99
+ def add_display_decimals(self, df: DataFrame):
100
+ col1_name, col2_name = (
101
+ self.display_decimals.select("column_1_name", "column_2_name")
102
+ .distinct()
103
+ .collect()[0]
104
+ )
105
+ if col1_name.lower() not in [column.lower() for column in df.columns()]:
106
+ raise ValueError(
107
+ f"{col1_name} is not part of the columns available for this dataset ({df.columns()})"
108
+ )
109
+ if col2_name.lower() not in [column.lower() for column in df.columns()]:
110
+ raise ValueError(
111
+ f"{col2_name} is not part of the columns available for this dataset ({df.columns()})"
112
+ )
113
+
114
+ df = (
115
+ df.alias("d")
116
+ .join(
117
+ self.display_decimals.alias("dd"),
118
+ on=(col(f"d.{col1_name}") == col("dd.column_1_value"))
119
+ & (col(f"d.{col2_name}") == col("dd.column_2_value")),
120
+ how="left",
121
+ )
122
+ .select("d.*", "dd.display_decimals")
123
+ )
124
+
125
+ df.filter(col("display_decimals").isNull()).select(
126
+ col1_name, col2_name
127
+ ).distinct()
128
+ logging.warning(
129
+ f"The following combinations of {col1_name} and {col2_name} are not available in the table {DatasetDatatables.DISPLAY_DECIMALS.name} and will be assigned to 0"
130
+ )
131
+
132
+ df = df.withColumn(
133
+ "display_decimals", F.coalesce(col("display_decimals"), lit("0"))
134
+ ).withColumn(
135
+ "value",
136
+ F.round(
137
+ col("value").cast("FLOAT"), col("display_decimals").cast("FLOAT")
138
+ ).cast("STRING"),
139
+ )
140
+
141
+ return df
142
+
97
143
  def read_bronze_data(self) -> DataFrame:
98
144
  return self.spark.read.option("tag", self.tag_name).table(
99
145
  self.iceberg_tables.BRONZE_DISS_TAG.iceberg_id
@@ -672,29 +718,3 @@ class SWSGoldIcebergSparkHelper:
672
718
  logging.debug(f"Tag with Added csv Table: {tag}")
673
719
 
674
720
  return df
675
-
676
-
677
- 1
678
- frozenset({"9", "1", "0", "4", "7", "3", "2", "6", "8", "5"})
679
- 1
680
- 1
681
- 2
682
- frozenset({"9", "1", "0", "4", "7", "3", "2", "6", "8", "5"})
683
- 2
684
- 1
685
- 1
686
- frozenset({"9", "1", "0", "4", "7", "3", "2", "6", "8", "5"})
687
- 1
688
- 1
689
- 2
690
- frozenset({"9", "1", "0", "4", "7", "3", "2", "6", "8", "5"})
691
- 2
692
- 1
693
- 1
694
- frozenset({"9", "1", "0", "4", "7", "3", "2", "6", "8", "5"})
695
- 1
696
- 1
697
- 1
698
- frozenset({"9", "1", "0", "4", "7", "3", "2", "6", "8", "5"})
699
- 1
700
- 1
@@ -497,3 +497,45 @@ class SWSPostgresSparkReader:
497
497
  "aggregation",
498
498
  ],
499
499
  )
500
+
501
+ def get_display_decimals_datatable(
502
+ self,
503
+ domain_code: str,
504
+ ) -> DataFrame:
505
+ df = self.read_pg_table(
506
+ pg_table=DatasetDatatables.DISPLAY_DECIMALS.id,
507
+ custom_schema=DatasetDatatables.DISPLAY_DECIMALS.schema,
508
+ ).filter(col("domain") == lit(domain_code))
509
+
510
+ pairs = df.select("column_1_name", "column_2_name").distinct().collect()
511
+
512
+ # If no config exists for this domain, fail early
513
+ if not pairs:
514
+ msg = (
515
+ f'No display-decimals configuration found for domain "{domain_code}". '
516
+ f'Please add an entry in table "{DatasetDatatables.DISPLAY_DECIMALS.id}".'
517
+ )
518
+ logging.error(msg)
519
+ # raise ValueError(msg)
520
+
521
+ # If more than one mapping exists, it's invalid
522
+ if len(pairs) > 1:
523
+ formatted_pairs = [(p["column_1_name"], p["column_2_name"]) for p in pairs]
524
+
525
+ msg = (
526
+ f'Invalid configuration for domain "{domain_code}". '
527
+ f"Expected exactly one (column_1_name, column_2_name) pair, but found {len(pairs)}: "
528
+ f"{formatted_pairs}. "
529
+ f'Please correct the table "{DatasetDatatables.DISPLAY_DECIMALS.id}".'
530
+ )
531
+
532
+ logging.error(
533
+ "Multiple display-decimals column pairs detected",
534
+ extra={
535
+ "domain": domain_code,
536
+ "pairs_found": formatted_pairs,
537
+ },
538
+ )
539
+ raise ValueError(msg)
540
+
541
+ return df
@@ -81,6 +81,19 @@ class DatasetDatatables:
81
81
  " method_flag",
82
82
  ],
83
83
  )
84
+ DISPLAY_DECIMALS = __SWSDatatable(
85
+ id="datatables.display_decimals",
86
+ name="Dissemination - Display Decimals",
87
+ schema=f"{DATATABLE_COLUMNS_SCHEMA}, domain STRING, column_1_name STRING, column_1_value STRING, column_2_name STRING, column_2_value STRING, display_decimals STRING",
88
+ join_columns=[
89
+ "domain",
90
+ "column_1_name",
91
+ "column_1_value",
92
+ "column_2_name",
93
+ "column_2_value",
94
+ "display_decimals",
95
+ ],
96
+ )
84
97
  # TODO Deprecate
85
98
  DISSEMINATION_ITEM_LIST_FAOSTAT = __SWSDatatable(
86
99
  id="datatables.dissemination_item_list_faostat",
@@ -254,9 +267,15 @@ class IcebergTables:
254
267
  self.__tag_name = tag_name
255
268
 
256
269
  # TODO Fix later with a more appropriate DATABASE
257
- self.DENORMALIZED_OBSERVATION = self.create_iceberg_table("BRONZE", suffix="denormalized_observation")
258
- self.DENORMALIZED_METADATA = self.create_iceberg_table("BRONZE", suffix="denormalized_metadata")
259
- self.GROUPED_METADATA = self.create_iceberg_table("BRONZE", suffix="grouped_metadata")
270
+ self.DENORMALIZED_OBSERVATION = self.create_iceberg_table(
271
+ "BRONZE", suffix="denormalized_observation"
272
+ )
273
+ self.DENORMALIZED_METADATA = self.create_iceberg_table(
274
+ "BRONZE", suffix="denormalized_metadata"
275
+ )
276
+ self.GROUPED_METADATA = self.create_iceberg_table(
277
+ "BRONZE", suffix="grouped_metadata"
278
+ )
260
279
  self.TABLE = self.create_iceberg_table("BRONZE")
261
280
  self.TABLE_FILTERED = self.create_iceberg_table("BRONZE", suffix="filtered")
262
281
  self.BRONZE = self.create_iceberg_table("BRONZE")