sudoku-smt-solvers 0.4.0__tar.gz → 1.0.0__tar.gz

Sign up to get free protection for your applications and to get access to all the features.
Files changed (37) hide show
  1. {sudoku_smt_solvers-0.4.0/sudoku_smt_solvers.egg-info → sudoku_smt_solvers-1.0.0}/PKG-INFO +2 -3
  2. {sudoku_smt_solvers-0.4.0 → sudoku_smt_solvers-1.0.0}/README.md +1 -2
  3. {sudoku_smt_solvers-0.4.0 → sudoku_smt_solvers-1.0.0}/sudoku_smt_solvers/__init__.py +1 -1
  4. {sudoku_smt_solvers-0.4.0 → sudoku_smt_solvers-1.0.0/sudoku_smt_solvers.egg-info}/PKG-INFO +2 -3
  5. {sudoku_smt_solvers-0.4.0 → sudoku_smt_solvers-1.0.0}/LICENSE +0 -0
  6. {sudoku_smt_solvers-0.4.0 → sudoku_smt_solvers-1.0.0}/pyproject.toml +0 -0
  7. {sudoku_smt_solvers-0.4.0 → sudoku_smt_solvers-1.0.0}/setup.cfg +0 -0
  8. {sudoku_smt_solvers-0.4.0 → sudoku_smt_solvers-1.0.0}/setup.py +0 -0
  9. {sudoku_smt_solvers-0.4.0 → sudoku_smt_solvers-1.0.0}/sudoku_smt_solvers/benchmarks/__init__.py +0 -0
  10. {sudoku_smt_solvers-0.4.0 → sudoku_smt_solvers-1.0.0}/sudoku_smt_solvers/benchmarks/benchmark_runner.py +0 -0
  11. {sudoku_smt_solvers-0.4.0 → sudoku_smt_solvers-1.0.0}/sudoku_smt_solvers/benchmarks/sudoku_generator/__init__.py +0 -0
  12. {sudoku_smt_solvers-0.4.0 → sudoku_smt_solvers-1.0.0}/sudoku_smt_solvers/benchmarks/sudoku_generator/dfs_solver.py +0 -0
  13. {sudoku_smt_solvers-0.4.0 → sudoku_smt_solvers-1.0.0}/sudoku_smt_solvers/benchmarks/sudoku_generator/hole_digger.py +0 -0
  14. {sudoku_smt_solvers-0.4.0 → sudoku_smt_solvers-1.0.0}/sudoku_smt_solvers/benchmarks/sudoku_generator/las_vegas.py +0 -0
  15. {sudoku_smt_solvers-0.4.0 → sudoku_smt_solvers-1.0.0}/sudoku_smt_solvers/benchmarks/sudoku_generator/sudoku_generator.py +0 -0
  16. {sudoku_smt_solvers-0.4.0 → sudoku_smt_solvers-1.0.0}/sudoku_smt_solvers/solvers/__init__.py +0 -0
  17. {sudoku_smt_solvers-0.4.0 → sudoku_smt_solvers-1.0.0}/sudoku_smt_solvers/solvers/cvc5_solver.py +0 -0
  18. {sudoku_smt_solvers-0.4.0 → sudoku_smt_solvers-1.0.0}/sudoku_smt_solvers/solvers/dpll_solver.py +0 -0
  19. {sudoku_smt_solvers-0.4.0 → sudoku_smt_solvers-1.0.0}/sudoku_smt_solvers/solvers/dpllt_solver.py +0 -0
  20. {sudoku_smt_solvers-0.4.0 → sudoku_smt_solvers-1.0.0}/sudoku_smt_solvers/solvers/utils/__init__.py +0 -0
  21. {sudoku_smt_solvers-0.4.0 → sudoku_smt_solvers-1.0.0}/sudoku_smt_solvers/solvers/utils/sudoku_error.py +0 -0
  22. {sudoku_smt_solvers-0.4.0 → sudoku_smt_solvers-1.0.0}/sudoku_smt_solvers/solvers/z3_solver.py +0 -0
  23. {sudoku_smt_solvers-0.4.0 → sudoku_smt_solvers-1.0.0}/sudoku_smt_solvers.egg-info/SOURCES.txt +0 -0
  24. {sudoku_smt_solvers-0.4.0 → sudoku_smt_solvers-1.0.0}/sudoku_smt_solvers.egg-info/dependency_links.txt +0 -0
  25. {sudoku_smt_solvers-0.4.0 → sudoku_smt_solvers-1.0.0}/sudoku_smt_solvers.egg-info/requires.txt +0 -0
  26. {sudoku_smt_solvers-0.4.0 → sudoku_smt_solvers-1.0.0}/sudoku_smt_solvers.egg-info/top_level.txt +0 -0
  27. {sudoku_smt_solvers-0.4.0 → sudoku_smt_solvers-1.0.0}/tests/test_benchmark_runner.py +0 -0
  28. {sudoku_smt_solvers-0.4.0 → sudoku_smt_solvers-1.0.0}/tests/test_cvc5_solver.py +0 -0
  29. {sudoku_smt_solvers-0.4.0 → sudoku_smt_solvers-1.0.0}/tests/test_dfs_solver.py +0 -0
  30. {sudoku_smt_solvers-0.4.0 → sudoku_smt_solvers-1.0.0}/tests/test_dpll_solver.py +0 -0
  31. {sudoku_smt_solvers-0.4.0 → sudoku_smt_solvers-1.0.0}/tests/test_dpllt_solver.py +0 -0
  32. {sudoku_smt_solvers-0.4.0 → sudoku_smt_solvers-1.0.0}/tests/test_hole_digger.py +0 -0
  33. {sudoku_smt_solvers-0.4.0 → sudoku_smt_solvers-1.0.0}/tests/test_las_vegas.py +0 -0
  34. {sudoku_smt_solvers-0.4.0 → sudoku_smt_solvers-1.0.0}/tests/test_parser.py +0 -0
  35. {sudoku_smt_solvers-0.4.0 → sudoku_smt_solvers-1.0.0}/tests/test_profiler.py +0 -0
  36. {sudoku_smt_solvers-0.4.0 → sudoku_smt_solvers-1.0.0}/tests/test_sudoku_generator.py +0 -0
  37. {sudoku_smt_solvers-0.4.0 → sudoku_smt_solvers-1.0.0}/tests/test_z3_solver.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: sudoku_smt_solvers
3
- Version: 0.4.0
3
+ Version: 1.0.0
4
4
  Summary: A collection of SAT and SMT solvers for solving Sudoku puzzles
5
5
  Home-page: https://liamjdavis.github.io/sudoku-smt-solvers
6
6
  Author: Liam Davis, Tairan 'Ryan' Ji
@@ -35,7 +35,7 @@ Dynamic: summary
35
35
 
36
36
 
37
37
  ## About
38
- This repository contains the code for the study "Evaluating SMT-Based Solvers on Sudoku". Created by Liam Davis (@liamjdavis) and Tairan "Ryan" Ji (@TairanJ) as their for COSC-241 Artificial Intelligence at Amherst College, it evaluates the efficacy of SMT-Based Solvers by benchmarking three modern SMT solvers (DPLL(T), Z3, and CVC5) against the DPLL algorithm on a collection of 100 25x25 Sudoku puzzles of varying difficulty.
38
+ This repository contains the code for the study "Evaluating SMT-Based Solvers on Sudoku". Created by Liam Davis (@liamjdavis) and Tairan "Ryan" Ji (@TairanJ) as their for COSC-241 Artificial Intelligence at Amherst College, it evaluates the efficacy of SMT-Based Solvers by benchmarking three modern SMT solvers (DPLL(T), Z3, and CVC5) against the DPLL algorithm on a collection of 100 25x25 Sudoku puzzles of varying difficulty. The corresponding paper can be found [here](https://arxiv.org/abs/2501.08569).
39
39
 
40
40
  Along with the study, we also published `sudoku-smt-solvers`, a Python package that provides the various SMT-based Sudoku solvers and benchmarking tools we built for this study. The package features DPLL(T), Z3, and CVC5 solvers optimized for 25x25 Sudoku puzzles, a puzzle generator for creating test cases, and a comprehensive benchmarking suite. Available through pip, it offers a simple API for solving Sudoku puzzles using state-of-the-art SMT solvers while facilitating performance comparisons between different solving approaches.
41
41
 
@@ -95,7 +95,6 @@ from sudoku_smt_solvers import BenchmarkRunner
95
95
 
96
96
  runner = BenchmarkRunner(
97
97
  puzzles_dir='resources/benchmarks/puzzles/',
98
- solutions_dir='resources/benchmarks/solutions/',
99
98
  results_dir='results/'
100
99
  )
101
100
  runner.run_benchmarks()
@@ -7,7 +7,7 @@
7
7
 
8
8
 
9
9
  ## About
10
- This repository contains the code for the study "Evaluating SMT-Based Solvers on Sudoku". Created by Liam Davis (@liamjdavis) and Tairan "Ryan" Ji (@TairanJ) as their for COSC-241 Artificial Intelligence at Amherst College, it evaluates the efficacy of SMT-Based Solvers by benchmarking three modern SMT solvers (DPLL(T), Z3, and CVC5) against the DPLL algorithm on a collection of 100 25x25 Sudoku puzzles of varying difficulty.
10
+ This repository contains the code for the study "Evaluating SMT-Based Solvers on Sudoku". Created by Liam Davis (@liamjdavis) and Tairan "Ryan" Ji (@TairanJ) as their for COSC-241 Artificial Intelligence at Amherst College, it evaluates the efficacy of SMT-Based Solvers by benchmarking three modern SMT solvers (DPLL(T), Z3, and CVC5) against the DPLL algorithm on a collection of 100 25x25 Sudoku puzzles of varying difficulty. The corresponding paper can be found [here](https://arxiv.org/abs/2501.08569).
11
11
 
12
12
  Along with the study, we also published `sudoku-smt-solvers`, a Python package that provides the various SMT-based Sudoku solvers and benchmarking tools we built for this study. The package features DPLL(T), Z3, and CVC5 solvers optimized for 25x25 Sudoku puzzles, a puzzle generator for creating test cases, and a comprehensive benchmarking suite. Available through pip, it offers a simple API for solving Sudoku puzzles using state-of-the-art SMT solvers while facilitating performance comparisons between different solving approaches.
13
13
 
@@ -67,7 +67,6 @@ from sudoku_smt_solvers import BenchmarkRunner
67
67
 
68
68
  runner = BenchmarkRunner(
69
69
  puzzles_dir='resources/benchmarks/puzzles/',
70
- solutions_dir='resources/benchmarks/solutions/',
71
70
  results_dir='results/'
72
71
  )
73
72
  runner.run_benchmarks()
@@ -19,7 +19,7 @@ from .benchmarks.sudoku_generator import (
19
19
  DFSSolver,
20
20
  )
21
21
 
22
- __version__ = "0.4.0"
22
+ __version__ = "1.0.0"
23
23
 
24
24
  __all__ = [
25
25
  "CVC5Solver",
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: sudoku_smt_solvers
3
- Version: 0.4.0
3
+ Version: 1.0.0
4
4
  Summary: A collection of SAT and SMT solvers for solving Sudoku puzzles
5
5
  Home-page: https://liamjdavis.github.io/sudoku-smt-solvers
6
6
  Author: Liam Davis, Tairan 'Ryan' Ji
@@ -35,7 +35,7 @@ Dynamic: summary
35
35
 
36
36
 
37
37
  ## About
38
- This repository contains the code for the study "Evaluating SMT-Based Solvers on Sudoku". Created by Liam Davis (@liamjdavis) and Tairan "Ryan" Ji (@TairanJ) as their for COSC-241 Artificial Intelligence at Amherst College, it evaluates the efficacy of SMT-Based Solvers by benchmarking three modern SMT solvers (DPLL(T), Z3, and CVC5) against the DPLL algorithm on a collection of 100 25x25 Sudoku puzzles of varying difficulty.
38
+ This repository contains the code for the study "Evaluating SMT-Based Solvers on Sudoku". Created by Liam Davis (@liamjdavis) and Tairan "Ryan" Ji (@TairanJ) as their for COSC-241 Artificial Intelligence at Amherst College, it evaluates the efficacy of SMT-Based Solvers by benchmarking three modern SMT solvers (DPLL(T), Z3, and CVC5) against the DPLL algorithm on a collection of 100 25x25 Sudoku puzzles of varying difficulty. The corresponding paper can be found [here](https://arxiv.org/abs/2501.08569).
39
39
 
40
40
  Along with the study, we also published `sudoku-smt-solvers`, a Python package that provides the various SMT-based Sudoku solvers and benchmarking tools we built for this study. The package features DPLL(T), Z3, and CVC5 solvers optimized for 25x25 Sudoku puzzles, a puzzle generator for creating test cases, and a comprehensive benchmarking suite. Available through pip, it offers a simple API for solving Sudoku puzzles using state-of-the-art SMT solvers while facilitating performance comparisons between different solving approaches.
41
41
 
@@ -95,7 +95,6 @@ from sudoku_smt_solvers import BenchmarkRunner
95
95
 
96
96
  runner = BenchmarkRunner(
97
97
  puzzles_dir='resources/benchmarks/puzzles/',
98
- solutions_dir='resources/benchmarks/solutions/',
99
98
  results_dir='results/'
100
99
  )
101
100
  runner.run_benchmarks()