steer-core 0.1.27__tar.gz → 0.1.30__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (33) hide show
  1. {steer_core-0.1.27 → steer_core-0.1.30}/PKG-INFO +1 -1
  2. steer_core-0.1.30/steer_core/Data/database.db +0 -0
  3. {steer_core-0.1.27 → steer_core-0.1.30}/steer_core/DataManager.py +20 -0
  4. {steer_core-0.1.27 → steer_core-0.1.30}/steer_core/Mixins/Coordinates.py +126 -25
  5. {steer_core-0.1.27 → steer_core-0.1.30}/steer_core/Mixins/Plotter.py +110 -17
  6. {steer_core-0.1.27 → steer_core-0.1.30}/steer_core/Mixins/Serializer.py +1 -0
  7. {steer_core-0.1.27 → steer_core-0.1.30}/steer_core/__init__.py +1 -1
  8. {steer_core-0.1.27 → steer_core-0.1.30}/steer_core.egg-info/PKG-INFO +1 -1
  9. {steer_core-0.1.27 → steer_core-0.1.30}/steer_core.egg-info/SOURCES.txt +0 -1
  10. steer_core-0.1.27/steer_core/Data/database.db +0 -0
  11. steer_core-0.1.27/steer_core/Decorators/Electrochemical.py +0 -29
  12. {steer_core-0.1.27 → steer_core-0.1.30}/README.md +0 -0
  13. {steer_core-0.1.27 → steer_core-0.1.30}/pyproject.toml +0 -0
  14. {steer_core-0.1.27 → steer_core-0.1.30}/setup.cfg +0 -0
  15. {steer_core-0.1.27 → steer_core-0.1.30}/steer_core/Constants/Units.py +0 -0
  16. {steer_core-0.1.27 → steer_core-0.1.30}/steer_core/Constants/Universal.py +0 -0
  17. {steer_core-0.1.27 → steer_core-0.1.30}/steer_core/Constants/__init__.py +0 -0
  18. {steer_core-0.1.27 → steer_core-0.1.30}/steer_core/ContextManagers/ContextManagers.py +0 -0
  19. {steer_core-0.1.27 → steer_core-0.1.30}/steer_core/ContextManagers/__init__.py +0 -0
  20. {steer_core-0.1.27 → steer_core-0.1.30}/steer_core/Data/__init__.py +0 -0
  21. {steer_core-0.1.27 → steer_core-0.1.30}/steer_core/Decorators/Coordinates.py +0 -0
  22. {steer_core-0.1.27 → steer_core-0.1.30}/steer_core/Decorators/General.py +0 -0
  23. {steer_core-0.1.27 → steer_core-0.1.30}/steer_core/Decorators/Objects.py +0 -0
  24. {steer_core-0.1.27 → steer_core-0.1.30}/steer_core/Decorators/__init__.py +0 -0
  25. {steer_core-0.1.27 → steer_core-0.1.30}/steer_core/Mixins/Colors.py +0 -0
  26. {steer_core-0.1.27 → steer_core-0.1.30}/steer_core/Mixins/Data.py +0 -0
  27. {steer_core-0.1.27 → steer_core-0.1.30}/steer_core/Mixins/Dunder.py +0 -0
  28. {steer_core-0.1.27 → steer_core-0.1.30}/steer_core/Mixins/TypeChecker.py +0 -0
  29. {steer_core-0.1.27 → steer_core-0.1.30}/steer_core/Mixins/__init__.py +0 -0
  30. {steer_core-0.1.27 → steer_core-0.1.30}/steer_core.egg-info/dependency_links.txt +0 -0
  31. {steer_core-0.1.27 → steer_core-0.1.30}/steer_core.egg-info/requires.txt +0 -0
  32. {steer_core-0.1.27 → steer_core-0.1.30}/steer_core.egg-info/top_level.txt +0 -0
  33. {steer_core-0.1.27 → steer_core-0.1.30}/test/test_validation_mixin.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: steer-core
3
- Version: 0.1.27
3
+ Version: 0.1.30
4
4
  Summary: Modelling energy storage from cell to site - STEER OpenCell Design
5
5
  Author-email: Nicholas Siemons <nsiemons@stanford.edu>
6
6
  Maintainer-email: Nicholas Siemons <nsiemons@stanford.edu>
@@ -281,6 +281,26 @@ class DataManager:
281
281
 
282
282
  return data
283
283
 
284
+ def get_prismatic_container_materials(self, most_recent: bool = True) -> pd.DataFrame:
285
+ """
286
+ Retrieves prismatic container materials from the database.
287
+
288
+ :param most_recent: If True, returns only the most recent entry.
289
+ :return: DataFrame with prismatic container materials.
290
+ """
291
+ data = (
292
+ self.get_data(table_name="prismatic_container_materials")
293
+ .groupby("name", group_keys=False)
294
+ .apply(
295
+ lambda x: x.sort_values("date", ascending=False).head(1)
296
+ if most_recent
297
+ else x
298
+ )
299
+ .reset_index(drop=True)
300
+ )
301
+
302
+ return data
303
+
284
304
  @staticmethod
285
305
  def read_half_cell_curve(half_cell_path) -> pd.DataFrame:
286
306
  """
@@ -130,28 +130,45 @@ class CoordinateMixin:
130
130
 
131
131
  @staticmethod
132
132
  def rotate_coordinates(
133
- coords: np.ndarray, axis: str, angle: float, center: tuple = None
133
+ coords: np.ndarray,
134
+ axis: str,
135
+ angle: float,
136
+ center: tuple = None
134
137
  ) -> np.ndarray:
135
138
  """
136
- Rotate a (N, 3) NumPy array of 3D coordinates around the specified axis.
139
+ Rotate a NumPy array of coordinates around the specified axis.
140
+ Can handle 2D coordinates (N, 2) for x, y or 3D coordinates (N, 3) for x, y, z.
137
141
  Can handle coordinates with None values (preserves None positions).
138
142
 
139
- :param coords: NumPy array of shape (N, 3), where columns are x, y, z
140
- :param axis: Axis to rotate around ('x', 'y', or 'z')
143
+ :param coords: NumPy array of shape (N, 2) for 2D or (N, 3) for 3D coordinates
144
+ :param axis: Axis to rotate around ('x', 'y', or 'z'). For 2D arrays, only 'z' is valid.
141
145
  :param angle: Angle in degrees
142
- :param center: Point to rotate around as (x, y, z) tuple. If None, rotates around origin.
143
- :return: Rotated NumPy array of shape (N, 3)
146
+ :param center: Point to rotate around. For 2D: (x, y) tuple. For 3D: (x, y, z) tuple.
147
+ If None, rotates around origin.
148
+ :return: Rotated NumPy array with same shape as input
144
149
  """
145
- if coords.shape[1] != 3:
150
+ # Check if 2D or 3D coordinates
151
+ is_2d = coords.shape[1] == 2
152
+ is_3d = coords.shape[1] == 3
153
+
154
+ if not (is_2d or is_3d):
155
+ raise ValueError(
156
+ "Input array must have shape (N, 2) for 2D or (N, 3) for 3D coordinates"
157
+ )
158
+
159
+ # For 2D arrays, only z-axis rotation is valid
160
+ if is_2d and axis != 'z':
146
161
  raise ValueError(
147
- "Input array must have shape (N, 3) for x, y, z coordinates"
162
+ "For 2D coordinates (x, y), only 'z' axis rotation is supported"
148
163
  )
149
164
 
150
165
  # Validate center parameter
151
166
  if center is not None:
152
- if not isinstance(center, (tuple, list)) or len(center) != 3:
167
+ expected_len = 2 if is_2d else 3
168
+ if not isinstance(center, (tuple, list)) or len(center) != expected_len:
169
+ coord_type = "(x, y)" if is_2d else "(x, y, z)"
153
170
  raise ValueError(
154
- "Center must be a tuple or list of 3 coordinates (x, y, z)"
171
+ f"Center must be a tuple or list of {expected_len} coordinates {coord_type}"
155
172
  )
156
173
  if not all(isinstance(coord, (int, float)) for coord in center):
157
174
  raise TypeError("All center coordinates must be numbers")
@@ -201,10 +218,11 @@ class CoordinateMixin:
201
218
  """
202
219
  Rotate coordinates around a specified center point.
203
220
 
204
- :param coords: NumPy array of shape (N, 3) with valid coordinates
221
+ :param coords: NumPy array of shape (N, 2) or (N, 3) with valid coordinates
205
222
  :param axis: Axis to rotate around ('x', 'y', or 'z')
206
223
  :param angle: Angle in degrees
207
- :param center: Center point as np.array of shape (3,). If None, rotates around origin.
224
+ :param center: Center point as np.array. Shape (2,) for 2D or (3,) for 3D.
225
+ If None, rotates around origin.
208
226
  :return: Rotated coordinates
209
227
  """
210
228
  if center is None:
@@ -240,21 +258,88 @@ class CoordinateMixin:
240
258
  The width of the square.
241
259
  y_width : float
242
260
  The height of the square.
261
+
262
+ Returns
263
+ -------
264
+ Tuple[np.ndarray, np.ndarray]
265
+ Tuple containing x and y coordinate arrays defining the square/rectangle
266
+ """
267
+ x_coords = np.array([x, x, x + x_width, x + x_width, x])
268
+ y_coords = np.array([y, y + y_width, y + y_width, y, y])
269
+ return x_coords, y_coords
270
+
271
+ @staticmethod
272
+ def build_circle_array(
273
+ center_x: float, center_y: float, radius: float, num_points: int = 64, anticlockwise: bool = True
274
+ ) -> Tuple[np.ndarray, np.ndarray]:
275
+ """
276
+ Build a NumPy array representing a circle defined by its center and radius.
277
+
278
+ Parameters
279
+ ----------
280
+ center_x : float
281
+ The x-coordinate of the circle center.
282
+ center_y : float
283
+ The y-coordinate of the circle center.
284
+ radius : float
285
+ The radius of the circle.
286
+ num_points : int, optional
287
+ Number of points to use for the circle approximation, by default 64
288
+ anticlockwise : bool, optional
289
+ If True, points are ordered anticlockwise; if False, clockwise, by default True
290
+
291
+ Returns
292
+ -------
293
+ Tuple[np.ndarray, np.ndarray]
294
+ Tuple containing x and y coordinate arrays defining the circle
243
295
  """
244
- x_coords = [x, x, x + x_width, x + x_width, x]
245
- y_coords = [y, y + y_width, y + y_width, y, y]
296
+ # Generate angles from 0 to
297
+ angles = np.linspace(0, 2 * np.pi, num_points + 1)
298
+
299
+ # Reverse angles for clockwise direction
300
+ if not anticlockwise:
301
+ angles = angles[::-1]
302
+
303
+ # Calculate x and y coordinates
304
+ x_coords = center_x + radius * np.cos(angles)
305
+ y_coords = center_y + radius * np.sin(angles)
306
+
246
307
  return x_coords, y_coords
247
308
 
248
309
  @staticmethod
249
310
  def order_coordinates_clockwise(df: pd.DataFrame, plane="xy") -> pd.DataFrame:
250
311
 
312
+ df = df.copy()
313
+
251
314
  axis_1 = plane[0]
252
315
  axis_2 = plane[1]
253
316
 
254
- cx = df[axis_1].mean()
255
- cy = df[axis_2].mean()
256
-
257
- angles = np.arctan2(df[axis_2] - cy, df[axis_1] - cx)
317
+ # Find column names that match the axis (case-insensitive, with or without units)
318
+ def find_column(axis_char: str) -> str:
319
+ axis_char_lower = axis_char.lower()
320
+ # First try exact match
321
+ if axis_char in df.columns:
322
+ return axis_char
323
+ # Try lowercase
324
+ if axis_char_lower in df.columns:
325
+ return axis_char_lower
326
+ # Try uppercase
327
+ if axis_char.upper() in df.columns:
328
+ return axis_char.upper()
329
+ # Try with units pattern like "X (mm)", "x (mm)", etc.
330
+ for col in df.columns:
331
+ col_stripped = col.split()[0].lower() if ' ' in col else col.lower()
332
+ if col_stripped == axis_char_lower:
333
+ return col
334
+ raise KeyError(f"Could not find column for axis '{axis_char}' in dataframe columns: {list(df.columns)}")
335
+
336
+ axis_1_col = find_column(axis_1)
337
+ axis_2_col = find_column(axis_2)
338
+
339
+ cx = df[axis_1_col].mean()
340
+ cy = df[axis_2_col].mean()
341
+
342
+ angles = np.arctan2(df[axis_2_col] - cy, df[axis_1_col] - cx)
258
343
 
259
344
  df["angle"] = angles
260
345
 
@@ -487,19 +572,35 @@ class CoordinateMixin:
487
572
  ) -> np.ndarray:
488
573
  """
489
574
  Rotate coordinates without None values using rotation matrices.
575
+ Handles both 2D (N, 2) and 3D (N, 3) coordinate arrays.
576
+
577
+ :param coords: NumPy array of shape (N, 2) or (N, 3)
578
+ :param axis: Axis to rotate around ('x', 'y', or 'z')
579
+ :param angle: Angle in degrees
580
+ :return: Rotated coordinates with same shape as input
490
581
  """
491
582
  angle_rad = np.radians(angle)
492
583
  cos_a = np.cos(angle_rad)
493
584
  sin_a = np.sin(angle_rad)
585
+
586
+ is_2d = coords.shape[1] == 2
494
587
 
495
- if axis == "x":
496
- R = np.array([[1, 0, 0], [0, cos_a, -sin_a], [0, sin_a, cos_a]])
497
- elif axis == "y":
498
- R = np.array([[cos_a, 0, sin_a], [0, 1, 0], [-sin_a, 0, cos_a]])
499
- elif axis == "z":
500
- R = np.array([[cos_a, -sin_a, 0], [sin_a, cos_a, 0], [0, 0, 1]])
588
+ if is_2d:
589
+ # For 2D coordinates, only z-axis rotation applies (rotation in xy plane)
590
+ if axis != 'z':
591
+ raise ValueError("For 2D coordinates, only 'z' axis rotation is supported")
592
+ # 2D rotation matrix
593
+ R = np.array([[cos_a, -sin_a], [sin_a, cos_a]])
501
594
  else:
502
- raise ValueError("Axis must be 'x', 'y', or 'z'.")
595
+ # 3D rotation matrices
596
+ if axis == "x":
597
+ R = np.array([[1, 0, 0], [0, cos_a, -sin_a], [0, sin_a, cos_a]])
598
+ elif axis == "y":
599
+ R = np.array([[cos_a, 0, sin_a], [0, 1, 0], [-sin_a, 0, cos_a]])
600
+ elif axis == "z":
601
+ R = np.array([[cos_a, -sin_a, 0], [sin_a, cos_a, 0], [0, 0, 1]])
602
+ else:
603
+ raise ValueError("Axis must be 'x', 'y', or 'z'.")
503
604
 
504
605
  return coords @ R.T
505
606
 
@@ -36,6 +36,7 @@ class PlotterMixin:
36
36
 
37
37
  SCHEMATIC_Z_AXIS = dict(
38
38
  zeroline=False,
39
+ scaleanchor="x",
39
40
  title="Z (mm)"
40
41
  )
41
42
 
@@ -55,7 +56,8 @@ class PlotterMixin:
55
56
  line_width,
56
57
  color_func,
57
58
  unit_conversion_factor,
58
- order_clockwise: str = None
59
+ order_clockwise: str = None,
60
+ gl: bool = False
59
61
  ):
60
62
  """
61
63
  Create a single trace for a component or group of components with NaN separators.
@@ -115,17 +117,30 @@ class PlotterMixin:
115
117
  z_coords = combined_coords[:, 2] * unit_conversion_factor
116
118
 
117
119
  # Create trace
118
- return go.Scatter(
119
- x=y_coords,
120
- y=z_coords,
121
- mode="lines",
122
- name=name,
123
- line={'width': line_width, 'color': "black"},
124
- fill="toself",
125
- fillcolor=color_func(components[0]),
126
- legendgroup=name,
127
- showlegend=True,
128
- )
120
+ if gl:
121
+ return go.Scattergl(
122
+ x=y_coords,
123
+ y=z_coords,
124
+ mode="lines",
125
+ name=name,
126
+ line={'width': line_width, 'color': "black"},
127
+ fill="toself",
128
+ fillcolor=color_func(components[0]),
129
+ legendgroup=name,
130
+ showlegend=True,
131
+ )
132
+ else:
133
+ return go.Scatter(
134
+ x=y_coords,
135
+ y=z_coords,
136
+ mode="lines",
137
+ name=name,
138
+ line={'width': line_width, 'color': "black"},
139
+ fill="toself",
140
+ fillcolor=color_func(components[0]),
141
+ legendgroup=name,
142
+ showlegend=True,
143
+ )
129
144
 
130
145
  @staticmethod
131
146
  def plot_breakdown_sunburst(
@@ -133,6 +148,7 @@ class PlotterMixin:
133
148
  title: str = "Breakdown",
134
149
  root_label: str = "Total",
135
150
  unit: str = "",
151
+ colorway: List[str] = None,
136
152
  **kwargs,
137
153
  ) -> go.Figure:
138
154
  """
@@ -149,12 +165,22 @@ class PlotterMixin:
149
165
  Label for the root node. Defaults to "Total".
150
166
  unit : str, optional
151
167
  Unit string to display in hover text (e.g., "g", "kg", "%"). Defaults to "".
168
+ colorway : List[str], optional
169
+ List of colors to use for the inner ring. If None, uses Plotly's default colorway.
170
+ Defaults to None.
152
171
 
153
172
  Returns
154
173
  -------
155
174
  go.Figure
156
175
  Plotly sunburst figure
157
176
  """
177
+
178
+ # Default Plotly colorway if none provided
179
+ if colorway is None:
180
+ colorway = [
181
+ '#636EFA', '#EF553B', '#00CC96', '#AB63FA', '#FFA15A',
182
+ '#19D3F3', '#FF6692', '#B6E880', '#FF97FF', '#FECB52'
183
+ ]
158
184
 
159
185
  def _flatten_breakdown_values(data: Dict[str, Any]) -> List[float]:
160
186
  """Recursively flatten all numeric values from nested breakdown dictionary"""
@@ -177,13 +203,14 @@ class PlotterMixin:
177
203
  return total
178
204
 
179
205
  def _prepare_sunburst_data(
180
- data: Dict[str, Any], parent_id: str = "", current_path: str = ""
181
- ) -> Tuple[List[str], List[str], List[str], List[float]]:
206
+ data: Dict[str, Any], parent_id: str = "", current_path: str = "", depth: int = 1
207
+ ) -> Tuple[List[str], List[str], List[str], List[float], List[int]]:
182
208
  """Recursively prepare data for sunburst plot with proper hierarchy"""
183
209
  ids = []
184
210
  labels = []
185
211
  parents = []
186
212
  values = []
213
+ depths = []
187
214
 
188
215
  for key, value in data.items():
189
216
  # Create unique ID for this node
@@ -192,6 +219,7 @@ class PlotterMixin:
192
219
  ids.append(node_id)
193
220
  labels.append(key)
194
221
  parents.append(parent_id)
222
+ depths.append(depth)
195
223
 
196
224
  if isinstance(value, dict):
197
225
  # This is a nested dictionary - calculate its total value
@@ -204,8 +232,9 @@ class PlotterMixin:
204
232
  nested_labels,
205
233
  nested_parents,
206
234
  nested_values,
235
+ nested_depths,
207
236
  ) = _prepare_sunburst_data(
208
- value, parent_id=node_id, current_path=node_id
237
+ value, parent_id=node_id, current_path=node_id, depth=depth + 1
209
238
  )
210
239
 
211
240
  # Add nested data to our lists
@@ -213,18 +242,19 @@ class PlotterMixin:
213
242
  labels.extend(nested_labels)
214
243
  parents.extend(nested_parents)
215
244
  values.extend(nested_values)
245
+ depths.extend(nested_depths)
216
246
 
217
247
  elif isinstance(value, (int, float)):
218
248
  # This is a leaf node with a numeric value
219
249
  values.append(float(value))
220
250
 
221
- return ids, labels, parents, values
251
+ return ids, labels, parents, values, depths
222
252
 
223
253
  # Calculate total value for root node
224
254
  total_value = _calculate_subtotal(breakdown_dict)
225
255
 
226
256
  # Prepare hierarchical data starting with root
227
- ids, labels, parents, values = _prepare_sunburst_data(
257
+ ids, labels, parents, values, depths = _prepare_sunburst_data(
228
258
  breakdown_dict, parent_id=""
229
259
  )
230
260
 
@@ -233,12 +263,74 @@ class PlotterMixin:
233
263
  labels.insert(0, root_label)
234
264
  parents.insert(0, "")
235
265
  values.insert(0, total_value)
266
+ depths.insert(0, 0)
236
267
 
237
268
  # Update parent references to point to root
238
269
  for i in range(1, len(parents)):
239
270
  if parents[i] == "":
240
271
  parents[i] = root_label
241
272
 
273
+ # Generate colors based on alphabetical ordering and depth
274
+ def _hex_to_rgb(hex_color: str) -> Tuple[int, int, int]:
275
+ """Convert hex color to RGB tuple"""
276
+ hex_color = hex_color.lstrip('#')
277
+ return tuple(int(hex_color[i:i+2], 16) for i in (0, 2, 4))
278
+
279
+ def _rgb_to_hex(rgb: Tuple[int, int, int]) -> str:
280
+ """Convert RGB tuple to hex color"""
281
+ return '#{:02x}{:02x}{:02x}'.format(int(rgb[0]), int(rgb[1]), int(rgb[2]))
282
+
283
+ def _lighten_color(hex_color: str, factor: float) -> str:
284
+ """Lighten a color by blending with white. Factor 0=original, 1=white"""
285
+ r, g, b = _hex_to_rgb(hex_color)
286
+ # Blend with white (255, 255, 255)
287
+ r = r + (255 - r) * factor
288
+ g = g + (255 - g) * factor
289
+ b = b + (255 - b) * factor
290
+ return _rgb_to_hex((r, g, b))
291
+
292
+ # Get first-level keys (children of root) and sort alphabetically
293
+ first_level_keys = sorted([key for key in breakdown_dict.keys()])
294
+
295
+ # Assign base colors to first-level keys
296
+ key_to_base_color = {}
297
+ for i, key in enumerate(first_level_keys):
298
+ key_to_base_color[key] = colorway[i % len(colorway)]
299
+
300
+ # Assign colors to all nodes
301
+ marker_colors = []
302
+ max_depth = max(depths) if depths else 0
303
+
304
+ for i, (node_id, label, parent, depth) in enumerate(zip(ids, labels, parents, depths)):
305
+ if depth == 0:
306
+ # Root node - use neutral color
307
+ marker_colors.append('#CCCCCC')
308
+ elif depth == 1:
309
+ # First level - use assigned base color
310
+ marker_colors.append(key_to_base_color[label])
311
+ else:
312
+ # Deeper levels - find the first-level ancestor and lighten its color
313
+ # Trace back through parents to find first-level ancestor
314
+ current_parent = parent
315
+ ancestor_label = None
316
+
317
+ for j, (check_id, check_label, check_depth) in enumerate(zip(ids, labels, depths)):
318
+ if check_id == current_parent:
319
+ if check_depth == 1:
320
+ ancestor_label = check_label
321
+ break
322
+ current_parent = parents[j]
323
+
324
+ if ancestor_label and ancestor_label in key_to_base_color:
325
+ base_color = key_to_base_color[ancestor_label]
326
+ # Lighten based on depth (depth 2 gets 0.3, depth 3 gets 0.5, depth 4 gets 0.7, etc.)
327
+ lighten_factor = 0.2 + (depth - 1) * 0.25
328
+ lighten_factor = min(lighten_factor, 0.85) # Cap at 0.85 to avoid too pale
329
+ marker_colors.append(_lighten_color(base_color, lighten_factor))
330
+ else:
331
+ # Fallback to neutral color
332
+ marker_colors.append('#DDDDDD')
333
+
242
334
  # Create custom hover text with percentages
243
335
  hover_text = []
244
336
  for i, (label, value) in enumerate(zip(labels, values)):
@@ -262,6 +354,7 @@ class PlotterMixin:
262
354
  branchvalues="total",
263
355
  hovertemplate="%{customdata}<extra></extra>",
264
356
  customdata=hover_text,
357
+ marker=dict(colors=marker_colors),
265
358
  )
266
359
  )
267
360
 
@@ -5,6 +5,7 @@ from copy import deepcopy
5
5
 
6
6
 
7
7
  class SerializerMixin:
8
+
8
9
  def serialize(self) -> str:
9
10
  """
10
11
  Serialize an object to a string representation.
@@ -1,4 +1,4 @@
1
- __version__ = "0.1.27"
1
+ __version__ = "0.1.30"
2
2
 
3
3
  # datamanager import
4
4
  from .DataManager import DataManager
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: steer-core
3
- Version: 0.1.27
3
+ Version: 0.1.30
4
4
  Summary: Modelling energy storage from cell to site - STEER OpenCell Design
5
5
  Author-email: Nicholas Siemons <nsiemons@stanford.edu>
6
6
  Maintainer-email: Nicholas Siemons <nsiemons@stanford.edu>
@@ -15,7 +15,6 @@ steer_core/ContextManagers/__init__.py
15
15
  steer_core/Data/__init__.py
16
16
  steer_core/Data/database.db
17
17
  steer_core/Decorators/Coordinates.py
18
- steer_core/Decorators/Electrochemical.py
19
18
  steer_core/Decorators/General.py
20
19
  steer_core/Decorators/Objects.py
21
20
  steer_core/Decorators/__init__.py
@@ -1,29 +0,0 @@
1
- from functools import wraps
2
-
3
- def calculate_half_cell_curve(func):
4
- """
5
- Decorator to recalculate half-cell curve properties after a method call.
6
- This is useful for methods that modify the half-cell curve data.
7
- """
8
- @wraps(func)
9
- def wrapper(self, *args, **kwargs):
10
- result = func(self, *args, **kwargs)
11
- if hasattr(self, '_update_properties') and self._update_properties:
12
- self._calculate_half_cell_curve()
13
- return result
14
- return wrapper
15
-
16
-
17
- def calculate_half_cell_curves_properties(func):
18
- """
19
- Decorator to recalculate half-cell curves properties after a method call.
20
- This is useful for methods that modify the half-cell curves data.
21
- """
22
- @wraps(func)
23
- def wrapper(self, *args, **kwargs):
24
- result = func(self, *args, **kwargs)
25
- if hasattr(self, '_update_properties') and self._update_properties:
26
- self._calculate_half_cell_curves_properties()
27
- return result
28
- return wrapper
29
-
File without changes
File without changes
File without changes