sqlshell 0.2.2__tar.gz → 0.2.3__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of sqlshell might be problematic. Click here for more details.

Files changed (60) hide show
  1. sqlshell-0.2.3/PKG-INFO +281 -0
  2. sqlshell-0.2.3/README.md +248 -0
  3. {sqlshell-0.2.2/sqlshell → sqlshell-0.2.3}/main.py +214 -3
  4. {sqlshell-0.2.2 → sqlshell-0.2.3}/pyproject.toml +7 -2
  5. {sqlshell-0.2.2 → sqlshell-0.2.3}/requirements.txt +6 -1
  6. {sqlshell-0.2.2 → sqlshell-0.2.3}/sqlshell/README.md +5 -1
  7. {sqlshell-0.2.2 → sqlshell-0.2.3}/sqlshell/__init__.py +1 -1
  8. {sqlshell-0.2.2 → sqlshell-0.2.3}/sqlshell/create_test_data.py +29 -0
  9. sqlshell-0.2.3/sqlshell/main.py +3537 -0
  10. {sqlshell-0.2.2 → sqlshell-0.2.3}/sqlshell/table_list.py +90 -1
  11. {sqlshell-0.2.2 → sqlshell-0.2.3}/sqlshell/ui/filter_header.py +14 -0
  12. sqlshell-0.2.3/sqlshell/utils/profile_column.py +1099 -0
  13. sqlshell-0.2.3/sqlshell/utils/profile_distributions.py +613 -0
  14. sqlshell-0.2.3/sqlshell/utils/profile_foreign_keys.py +455 -0
  15. sqlshell-0.2.3/sqlshell.egg-info/PKG-INFO +281 -0
  16. {sqlshell-0.2.2 → sqlshell-0.2.3}/sqlshell.egg-info/SOURCES.txt +4 -0
  17. {sqlshell-0.2.2 → sqlshell-0.2.3}/sqlshell.egg-info/requires.txt +5 -0
  18. sqlshell-0.2.2/PKG-INFO +0 -198
  19. sqlshell-0.2.2/README.md +0 -170
  20. sqlshell-0.2.2/sqlshell.egg-info/PKG-INFO +0 -198
  21. {sqlshell-0.2.2 → sqlshell-0.2.3}/.gitignore +0 -0
  22. {sqlshell-0.2.2 → sqlshell-0.2.3}/MANIFEST.in +0 -0
  23. {sqlshell-0.2.2 → sqlshell-0.2.3}/column_profiler.png +0 -0
  24. {sqlshell-0.2.2 → sqlshell-0.2.3}/run.py +0 -0
  25. {sqlshell-0.2.2 → sqlshell-0.2.3}/setup.cfg +0 -0
  26. {sqlshell-0.2.2 → sqlshell-0.2.3}/sqlshell/LICENSE +0 -0
  27. {sqlshell-0.2.2 → sqlshell-0.2.3}/sqlshell/MANIFEST.in +0 -0
  28. {sqlshell-0.2.2 → sqlshell-0.2.3}/sqlshell/context_suggester.py +0 -0
  29. {sqlshell-0.2.2 → sqlshell-0.2.3}/sqlshell/data/create_test_data.py +0 -0
  30. {sqlshell-0.2.2 → sqlshell-0.2.3}/sqlshell/db/__init__.py +0 -0
  31. {sqlshell-0.2.2 → sqlshell-0.2.3}/sqlshell/db/database_manager.py +0 -0
  32. {sqlshell-0.2.2 → sqlshell-0.2.3}/sqlshell/editor.py +0 -0
  33. {sqlshell-0.2.2 → sqlshell-0.2.3}/sqlshell/menus.py +0 -0
  34. {sqlshell-0.2.2 → sqlshell-0.2.3}/sqlshell/query_tab.py +0 -0
  35. {sqlshell-0.2.2 → sqlshell-0.2.3}/sqlshell/resources/__init__.py +0 -0
  36. {sqlshell-0.2.2 → sqlshell-0.2.3}/sqlshell/resources/create_icon.py +0 -0
  37. {sqlshell-0.2.2 → sqlshell-0.2.3}/sqlshell/resources/create_splash.py +0 -0
  38. {sqlshell-0.2.2 → sqlshell-0.2.3}/sqlshell/resources/icon.png +0 -0
  39. {sqlshell-0.2.2 → sqlshell-0.2.3}/sqlshell/resources/logo_large.png +0 -0
  40. {sqlshell-0.2.2 → sqlshell-0.2.3}/sqlshell/resources/logo_medium.png +0 -0
  41. {sqlshell-0.2.2 → sqlshell-0.2.3}/sqlshell/resources/logo_small.png +0 -0
  42. {sqlshell-0.2.2 → sqlshell-0.2.3}/sqlshell/resources/splash_screen.gif +0 -0
  43. {sqlshell-0.2.2 → sqlshell-0.2.3}/sqlshell/splash_screen.py +0 -0
  44. {sqlshell-0.2.2 → sqlshell-0.2.3}/sqlshell/sqlshell/__init__.py +0 -0
  45. {sqlshell-0.2.2 → sqlshell-0.2.3}/sqlshell/sqlshell/create_test_data.py +0 -0
  46. {sqlshell-0.2.2 → sqlshell-0.2.3}/sqlshell/sqlshell/create_test_databases.py +0 -0
  47. {sqlshell-0.2.2 → sqlshell-0.2.3}/sqlshell/sqlshell_demo.png +0 -0
  48. {sqlshell-0.2.2 → sqlshell-0.2.3}/sqlshell/styles.py +0 -0
  49. {sqlshell-0.2.2 → sqlshell-0.2.3}/sqlshell/suggester_integration.py +0 -0
  50. {sqlshell-0.2.2 → sqlshell-0.2.3}/sqlshell/syntax_highlighter.py +0 -0
  51. {sqlshell-0.2.2 → sqlshell-0.2.3}/sqlshell/ui/__init__.py +0 -0
  52. {sqlshell-0.2.2 → sqlshell-0.2.3}/sqlshell/ui/bar_chart_delegate.py +0 -0
  53. {sqlshell-0.2.2 → sqlshell-0.2.3}/sqlshell/utils/__init__.py +0 -0
  54. {sqlshell-0.2.2 → sqlshell-0.2.3}/sqlshell/utils/profile_entropy.py +0 -0
  55. {sqlshell-0.2.2 → sqlshell-0.2.3}/sqlshell/utils/profile_keys.py +0 -0
  56. {sqlshell-0.2.2 → sqlshell-0.2.3}/sqlshell.egg-info/dependency_links.txt +0 -0
  57. {sqlshell-0.2.2 → sqlshell-0.2.3}/sqlshell.egg-info/entry_points.txt +0 -0
  58. {sqlshell-0.2.2 → sqlshell-0.2.3}/sqlshell.egg-info/top_level.txt +0 -0
  59. {sqlshell-0.2.2 → sqlshell-0.2.3}/sqlshell_demo.png +0 -0
  60. {sqlshell-0.2.2 → sqlshell-0.2.3}/sqlshell_logo.png +0 -0
@@ -0,0 +1,281 @@
1
+ Metadata-Version: 2.4
2
+ Name: sqlshell
3
+ Version: 0.2.3
4
+ Summary: A powerful SQL shell with GUI interface for data analysis
5
+ Author: SQLShell Team
6
+ License-Expression: MIT
7
+ Project-URL: Homepage, https://github.com/oyvinrog/SQLShell
8
+ Keywords: sql,data analysis,gui,duckdb
9
+ Classifier: Development Status :: 3 - Alpha
10
+ Classifier: Intended Audience :: Developers
11
+ Classifier: Programming Language :: Python :: 3
12
+ Classifier: Programming Language :: Python :: 3.8
13
+ Classifier: Programming Language :: Python :: 3.9
14
+ Classifier: Programming Language :: Python :: 3.10
15
+ Classifier: Programming Language :: Python :: 3.11
16
+ Requires-Python: >=3.8
17
+ Description-Content-Type: text/markdown
18
+ Requires-Dist: pandas>=2.0.0
19
+ Requires-Dist: numpy>=1.24.0
20
+ Requires-Dist: PyQt6>=6.4.0
21
+ Requires-Dist: duckdb>=0.9.0
22
+ Requires-Dist: openpyxl>=3.1.0
23
+ Requires-Dist: pyarrow>=14.0.1
24
+ Requires-Dist: fastparquet>=2023.10.1
25
+ Requires-Dist: xlrd>=2.0.1
26
+ Requires-Dist: deltalake
27
+ Requires-Dist: Pillow>=10.0.0
28
+ Requires-Dist: shap
29
+ Requires-Dist: xgboost
30
+ Requires-Dist: scikit-learn
31
+ Requires-Dist: matplotlib>=3.10.0
32
+ Requires-Dist: scipy>=1.15.0
33
+
34
+ # SQLShell
35
+
36
+ <div align="center">
37
+
38
+ <img src="https://github.com/oyvinrog/SQLShell/raw/main/sqlshell_logo.png" alt="SQLShell Logo" width="180" height="auto">
39
+
40
+ **A powerful SQL shell with GUI interface for data analysis**
41
+
42
+ <img src="https://github.com/oyvinrog/SQLShell/raw/main/sqlshell_demo.png" alt="SQLShell Interface" width="80%" height="auto">
43
+
44
+ </div>
45
+
46
+ ## 🚀 Key Features
47
+
48
+ - **Interactive SQL Interface** - Rich syntax highlighting for enhanced query writing
49
+ - **Context-Aware Suggestions** - Intelligent SQL autocompletion based on query context and schema
50
+ - **DuckDB Integration** - Powerful analytical queries powered by DuckDB
51
+ - **Multi-Format Support** - Import and query Excel (.xlsx, .xls), CSV, and Parquet files effortlessly
52
+ - **Modern UI** - Clean, tabular results display with intuitive controls
53
+ - **Table Preview** - Quick view of imported data tables
54
+ - **Test Data Generation** - Built-in sample data for testing and learning
55
+ - **Multiple Views** - Support for multiple concurrent table views
56
+ - **Productivity Tools** - Streamlined workflow with keyboard shortcuts (e.g., Ctrl+Enter for query execution)
57
+ - **Explain Column** - Analyze relationships between data columns directly from query results
58
+
59
+ ## 📦 Installation
60
+
61
+ ### Using pip (Recommended)
62
+
63
+ ```bash
64
+ pip install sqlshell
65
+ ```
66
+
67
+ ### Linux Setup with Virtual Environment
68
+
69
+ ```bash
70
+ # Create and activate virtual environment
71
+ python3 -m venv ~/.venv/sqlshell
72
+ source ~/.venv/sqlshell/bin/activate
73
+
74
+ # Install SQLShell
75
+ pip install sqlshell
76
+
77
+ # Configure shell alias
78
+ echo 'alias sqls="~/.venv/sqlshell/bin/sqls"' >> ~/.bashrc # or ~/.zshrc for Zsh
79
+ source ~/.bashrc # or source ~/.zshrc
80
+ ```
81
+
82
+ ### Development Installation
83
+
84
+ ```bash
85
+ git clone https://github.com/oyvinrog/SQLShell.git
86
+ cd SQLShell
87
+ pip install -e .
88
+ ```
89
+
90
+ ## 🎯 Getting Started
91
+
92
+ 1. **Launch the Application**
93
+ ```bash
94
+ sqls
95
+ ```
96
+
97
+ If the `sqls` command doesn't work (e.g., "access denied" on Windows), you can use this alternative:
98
+ ```bash
99
+ python -c "import sqlshell; sqlshell.start()"
100
+ ```
101
+
102
+ 2. **Database Connection**
103
+ - SQLShell automatically connects to a local DuckDB database named 'pool.db'
104
+
105
+ 3. **Working with Data Files**
106
+ - Click "Load Files" to select your Excel, CSV, or Parquet files
107
+ - File contents are loaded as queryable SQL tables
108
+ - Query using standard SQL syntax
109
+
110
+ 4. **Query Execution**
111
+ - Enter SQL in the editor
112
+ - Execute using Ctrl+Enter or the "Execute" button
113
+ - View results in the structured output panel
114
+
115
+ 5. **Test Data**
116
+ - Load sample test data using the "Test" button for quick experimentation
117
+
118
+ 6. **Using Context-Aware Suggestions**
119
+ - Press Ctrl+Space to manually trigger suggestions
120
+ - Suggestions appear automatically as you type
121
+ - Context-specific suggestions based on your query position:
122
+ - After SELECT: columns and functions
123
+ - After FROM/JOIN: tables with join conditions
124
+ - After WHERE: columns with appropriate operators
125
+ - Inside functions: relevant column suggestions
126
+
127
+ 7. **Column Analysis**
128
+ - Right-click on column headers in the results pane
129
+ - Access features like sorting, filtering, and the "Explain Column" analysis tool
130
+
131
+ ## 📝 Query Examples
132
+
133
+ ### Basic Join Operation
134
+ ```sql
135
+ SELECT *
136
+ FROM sample_sales_data cd
137
+ INNER JOIN product_catalog pc ON pc.productid = cd.productid
138
+ LIMIT 3;
139
+ ```
140
+
141
+ ### Multi-Statement Queries
142
+ ```sql
143
+ -- Create a temporary view
144
+ CREATE OR REPLACE TEMPORARY VIEW test_v AS
145
+ SELECT *
146
+ FROM sample_sales_data cd
147
+ INNER JOIN product_catalog pc ON pc.productid = cd.productid;
148
+
149
+ -- Query the view
150
+ SELECT DISTINCT productid
151
+ FROM test_v;
152
+ ```
153
+
154
+ ## 💡 Pro Tips
155
+
156
+ - Use temporary views for complex query organization
157
+ - Leverage keyboard shortcuts for efficient workflow
158
+ - Explore the multi-format support for various data sources
159
+ - Create multiple tabs for parallel query development
160
+ - The context-aware suggestions learn from your query patterns
161
+ - Type `table_name.` to see all columns for a specific table
162
+ - After JOIN keyword, the system suggests relevant tables and join conditions
163
+
164
+ ## 📊 Table Profiling
165
+
166
+ SQLShell provides powerful table profiling tools to help you understand your data. These tools are accessible from the left-hand side table menu via right-click on any table:
167
+
168
+ <div align="center">
169
+ <img src="https://github.com/oyvinrog/SQLShell/raw/main/column_profiler.png" alt="Column Profiler" width="80%" height="auto">
170
+ </div>
171
+
172
+ ### Table Profiling Options
173
+
174
+ Right-click on any table in the left panel to access these profiling tools:
175
+
176
+ 1. **Analyze Column Importance**
177
+ - Calculates entropy for each column to identify the most information-rich fields
178
+ - Visualizes column importance with color-coded bars
179
+ - Helps identify which columns are most useful for analysis and modeling
180
+
181
+ 2. **Profile Table Structure**
182
+ - Identifies candidate keys and functional dependencies
183
+ - Discovers potential primary keys and relationships between columns
184
+ - Suggests possible normalized table structures
185
+ - Helps understand table organization and optimize schema design
186
+
187
+ 3. **Analyze Column Distributions**
188
+ - Generates histograms, box plots, and other statistical visualizations
189
+ - Identifies the distribution pattern of each column (normal, uniform, etc.)
190
+ - Provides detailed statistics like min, max, mean, median, skewness
191
+ - Helps identify outliers and understand data patterns
192
+
193
+ 4. **Analyze Foreign Keys** (multi-table selection)
194
+ - Select multiple tables by holding Ctrl or Shift while clicking
195
+ - Right-click to access "Analyze Foreign Keys Between X Tables"
196
+ - Automatically discovers potential foreign key relationships between tables
197
+ - Identifies matching columns that could serve as join conditions
198
+ - Helps understand cross-table relationships in your data model
199
+
200
+ ### Using the Profilers
201
+
202
+ 1. **Access the Profilers**
203
+ - Right-click on any table in the schema browser
204
+ - Select the desired profiling option from the context menu
205
+ - For foreign key analysis, select multiple tables first
206
+
207
+ 2. **Interpret the Results**
208
+ - Each profiler provides interactive visualizations
209
+ - Hover over charts for detailed information
210
+ - Switch between different views using the tabs
211
+ - Sort and filter results to focus on specific columns
212
+
213
+ 3. **Benefits**
214
+ - Quickly understand data composition without writing queries
215
+ - Identify data quality issues and outliers
216
+ - Discover relationships between columns
217
+ - Make informed decisions about query optimization
218
+
219
+ The table profiling tools are invaluable for exploratory data analysis, helping you gain insights before writing complex queries.
220
+
221
+ ## 📊 Column Analysis
222
+
223
+ SQLShell provides powerful tools to analyze individual columns directly from your query results:
224
+
225
+ ### Explain Column Feature
226
+
227
+ The "Explain Column" feature helps you understand the relationships between columns in your query results:
228
+
229
+ 1. **How to Access**:
230
+ - Right-click on any column header in the query results table
231
+ - Select "Explain Column" from the context menu
232
+
233
+ 2. **What It Does**:
234
+ - Analyzes the selected column's relationship with other columns in the result set
235
+ - Identifies correlations and dependencies between columns
236
+ - Provides visualizations to help understand the column's importance and distribution
237
+
238
+ 3. **Benefits**:
239
+ - Quickly identify which columns are most related to your target column
240
+ - Discover hidden patterns and relationships in your data
241
+ - Make data-driven decisions without writing complex analytical queries
242
+
243
+ ### Multivariate Analysis Feature
244
+
245
+ The Column Profiler now offers in-depth multivariate analysis to explore relationships between columns:
246
+
247
+ 1. **How to Access**:
248
+ - In the Column Profiler, double-click on any feature in the importance table
249
+ - A detailed visualization window will appear showing the relationship between the selected feature and the target column
250
+
251
+ 2. **Smart Visualizations**:
252
+ - Automatically selects the most appropriate visualization based on data types:
253
+ - **Numeric vs. Numeric**: Scatter plot with regression line
254
+ - **Categorical vs. Numeric**: Bar chart showing average values
255
+ - **Numeric vs. Categorical**: Box plot showing distribution
256
+ - **Categorical vs. Categorical**: Heatmap showing relationship strength
257
+
258
+ 3. **Benefits**:
259
+ - Gain deeper insights into how features relate to your target variable
260
+ - Understand which features have strong predictive relationships
261
+ - Identify patterns and outliers in multivariate relationships
262
+ - Make better decisions about feature selection for analysis and modeling
263
+
264
+ This feature is particularly useful for exploratory data analysis, helping you understand your data structure and relationships on the fly.
265
+
266
+ ## 📋 Requirements
267
+
268
+ - Python 3.8 or higher
269
+ - Dependencies (automatically installed):
270
+ - PyQt6 ≥ 6.4.0
271
+ - DuckDB ≥ 0.9.0
272
+ - Pandas ≥ 2.0.0
273
+ - NumPy ≥ 1.24.0
274
+ - openpyxl ≥ 3.1.0 (Excel support)
275
+ - pyarrow ≥ 14.0.1 (Parquet support)
276
+ - fastparquet ≥ 2023.10.1 (Alternative parquet engine)
277
+ - xlrd ≥ 2.0.1 (Support for older .xls files)
278
+
279
+ ## 📄 License
280
+
281
+ This project is licensed under the MIT License - see the LICENSE file for details.
@@ -0,0 +1,248 @@
1
+ # SQLShell
2
+
3
+ <div align="center">
4
+
5
+ <img src="https://github.com/oyvinrog/SQLShell/raw/main/sqlshell_logo.png" alt="SQLShell Logo" width="180" height="auto">
6
+
7
+ **A powerful SQL shell with GUI interface for data analysis**
8
+
9
+ <img src="https://github.com/oyvinrog/SQLShell/raw/main/sqlshell_demo.png" alt="SQLShell Interface" width="80%" height="auto">
10
+
11
+ </div>
12
+
13
+ ## 🚀 Key Features
14
+
15
+ - **Interactive SQL Interface** - Rich syntax highlighting for enhanced query writing
16
+ - **Context-Aware Suggestions** - Intelligent SQL autocompletion based on query context and schema
17
+ - **DuckDB Integration** - Powerful analytical queries powered by DuckDB
18
+ - **Multi-Format Support** - Import and query Excel (.xlsx, .xls), CSV, and Parquet files effortlessly
19
+ - **Modern UI** - Clean, tabular results display with intuitive controls
20
+ - **Table Preview** - Quick view of imported data tables
21
+ - **Test Data Generation** - Built-in sample data for testing and learning
22
+ - **Multiple Views** - Support for multiple concurrent table views
23
+ - **Productivity Tools** - Streamlined workflow with keyboard shortcuts (e.g., Ctrl+Enter for query execution)
24
+ - **Explain Column** - Analyze relationships between data columns directly from query results
25
+
26
+ ## 📦 Installation
27
+
28
+ ### Using pip (Recommended)
29
+
30
+ ```bash
31
+ pip install sqlshell
32
+ ```
33
+
34
+ ### Linux Setup with Virtual Environment
35
+
36
+ ```bash
37
+ # Create and activate virtual environment
38
+ python3 -m venv ~/.venv/sqlshell
39
+ source ~/.venv/sqlshell/bin/activate
40
+
41
+ # Install SQLShell
42
+ pip install sqlshell
43
+
44
+ # Configure shell alias
45
+ echo 'alias sqls="~/.venv/sqlshell/bin/sqls"' >> ~/.bashrc # or ~/.zshrc for Zsh
46
+ source ~/.bashrc # or source ~/.zshrc
47
+ ```
48
+
49
+ ### Development Installation
50
+
51
+ ```bash
52
+ git clone https://github.com/oyvinrog/SQLShell.git
53
+ cd SQLShell
54
+ pip install -e .
55
+ ```
56
+
57
+ ## 🎯 Getting Started
58
+
59
+ 1. **Launch the Application**
60
+ ```bash
61
+ sqls
62
+ ```
63
+
64
+ If the `sqls` command doesn't work (e.g., "access denied" on Windows), you can use this alternative:
65
+ ```bash
66
+ python -c "import sqlshell; sqlshell.start()"
67
+ ```
68
+
69
+ 2. **Database Connection**
70
+ - SQLShell automatically connects to a local DuckDB database named 'pool.db'
71
+
72
+ 3. **Working with Data Files**
73
+ - Click "Load Files" to select your Excel, CSV, or Parquet files
74
+ - File contents are loaded as queryable SQL tables
75
+ - Query using standard SQL syntax
76
+
77
+ 4. **Query Execution**
78
+ - Enter SQL in the editor
79
+ - Execute using Ctrl+Enter or the "Execute" button
80
+ - View results in the structured output panel
81
+
82
+ 5. **Test Data**
83
+ - Load sample test data using the "Test" button for quick experimentation
84
+
85
+ 6. **Using Context-Aware Suggestions**
86
+ - Press Ctrl+Space to manually trigger suggestions
87
+ - Suggestions appear automatically as you type
88
+ - Context-specific suggestions based on your query position:
89
+ - After SELECT: columns and functions
90
+ - After FROM/JOIN: tables with join conditions
91
+ - After WHERE: columns with appropriate operators
92
+ - Inside functions: relevant column suggestions
93
+
94
+ 7. **Column Analysis**
95
+ - Right-click on column headers in the results pane
96
+ - Access features like sorting, filtering, and the "Explain Column" analysis tool
97
+
98
+ ## 📝 Query Examples
99
+
100
+ ### Basic Join Operation
101
+ ```sql
102
+ SELECT *
103
+ FROM sample_sales_data cd
104
+ INNER JOIN product_catalog pc ON pc.productid = cd.productid
105
+ LIMIT 3;
106
+ ```
107
+
108
+ ### Multi-Statement Queries
109
+ ```sql
110
+ -- Create a temporary view
111
+ CREATE OR REPLACE TEMPORARY VIEW test_v AS
112
+ SELECT *
113
+ FROM sample_sales_data cd
114
+ INNER JOIN product_catalog pc ON pc.productid = cd.productid;
115
+
116
+ -- Query the view
117
+ SELECT DISTINCT productid
118
+ FROM test_v;
119
+ ```
120
+
121
+ ## 💡 Pro Tips
122
+
123
+ - Use temporary views for complex query organization
124
+ - Leverage keyboard shortcuts for efficient workflow
125
+ - Explore the multi-format support for various data sources
126
+ - Create multiple tabs for parallel query development
127
+ - The context-aware suggestions learn from your query patterns
128
+ - Type `table_name.` to see all columns for a specific table
129
+ - After JOIN keyword, the system suggests relevant tables and join conditions
130
+
131
+ ## 📊 Table Profiling
132
+
133
+ SQLShell provides powerful table profiling tools to help you understand your data. These tools are accessible from the left-hand side table menu via right-click on any table:
134
+
135
+ <div align="center">
136
+ <img src="https://github.com/oyvinrog/SQLShell/raw/main/column_profiler.png" alt="Column Profiler" width="80%" height="auto">
137
+ </div>
138
+
139
+ ### Table Profiling Options
140
+
141
+ Right-click on any table in the left panel to access these profiling tools:
142
+
143
+ 1. **Analyze Column Importance**
144
+ - Calculates entropy for each column to identify the most information-rich fields
145
+ - Visualizes column importance with color-coded bars
146
+ - Helps identify which columns are most useful for analysis and modeling
147
+
148
+ 2. **Profile Table Structure**
149
+ - Identifies candidate keys and functional dependencies
150
+ - Discovers potential primary keys and relationships between columns
151
+ - Suggests possible normalized table structures
152
+ - Helps understand table organization and optimize schema design
153
+
154
+ 3. **Analyze Column Distributions**
155
+ - Generates histograms, box plots, and other statistical visualizations
156
+ - Identifies the distribution pattern of each column (normal, uniform, etc.)
157
+ - Provides detailed statistics like min, max, mean, median, skewness
158
+ - Helps identify outliers and understand data patterns
159
+
160
+ 4. **Analyze Foreign Keys** (multi-table selection)
161
+ - Select multiple tables by holding Ctrl or Shift while clicking
162
+ - Right-click to access "Analyze Foreign Keys Between X Tables"
163
+ - Automatically discovers potential foreign key relationships between tables
164
+ - Identifies matching columns that could serve as join conditions
165
+ - Helps understand cross-table relationships in your data model
166
+
167
+ ### Using the Profilers
168
+
169
+ 1. **Access the Profilers**
170
+ - Right-click on any table in the schema browser
171
+ - Select the desired profiling option from the context menu
172
+ - For foreign key analysis, select multiple tables first
173
+
174
+ 2. **Interpret the Results**
175
+ - Each profiler provides interactive visualizations
176
+ - Hover over charts for detailed information
177
+ - Switch between different views using the tabs
178
+ - Sort and filter results to focus on specific columns
179
+
180
+ 3. **Benefits**
181
+ - Quickly understand data composition without writing queries
182
+ - Identify data quality issues and outliers
183
+ - Discover relationships between columns
184
+ - Make informed decisions about query optimization
185
+
186
+ The table profiling tools are invaluable for exploratory data analysis, helping you gain insights before writing complex queries.
187
+
188
+ ## 📊 Column Analysis
189
+
190
+ SQLShell provides powerful tools to analyze individual columns directly from your query results:
191
+
192
+ ### Explain Column Feature
193
+
194
+ The "Explain Column" feature helps you understand the relationships between columns in your query results:
195
+
196
+ 1. **How to Access**:
197
+ - Right-click on any column header in the query results table
198
+ - Select "Explain Column" from the context menu
199
+
200
+ 2. **What It Does**:
201
+ - Analyzes the selected column's relationship with other columns in the result set
202
+ - Identifies correlations and dependencies between columns
203
+ - Provides visualizations to help understand the column's importance and distribution
204
+
205
+ 3. **Benefits**:
206
+ - Quickly identify which columns are most related to your target column
207
+ - Discover hidden patterns and relationships in your data
208
+ - Make data-driven decisions without writing complex analytical queries
209
+
210
+ ### Multivariate Analysis Feature
211
+
212
+ The Column Profiler now offers in-depth multivariate analysis to explore relationships between columns:
213
+
214
+ 1. **How to Access**:
215
+ - In the Column Profiler, double-click on any feature in the importance table
216
+ - A detailed visualization window will appear showing the relationship between the selected feature and the target column
217
+
218
+ 2. **Smart Visualizations**:
219
+ - Automatically selects the most appropriate visualization based on data types:
220
+ - **Numeric vs. Numeric**: Scatter plot with regression line
221
+ - **Categorical vs. Numeric**: Bar chart showing average values
222
+ - **Numeric vs. Categorical**: Box plot showing distribution
223
+ - **Categorical vs. Categorical**: Heatmap showing relationship strength
224
+
225
+ 3. **Benefits**:
226
+ - Gain deeper insights into how features relate to your target variable
227
+ - Understand which features have strong predictive relationships
228
+ - Identify patterns and outliers in multivariate relationships
229
+ - Make better decisions about feature selection for analysis and modeling
230
+
231
+ This feature is particularly useful for exploratory data analysis, helping you understand your data structure and relationships on the fly.
232
+
233
+ ## 📋 Requirements
234
+
235
+ - Python 3.8 or higher
236
+ - Dependencies (automatically installed):
237
+ - PyQt6 ≥ 6.4.0
238
+ - DuckDB ≥ 0.9.0
239
+ - Pandas ≥ 2.0.0
240
+ - NumPy ≥ 1.24.0
241
+ - openpyxl ≥ 3.1.0 (Excel support)
242
+ - pyarrow ≥ 14.0.1 (Parquet support)
243
+ - fastparquet ≥ 2023.10.1 (Alternative parquet engine)
244
+ - xlrd ≥ 2.0.1 (Support for older .xls files)
245
+
246
+ ## 📄 License
247
+
248
+ This project is licensed under the MIT License - see the LICENSE file for details.