sqlshell 0.1.9__tar.gz → 0.2.0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of sqlshell might be problematic. Click here for more details.

Files changed (101) hide show
  1. sqlshell-0.2.0/.gitignore +87 -0
  2. sqlshell-0.2.0/MANIFEST.in +20 -0
  3. sqlshell-0.2.0/PKG-INFO +198 -0
  4. sqlshell-0.2.0/README.md +170 -0
  5. sqlshell-0.2.0/column_profiler.png +0 -0
  6. {sqlshell-0.1.9 → sqlshell-0.2.0}/pyproject.toml +35 -5
  7. sqlshell-0.2.0/requirements.txt +10 -0
  8. sqlshell-0.2.0/run.py +29 -0
  9. sqlshell-0.2.0/sqlshell/LICENSE +21 -0
  10. sqlshell-0.2.0/sqlshell/MANIFEST.in +6 -0
  11. sqlshell-0.2.0/sqlshell/README.md +59 -0
  12. sqlshell-0.2.0/sqlshell/context_suggester.py +765 -0
  13. sqlshell-0.2.0/sqlshell/create_test_data.py +126 -0
  14. {sqlshell-0.1.9 → sqlshell-0.2.0}/sqlshell/db/database_manager.py +152 -6
  15. {sqlshell-0.1.9 → sqlshell-0.2.0}/sqlshell/editor.py +68 -11
  16. {sqlshell-0.1.9 → sqlshell-0.2.0}/sqlshell/main.py +1566 -656
  17. sqlshell-0.2.0/sqlshell/menus.py +171 -0
  18. {sqlshell-0.1.9 → sqlshell-0.2.0}/sqlshell/query_tab.py +32 -3
  19. sqlshell-0.2.0/sqlshell/styles.py +257 -0
  20. sqlshell-0.2.0/sqlshell/suggester_integration.py +275 -0
  21. sqlshell-0.2.0/sqlshell/table_list.py +907 -0
  22. sqlshell-0.2.0/sqlshell/utils/__init__.py +8 -0
  23. sqlshell-0.2.0/sqlshell/utils/profile_entropy.py +347 -0
  24. sqlshell-0.2.0/sqlshell/utils/profile_keys.py +356 -0
  25. sqlshell-0.2.0/sqlshell.egg-info/PKG-INFO +198 -0
  26. sqlshell-0.2.0/sqlshell.egg-info/SOURCES.txt +51 -0
  27. {sqlshell-0.1.9 → sqlshell-0.2.0}/sqlshell.egg-info/requires.txt +2 -0
  28. sqlshell-0.2.0/sqlshell_demo.png +0 -0
  29. sqlshell-0.2.0/sqlshell_logo.png +0 -0
  30. sqlshell-0.1.9/MANIFEST.in +0 -10
  31. sqlshell-0.1.9/PKG-INFO +0 -122
  32. sqlshell-0.1.9/README.md +0 -93
  33. sqlshell-0.1.9/pool.db +0 -0
  34. sqlshell-0.1.9/setup.py +0 -57
  35. sqlshell-0.1.9/sqlshell/create_test_data.py +0 -50
  36. sqlshell-0.1.9/sqlshell/setup.py +0 -42
  37. sqlshell-0.1.9/sqlshell.egg-info/PKG-INFO +0 -122
  38. sqlshell-0.1.9/sqlshell.egg-info/SOURCES.txt +0 -76
  39. sqlshell-0.1.9/sqlshell_demo.png +0 -0
  40. sqlshell-0.1.9/sqlshell_logo.png +0 -0
  41. sqlshell-0.1.9/test_data/by_category.parquet +0 -0
  42. sqlshell-0.1.9/test_data/city_coordinates.csv +0 -9
  43. sqlshell-0.1.9/test_data/city_coordinates.parquet +0 -0
  44. sqlshell-0.1.9/test_data/city_coordinates.xlsx +0 -0
  45. sqlshell-0.1.9/test_data/customer_data.csv +0 -101
  46. sqlshell-0.1.9/test_data/customer_data.parquet +0 -0
  47. sqlshell-0.1.9/test_data/customer_data.xlsx +0 -0
  48. sqlshell-0.1.9/test_data/customers_by_country.parquet +0 -0
  49. sqlshell-0.1.9/test_data/delete_me.parquet +0 -0
  50. sqlshell-0.1.9/test_data/joined_test.parquet +0 -0
  51. sqlshell-0.1.9/test_data/price_by_category.parquet +0 -0
  52. sqlshell-0.1.9/test_data/product_catalog.csv +0 -51
  53. sqlshell-0.1.9/test_data/product_catalog.parquet +0 -0
  54. sqlshell-0.1.9/test_data/product_catalog.xlsx +0 -0
  55. sqlshell-0.1.9/test_data/product_categories.csv +0 -81
  56. sqlshell-0.1.9/test_data/product_categories.parquet +0 -0
  57. sqlshell-0.1.9/test_data/product_categories.xlsx +0 -0
  58. sqlshell-0.1.9/test_data/s1.parquet +0 -0
  59. sqlshell-0.1.9/test_data/sample_sales_data.csv +0 -1001
  60. sqlshell-0.1.9/test_data/sample_sales_data.parquet +0 -0
  61. sqlshell-0.1.9/test_data/sample_sales_data.xlsx +0 -0
  62. sqlshell-0.1.9/test_data/stock_data.csv +0 -101
  63. sqlshell-0.1.9/test_data/stock_data.parquet +0 -0
  64. sqlshell-0.1.9/test_data/stock_data.xlsx +0 -0
  65. sqlshell-0.1.9/test_data/test.db +0 -0
  66. sqlshell-0.1.9/test_data/test.duckdb +0 -0
  67. sqlshell-0.1.9/test_data/test2.parquet +0 -0
  68. sqlshell-0.1.9/test_data/test3.parquet +0 -0
  69. sqlshell-0.1.9/test_data/test3.xlsx +0 -0
  70. sqlshell-0.1.9/test_data/test4.xlsx +0 -0
  71. sqlshell-0.1.9/test_data/test5.xlsx +0 -0
  72. sqlshell-0.1.9/test_data/testproject.sqls +0 -139
  73. sqlshell-0.1.9/test_data/vaaaa.xlsx +0 -0
  74. sqlshell-0.1.9/test_data/weather_measurements.csv +0 -366
  75. sqlshell-0.1.9/test_data/weather_measurements.parquet +0 -0
  76. sqlshell-0.1.9/test_data/weather_measurements.xlsx +0 -0
  77. sqlshell-0.1.9/test_data/yo.parquet +0 -0
  78. {sqlshell-0.1.9 → sqlshell-0.2.0}/setup.cfg +0 -0
  79. {sqlshell-0.1.9 → sqlshell-0.2.0}/sqlshell/__init__.py +0 -0
  80. {sqlshell-0.1.9 → sqlshell-0.2.0}/sqlshell/data/create_test_data.py +0 -0
  81. {sqlshell-0.1.9 → sqlshell-0.2.0}/sqlshell/db/__init__.py +0 -0
  82. {sqlshell-0.1.9 → sqlshell-0.2.0}/sqlshell/resources/__init__.py +0 -0
  83. {sqlshell-0.1.9 → sqlshell-0.2.0}/sqlshell/resources/create_icon.py +0 -0
  84. {sqlshell-0.1.9 → sqlshell-0.2.0}/sqlshell/resources/create_splash.py +0 -0
  85. {sqlshell-0.1.9 → sqlshell-0.2.0}/sqlshell/resources/icon.png +0 -0
  86. {sqlshell-0.1.9 → sqlshell-0.2.0}/sqlshell/resources/logo_large.png +0 -0
  87. {sqlshell-0.1.9 → sqlshell-0.2.0}/sqlshell/resources/logo_medium.png +0 -0
  88. {sqlshell-0.1.9 → sqlshell-0.2.0}/sqlshell/resources/logo_small.png +0 -0
  89. {sqlshell-0.1.9 → sqlshell-0.2.0}/sqlshell/resources/splash_screen.gif +0 -0
  90. {sqlshell-0.1.9 → sqlshell-0.2.0}/sqlshell/splash_screen.py +0 -0
  91. {sqlshell-0.1.9 → sqlshell-0.2.0}/sqlshell/sqlshell/__init__.py +0 -0
  92. {sqlshell-0.1.9 → sqlshell-0.2.0}/sqlshell/sqlshell/create_test_data.py +0 -0
  93. {sqlshell-0.1.9 → sqlshell-0.2.0}/sqlshell/sqlshell/create_test_databases.py +0 -0
  94. {sqlshell-0.1.9 → sqlshell-0.2.0}/sqlshell/sqlshell_demo.png +0 -0
  95. {sqlshell-0.1.9 → sqlshell-0.2.0}/sqlshell/syntax_highlighter.py +0 -0
  96. {sqlshell-0.1.9 → sqlshell-0.2.0}/sqlshell/ui/__init__.py +0 -0
  97. {sqlshell-0.1.9 → sqlshell-0.2.0}/sqlshell/ui/bar_chart_delegate.py +0 -0
  98. {sqlshell-0.1.9 → sqlshell-0.2.0}/sqlshell/ui/filter_header.py +0 -0
  99. {sqlshell-0.1.9 → sqlshell-0.2.0}/sqlshell.egg-info/dependency_links.txt +0 -0
  100. {sqlshell-0.1.9 → sqlshell-0.2.0}/sqlshell.egg-info/entry_points.txt +0 -0
  101. {sqlshell-0.1.9 → sqlshell-0.2.0}/sqlshell.egg-info/top_level.txt +0 -0
@@ -0,0 +1,87 @@
1
+ # Python
2
+ __pycache__/
3
+ *.py[cod]
4
+ *$py.class
5
+ *.so
6
+ .Python
7
+ build/
8
+ develop-eggs/
9
+ dist/
10
+ downloads/
11
+ eggs/
12
+ .eggs/
13
+ lib/
14
+ lib64/
15
+ parts/
16
+ sdist/
17
+ var/
18
+ wheels/
19
+ *.egg-info/
20
+ .installed.cfg
21
+ *.egg
22
+
23
+ # Test data files
24
+ tests/data/*.db
25
+ tests/data/*.parquet
26
+ tests/data/*.xlsx
27
+ tests/data/*.xls
28
+ tests/data/*.csv
29
+ tests/data/*.delta
30
+ tests/data/*.duckdb
31
+ tests/data/*.sqls
32
+
33
+ # IDE
34
+ .idea/
35
+ .vscode/
36
+ *.swp
37
+ *.swo
38
+
39
+ # Environment
40
+ .env
41
+ .venv
42
+ env/
43
+ venv/
44
+ ENV/
45
+
46
+ # Distribution
47
+ dist/
48
+ build/
49
+ *.egg-info/
50
+
51
+ # Generated files
52
+ *.log
53
+ .coverage
54
+ htmlcov/
55
+
56
+ # Virtual Environment
57
+ venv/
58
+ env/
59
+ ENV/
60
+ .env
61
+ .venv
62
+
63
+ # Project specific
64
+ *.db
65
+ *.xlsx
66
+ *.xls
67
+ *.csv
68
+ sample_sales_data.xlsx
69
+ pool.db
70
+
71
+ # Logs
72
+ *.log
73
+ logs/
74
+
75
+ # OS specific
76
+ .DS_Store
77
+ Thumbs.db
78
+ desktop.ini
79
+
80
+ # Distribution / packaging
81
+ *.spec
82
+ *.manifest
83
+ *.spec
84
+ *.parquet
85
+ *.sqls
86
+ sqlshell-0.2.0/
87
+ TODO
@@ -0,0 +1,20 @@
1
+ include README.md
2
+ include LICENSE
3
+ include sqlshell_logo.png
4
+ include sqlshell_demo.png
5
+ include pool.db
6
+ include sqlshell/resources/*.png
7
+ include sqlshell/resources/*.gif
8
+ include sqlshell/data/*.py
9
+ global-exclude __pycache__
10
+ global-exclude *.py[cod]
11
+ global-exclude tests/data
12
+ global-exclude */tests/data
13
+ global-exclude *.db
14
+ global-exclude *.parquet
15
+ global-exclude *.xlsx
16
+ global-exclude *.xls
17
+ global-exclude *.csv
18
+ global-exclude *.delta
19
+ global-exclude test.duckdb
20
+ prune tests/data
@@ -0,0 +1,198 @@
1
+ Metadata-Version: 2.4
2
+ Name: sqlshell
3
+ Version: 0.2.0
4
+ Summary: A powerful SQL shell with GUI interface for data analysis
5
+ Author: SQLShell Team
6
+ License-Expression: MIT
7
+ Project-URL: Homepage, https://github.com/oyvinrog/SQLShell
8
+ Keywords: sql,data analysis,gui,duckdb
9
+ Classifier: Development Status :: 3 - Alpha
10
+ Classifier: Intended Audience :: Developers
11
+ Classifier: Programming Language :: Python :: 3
12
+ Classifier: Programming Language :: Python :: 3.8
13
+ Classifier: Programming Language :: Python :: 3.9
14
+ Classifier: Programming Language :: Python :: 3.10
15
+ Classifier: Programming Language :: Python :: 3.11
16
+ Requires-Python: >=3.8
17
+ Description-Content-Type: text/markdown
18
+ Requires-Dist: pandas>=2.0.0
19
+ Requires-Dist: numpy>=1.24.0
20
+ Requires-Dist: PyQt6>=6.4.0
21
+ Requires-Dist: duckdb>=0.9.0
22
+ Requires-Dist: openpyxl>=3.1.0
23
+ Requires-Dist: pyarrow>=14.0.1
24
+ Requires-Dist: fastparquet>=2023.10.1
25
+ Requires-Dist: xlrd>=2.0.1
26
+ Requires-Dist: deltalake
27
+ Requires-Dist: Pillow>=10.0.0
28
+
29
+ # SQLShell
30
+
31
+ <div align="center">
32
+
33
+ <img src="sqlshell_logo.png" alt="SQLShell Logo" width="180" height="auto">
34
+
35
+ **A powerful SQL shell with GUI interface for data analysis**
36
+
37
+ <img src="sqlshell_demo.png" alt="SQLShell Interface" width="80%" height="auto">
38
+
39
+ </div>
40
+
41
+ ## 🚀 Key Features
42
+
43
+ - **Interactive SQL Interface** - Rich syntax highlighting for enhanced query writing
44
+ - **Context-Aware Suggestions** - Intelligent SQL autocompletion based on query context and schema
45
+ - **DuckDB Integration** - Powerful analytical queries powered by DuckDB
46
+ - **Multi-Format Support** - Import and query Excel (.xlsx, .xls), CSV, and Parquet files effortlessly
47
+ - **Modern UI** - Clean, tabular results display with intuitive controls
48
+ - **Table Preview** - Quick view of imported data tables
49
+ - **Test Data Generation** - Built-in sample data for testing and learning
50
+ - **Multiple Views** - Support for multiple concurrent table views
51
+ - **Productivity Tools** - Streamlined workflow with keyboard shortcuts (e.g., Ctrl+Enter for query execution)
52
+
53
+ ## 📦 Installation
54
+
55
+ ### Using pip (Recommended)
56
+
57
+ ```bash
58
+ pip install sqlshell
59
+ ```
60
+
61
+ ### Linux Setup with Virtual Environment
62
+
63
+ ```bash
64
+ # Create and activate virtual environment
65
+ python3 -m venv ~/.venv/sqlshell
66
+ source ~/.venv/sqlshell/bin/activate
67
+
68
+ # Install SQLShell
69
+ pip install sqlshell
70
+
71
+ # Configure shell alias
72
+ echo 'alias sqls="~/.venv/sqlshell/bin/sqls"' >> ~/.bashrc # or ~/.zshrc for Zsh
73
+ source ~/.bashrc # or source ~/.zshrc
74
+ ```
75
+
76
+ ### Development Installation
77
+
78
+ ```bash
79
+ git clone https://github.com/oyvinrog/SQLShell.git
80
+ cd SQLShell
81
+ pip install -e .
82
+ ```
83
+
84
+ ## 🎯 Getting Started
85
+
86
+ 1. **Launch the Application**
87
+ ```bash
88
+ sqls
89
+ ```
90
+
91
+ If the `sqls` command doesn't work (e.g., "access denied" on Windows), you can use this alternative:
92
+ ```bash
93
+ python -c "import sqlshell; sqlshell.start()"
94
+ ```
95
+
96
+ 2. **Database Connection**
97
+ - SQLShell automatically connects to a local DuckDB database named 'pool.db'
98
+
99
+ 3. **Working with Data Files**
100
+ - Click "Load Files" to select your Excel, CSV, or Parquet files
101
+ - File contents are loaded as queryable SQL tables
102
+ - Query using standard SQL syntax
103
+
104
+ 4. **Query Execution**
105
+ - Enter SQL in the editor
106
+ - Execute using Ctrl+Enter or the "Execute" button
107
+ - View results in the structured output panel
108
+
109
+ 5. **Test Data**
110
+ - Load sample test data using the "Test" button for quick experimentation
111
+
112
+ 6. **Using Context-Aware Suggestions**
113
+ - Press Ctrl+Space to manually trigger suggestions
114
+ - Suggestions appear automatically as you type
115
+ - Context-specific suggestions based on your query position:
116
+ - After SELECT: columns and functions
117
+ - After FROM/JOIN: tables with join conditions
118
+ - After WHERE: columns with appropriate operators
119
+ - Inside functions: relevant column suggestions
120
+
121
+ ## 📝 Query Examples
122
+
123
+ ### Basic Join Operation
124
+ ```sql
125
+ SELECT *
126
+ FROM sample_sales_data cd
127
+ INNER JOIN product_catalog pc ON pc.productid = cd.productid
128
+ LIMIT 3;
129
+ ```
130
+
131
+ ### Multi-Statement Queries
132
+ ```sql
133
+ -- Create a temporary view
134
+ CREATE OR REPLACE TEMPORARY VIEW test_v AS
135
+ SELECT *
136
+ FROM sample_sales_data cd
137
+ INNER JOIN product_catalog pc ON pc.productid = cd.productid;
138
+
139
+ -- Query the view
140
+ SELECT DISTINCT productid
141
+ FROM test_v;
142
+ ```
143
+
144
+ ## 💡 Pro Tips
145
+
146
+ - Use temporary views for complex query organization
147
+ - Leverage keyboard shortcuts for efficient workflow
148
+ - Explore the multi-format support for various data sources
149
+ - Create multiple tabs for parallel query development
150
+ - The context-aware suggestions learn from your query patterns
151
+ - Type `table_name.` to see all columns for a specific table
152
+ - After JOIN keyword, the system suggests relevant tables and join conditions
153
+
154
+ ## 📊 Column Profiler
155
+
156
+ The Column Profiler provides quick statistical insights into your table columns:
157
+
158
+ <img src="column_profiler.png" alt="Column Profiler" width="80%" height="auto">
159
+
160
+ ### Using the Column Profiler
161
+
162
+ 1. **Access the Profiler**
163
+ - Right-click on any table in the schema browser
164
+ - Select "Profile Table" from the context menu
165
+
166
+ 2. **View Column Statistics**
167
+ - Instantly see key metrics for each column:
168
+ - Data type
169
+ - Non-null count and percentage
170
+ - Unique values count
171
+ - Mean, median, min, and max values (for numeric columns)
172
+ - Most frequent values and their counts
173
+ - Distribution visualization
174
+
175
+ 3. **Benefits**
176
+ - Quickly understand data distribution
177
+ - Identify outliers and data quality issues
178
+ - Make informed decisions about query conditions
179
+ - Assess column cardinality for join operations
180
+
181
+ The Column Profiler is an invaluable tool for exploratory data analysis, helping you gain insights before writing complex queries.
182
+
183
+ ## 📋 Requirements
184
+
185
+ - Python 3.8 or higher
186
+ - Dependencies (automatically installed):
187
+ - PyQt6 ≥ 6.4.0
188
+ - DuckDB ≥ 0.9.0
189
+ - Pandas ≥ 2.0.0
190
+ - NumPy ≥ 1.24.0
191
+ - openpyxl ≥ 3.1.0 (Excel support)
192
+ - pyarrow ≥ 14.0.1 (Parquet support)
193
+ - fastparquet ≥ 2023.10.1 (Alternative parquet engine)
194
+ - xlrd ≥ 2.0.1 (Support for older .xls files)
195
+
196
+ ## 📄 License
197
+
198
+ This project is licensed under the MIT License - see the LICENSE file for details.
@@ -0,0 +1,170 @@
1
+ # SQLShell
2
+
3
+ <div align="center">
4
+
5
+ <img src="sqlshell_logo.png" alt="SQLShell Logo" width="180" height="auto">
6
+
7
+ **A powerful SQL shell with GUI interface for data analysis**
8
+
9
+ <img src="sqlshell_demo.png" alt="SQLShell Interface" width="80%" height="auto">
10
+
11
+ </div>
12
+
13
+ ## 🚀 Key Features
14
+
15
+ - **Interactive SQL Interface** - Rich syntax highlighting for enhanced query writing
16
+ - **Context-Aware Suggestions** - Intelligent SQL autocompletion based on query context and schema
17
+ - **DuckDB Integration** - Powerful analytical queries powered by DuckDB
18
+ - **Multi-Format Support** - Import and query Excel (.xlsx, .xls), CSV, and Parquet files effortlessly
19
+ - **Modern UI** - Clean, tabular results display with intuitive controls
20
+ - **Table Preview** - Quick view of imported data tables
21
+ - **Test Data Generation** - Built-in sample data for testing and learning
22
+ - **Multiple Views** - Support for multiple concurrent table views
23
+ - **Productivity Tools** - Streamlined workflow with keyboard shortcuts (e.g., Ctrl+Enter for query execution)
24
+
25
+ ## 📦 Installation
26
+
27
+ ### Using pip (Recommended)
28
+
29
+ ```bash
30
+ pip install sqlshell
31
+ ```
32
+
33
+ ### Linux Setup with Virtual Environment
34
+
35
+ ```bash
36
+ # Create and activate virtual environment
37
+ python3 -m venv ~/.venv/sqlshell
38
+ source ~/.venv/sqlshell/bin/activate
39
+
40
+ # Install SQLShell
41
+ pip install sqlshell
42
+
43
+ # Configure shell alias
44
+ echo 'alias sqls="~/.venv/sqlshell/bin/sqls"' >> ~/.bashrc # or ~/.zshrc for Zsh
45
+ source ~/.bashrc # or source ~/.zshrc
46
+ ```
47
+
48
+ ### Development Installation
49
+
50
+ ```bash
51
+ git clone https://github.com/oyvinrog/SQLShell.git
52
+ cd SQLShell
53
+ pip install -e .
54
+ ```
55
+
56
+ ## 🎯 Getting Started
57
+
58
+ 1. **Launch the Application**
59
+ ```bash
60
+ sqls
61
+ ```
62
+
63
+ If the `sqls` command doesn't work (e.g., "access denied" on Windows), you can use this alternative:
64
+ ```bash
65
+ python -c "import sqlshell; sqlshell.start()"
66
+ ```
67
+
68
+ 2. **Database Connection**
69
+ - SQLShell automatically connects to a local DuckDB database named 'pool.db'
70
+
71
+ 3. **Working with Data Files**
72
+ - Click "Load Files" to select your Excel, CSV, or Parquet files
73
+ - File contents are loaded as queryable SQL tables
74
+ - Query using standard SQL syntax
75
+
76
+ 4. **Query Execution**
77
+ - Enter SQL in the editor
78
+ - Execute using Ctrl+Enter or the "Execute" button
79
+ - View results in the structured output panel
80
+
81
+ 5. **Test Data**
82
+ - Load sample test data using the "Test" button for quick experimentation
83
+
84
+ 6. **Using Context-Aware Suggestions**
85
+ - Press Ctrl+Space to manually trigger suggestions
86
+ - Suggestions appear automatically as you type
87
+ - Context-specific suggestions based on your query position:
88
+ - After SELECT: columns and functions
89
+ - After FROM/JOIN: tables with join conditions
90
+ - After WHERE: columns with appropriate operators
91
+ - Inside functions: relevant column suggestions
92
+
93
+ ## 📝 Query Examples
94
+
95
+ ### Basic Join Operation
96
+ ```sql
97
+ SELECT *
98
+ FROM sample_sales_data cd
99
+ INNER JOIN product_catalog pc ON pc.productid = cd.productid
100
+ LIMIT 3;
101
+ ```
102
+
103
+ ### Multi-Statement Queries
104
+ ```sql
105
+ -- Create a temporary view
106
+ CREATE OR REPLACE TEMPORARY VIEW test_v AS
107
+ SELECT *
108
+ FROM sample_sales_data cd
109
+ INNER JOIN product_catalog pc ON pc.productid = cd.productid;
110
+
111
+ -- Query the view
112
+ SELECT DISTINCT productid
113
+ FROM test_v;
114
+ ```
115
+
116
+ ## 💡 Pro Tips
117
+
118
+ - Use temporary views for complex query organization
119
+ - Leverage keyboard shortcuts for efficient workflow
120
+ - Explore the multi-format support for various data sources
121
+ - Create multiple tabs for parallel query development
122
+ - The context-aware suggestions learn from your query patterns
123
+ - Type `table_name.` to see all columns for a specific table
124
+ - After JOIN keyword, the system suggests relevant tables and join conditions
125
+
126
+ ## 📊 Column Profiler
127
+
128
+ The Column Profiler provides quick statistical insights into your table columns:
129
+
130
+ <img src="column_profiler.png" alt="Column Profiler" width="80%" height="auto">
131
+
132
+ ### Using the Column Profiler
133
+
134
+ 1. **Access the Profiler**
135
+ - Right-click on any table in the schema browser
136
+ - Select "Profile Table" from the context menu
137
+
138
+ 2. **View Column Statistics**
139
+ - Instantly see key metrics for each column:
140
+ - Data type
141
+ - Non-null count and percentage
142
+ - Unique values count
143
+ - Mean, median, min, and max values (for numeric columns)
144
+ - Most frequent values and their counts
145
+ - Distribution visualization
146
+
147
+ 3. **Benefits**
148
+ - Quickly understand data distribution
149
+ - Identify outliers and data quality issues
150
+ - Make informed decisions about query conditions
151
+ - Assess column cardinality for join operations
152
+
153
+ The Column Profiler is an invaluable tool for exploratory data analysis, helping you gain insights before writing complex queries.
154
+
155
+ ## 📋 Requirements
156
+
157
+ - Python 3.8 or higher
158
+ - Dependencies (automatically installed):
159
+ - PyQt6 ≥ 6.4.0
160
+ - DuckDB ≥ 0.9.0
161
+ - Pandas ≥ 2.0.0
162
+ - NumPy ≥ 1.24.0
163
+ - openpyxl ≥ 3.1.0 (Excel support)
164
+ - pyarrow ≥ 14.0.1 (Parquet support)
165
+ - fastparquet ≥ 2023.10.1 (Alternative parquet engine)
166
+ - xlrd ≥ 2.0.1 (Support for older .xls files)
167
+
168
+ ## 📄 License
169
+
170
+ This project is licensed under the MIT License - see the LICENSE file for details.
Binary file
@@ -1,10 +1,10 @@
1
1
  [build-system]
2
- requires = ["setuptools>=45", "wheel"]
2
+ requires = ["setuptools>=61.0", "wheel>=0.37.0", "setuptools_scm>=6.0"]
3
3
  build-backend = "setuptools.build_meta"
4
4
 
5
5
  [project]
6
6
  name = "sqlshell"
7
- version = "0.1.9"
7
+ version = "0.2.0"
8
8
  description = "A powerful SQL shell with GUI interface for data analysis"
9
9
  readme = "README.md"
10
10
  authors = [
@@ -12,7 +12,7 @@ authors = [
12
12
  ]
13
13
  requires-python = ">=3.8"
14
14
  keywords = ["sql", "data analysis", "gui", "duckdb"]
15
- license = {text = "MIT"}
15
+ license = "MIT"
16
16
  classifiers = [
17
17
  "Development Status :: 3 - Alpha",
18
18
  "Intended Audience :: Developers",
@@ -30,11 +30,41 @@ dependencies = [
30
30
  "openpyxl>=3.1.0",
31
31
  "pyarrow>=14.0.1",
32
32
  "fastparquet>=2023.10.1",
33
- "xlrd>=2.0.1"
33
+ "xlrd>=2.0.1",
34
+ "deltalake",
35
+ "Pillow>=10.0.0"
34
36
  ]
35
37
 
36
38
  [project.urls]
37
39
  Homepage = "https://github.com/oyvinrog/SQLShell"
38
40
 
39
41
  [project.scripts]
40
- sqls = "sqlshell.main:main"
42
+ sqls = "sqlshell.main:main"
43
+
44
+ [tool.setuptools]
45
+ packages = [
46
+ "sqlshell",
47
+ "sqlshell.data",
48
+ "sqlshell.db",
49
+ "sqlshell.resources",
50
+ "sqlshell.sqlshell",
51
+ "sqlshell.ui",
52
+ "sqlshell.utils"
53
+ ]
54
+
55
+ [tool.setuptools.package-data]
56
+ sqlshell = [
57
+ "*.db",
58
+ "resources/*.png",
59
+ "resources/*.gif",
60
+ "data/*.py",
61
+ "*.png",
62
+ "*.ico"
63
+ ]
64
+
65
+ [tool.setuptools.exclude-package-data]
66
+ sqlshell = [
67
+ "tests/*",
68
+ "*/tests/*",
69
+ "tests/data/*"
70
+ ]
@@ -0,0 +1,10 @@
1
+ pandas>=2.0.0
2
+ numpy>=1.24.0
3
+ PyQt6>=6.4.0
4
+ duckdb>=0.9.0
5
+ openpyxl>=3.1.0 # For Excel support
6
+ pyarrow # For parquet support
7
+ fastparquet>=2023.10.1 # Alternative parquet engine
8
+ xlrd>=2.0.1 # For old .xls files
9
+ deltalake # For Delta Lake table support
10
+ Pillow>=10.0.0 # For image processing (used in splash screen and icon creation)
sqlshell-0.2.0/run.py ADDED
@@ -0,0 +1,29 @@
1
+ #!/usr/bin/env python3
2
+ """
3
+ SQLShell - A powerful SQL shell with GUI interface for data analysis
4
+
5
+ This is the main entry point for the application. You can start SQLShell in two ways:
6
+
7
+ 1. Normal way (if 'sqls' command works):
8
+ sqls
9
+
10
+ 2. Alternative way (if 'sqls' command leads to "access denied" on Windows):
11
+ python -c "import sqlshell; sqlshell.start()"
12
+ """
13
+
14
+ import sys
15
+ import os
16
+
17
+ # Add the project root directory to Python path
18
+ project_root = os.path.dirname(os.path.abspath(__file__))
19
+ sys.path.insert(0, project_root)
20
+
21
+ from sqlshell.main import main
22
+
23
+ def start():
24
+ """Start the SQLShell application.
25
+ This function is provided for Windows compatibility when the 'sqls' command doesn't work."""
26
+ main()
27
+
28
+ if __name__ == '__main__':
29
+ main()
@@ -0,0 +1,21 @@
1
+ MIT License
2
+
3
+ Copyright (c) 2024 SQLShell Team
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
@@ -0,0 +1,6 @@
1
+ include LICENSE
2
+ include MANIFEST.in
3
+ include README.md
4
+ include sqlshell_demo.png
5
+ recursive-include sqlshell *.py
6
+ recursive-include sqlshell *.db
@@ -0,0 +1,59 @@
1
+ # SQLShell
2
+
3
+ A powerful SQL shell with GUI interface for data analysis. SQLShell provides an intuitive interface for working with various data formats (CSV, Excel, Parquet) using SQL queries powered by DuckDB.
4
+
5
+ ![SQLShell Interface](sqlshell_demo.png)
6
+
7
+ ## Features
8
+
9
+ - Load and analyze data from CSV, Excel (.xlsx, .xls), and Parquet files
10
+ - Interactive GUI with syntax highlighting
11
+ - Real-time query results
12
+ - Table preview functionality
13
+ - Built-in test data generation
14
+ - Support for multiple concurrent table views
15
+
16
+ ## Installation
17
+
18
+ You can install SQLShell using pip:
19
+
20
+ ```bash
21
+ pip install sqlshell
22
+ ```
23
+
24
+ refer to
25
+
26
+ For development installation:
27
+
28
+ ```bash
29
+ git clone https://github.com/oyvinrog/SQLShell.git
30
+ cd sqlshell
31
+ pip install -e .
32
+ ```
33
+
34
+ ## Usage
35
+
36
+ After installation, you can start SQLShell from anywhere in your terminal by running:
37
+
38
+ ```bash
39
+ sqls
40
+ ```
41
+
42
+ This will open the GUI interface where you can:
43
+ 1. Load data files using the "Load Files" button
44
+ 2. Write SQL queries in the query editor
45
+ 3. Execute queries using the "Execute" button or Ctrl+Enter
46
+ 4. View results in the table view below
47
+ 5. Load sample test data using the "Test" button
48
+
49
+ ## Requirements
50
+
51
+ - Python 3.8 or higher
52
+ - PyQt6
53
+ - DuckDB
54
+ - Pandas
55
+ - Other dependencies will be automatically installed
56
+
57
+ ## License
58
+
59
+ This project is licensed under the MIT License - see the LICENSE file for details.