spotforecast2 0.1.0__tar.gz → 0.1.1__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {spotforecast2-0.1.0 → spotforecast2-0.1.1}/PKG-INFO +1 -1
- {spotforecast2-0.1.0 → spotforecast2-0.1.1}/pyproject.toml +1 -1
- spotforecast2-0.1.1/src/spotforecast2/processing/n2n_predict.py +437 -0
- {spotforecast2-0.1.0 → spotforecast2-0.1.1}/src/spotforecast2/processing/n2n_predict_with_covariates.py +23 -13
- spotforecast2-0.1.0/src/spotforecast2/processing/n2n_predict.py +0 -126
- {spotforecast2-0.1.0 → spotforecast2-0.1.1}/README.md +0 -0
- {spotforecast2-0.1.0 → spotforecast2-0.1.1}/src/spotforecast2/__init__.py +0 -0
- {spotforecast2-0.1.0 → spotforecast2-0.1.1}/src/spotforecast2/data/__init__.py +0 -0
- {spotforecast2-0.1.0 → spotforecast2-0.1.1}/src/spotforecast2/data/data.py +0 -0
- {spotforecast2-0.1.0 → spotforecast2-0.1.1}/src/spotforecast2/data/fetch_data.py +0 -0
- {spotforecast2-0.1.0 → spotforecast2-0.1.1}/src/spotforecast2/exceptions.py +0 -0
- {spotforecast2-0.1.0 → spotforecast2-0.1.1}/src/spotforecast2/forecaster/__init__.py +0 -0
- {spotforecast2-0.1.0 → spotforecast2-0.1.1}/src/spotforecast2/forecaster/base.py +0 -0
- {spotforecast2-0.1.0 → spotforecast2-0.1.1}/src/spotforecast2/forecaster/metrics.py +0 -0
- {spotforecast2-0.1.0 → spotforecast2-0.1.1}/src/spotforecast2/forecaster/recursive/__init__.py +0 -0
- {spotforecast2-0.1.0 → spotforecast2-0.1.1}/src/spotforecast2/forecaster/recursive/_forecaster_equivalent_date.py +0 -0
- {spotforecast2-0.1.0 → spotforecast2-0.1.1}/src/spotforecast2/forecaster/recursive/_forecaster_recursive.py +0 -0
- {spotforecast2-0.1.0 → spotforecast2-0.1.1}/src/spotforecast2/forecaster/recursive/_warnings.py +0 -0
- {spotforecast2-0.1.0 → spotforecast2-0.1.1}/src/spotforecast2/forecaster/utils.py +0 -0
- {spotforecast2-0.1.0 → spotforecast2-0.1.1}/src/spotforecast2/model_selection/__init__.py +0 -0
- {spotforecast2-0.1.0 → spotforecast2-0.1.1}/src/spotforecast2/model_selection/bayesian_search.py +0 -0
- {spotforecast2-0.1.0 → spotforecast2-0.1.1}/src/spotforecast2/model_selection/grid_search.py +0 -0
- {spotforecast2-0.1.0 → spotforecast2-0.1.1}/src/spotforecast2/model_selection/random_search.py +0 -0
- {spotforecast2-0.1.0 → spotforecast2-0.1.1}/src/spotforecast2/model_selection/split_base.py +0 -0
- {spotforecast2-0.1.0 → spotforecast2-0.1.1}/src/spotforecast2/model_selection/split_one_step.py +0 -0
- {spotforecast2-0.1.0 → spotforecast2-0.1.1}/src/spotforecast2/model_selection/split_ts_cv.py +0 -0
- {spotforecast2-0.1.0 → spotforecast2-0.1.1}/src/spotforecast2/model_selection/utils_common.py +0 -0
- {spotforecast2-0.1.0 → spotforecast2-0.1.1}/src/spotforecast2/model_selection/utils_metrics.py +0 -0
- {spotforecast2-0.1.0 → spotforecast2-0.1.1}/src/spotforecast2/model_selection/validation.py +0 -0
- {spotforecast2-0.1.0 → spotforecast2-0.1.1}/src/spotforecast2/preprocessing/__init__.py +0 -0
- {spotforecast2-0.1.0 → spotforecast2-0.1.1}/src/spotforecast2/preprocessing/_binner.py +0 -0
- {spotforecast2-0.1.0 → spotforecast2-0.1.1}/src/spotforecast2/preprocessing/_common.py +0 -0
- {spotforecast2-0.1.0 → spotforecast2-0.1.1}/src/spotforecast2/preprocessing/_differentiator.py +0 -0
- {spotforecast2-0.1.0 → spotforecast2-0.1.1}/src/spotforecast2/preprocessing/_rolling.py +0 -0
- {spotforecast2-0.1.0 → spotforecast2-0.1.1}/src/spotforecast2/preprocessing/curate_data.py +0 -0
- {spotforecast2-0.1.0 → spotforecast2-0.1.1}/src/spotforecast2/preprocessing/imputation.py +0 -0
- {spotforecast2-0.1.0 → spotforecast2-0.1.1}/src/spotforecast2/preprocessing/outlier.py +0 -0
- {spotforecast2-0.1.0 → spotforecast2-0.1.1}/src/spotforecast2/preprocessing/split.py +0 -0
- {spotforecast2-0.1.0 → spotforecast2-0.1.1}/src/spotforecast2/processing/agg_predict.py +0 -0
- {spotforecast2-0.1.0 → spotforecast2-0.1.1}/src/spotforecast2/py.typed +0 -0
- {spotforecast2-0.1.0 → spotforecast2-0.1.1}/src/spotforecast2/utils/__init__.py +0 -0
- {spotforecast2-0.1.0 → spotforecast2-0.1.1}/src/spotforecast2/utils/convert_to_utc.py +0 -0
- {spotforecast2-0.1.0 → spotforecast2-0.1.1}/src/spotforecast2/utils/data_transform.py +0 -0
- {spotforecast2-0.1.0 → spotforecast2-0.1.1}/src/spotforecast2/utils/forecaster_config.py +0 -0
- {spotforecast2-0.1.0 → spotforecast2-0.1.1}/src/spotforecast2/utils/generate_holiday.py +0 -0
- {spotforecast2-0.1.0 → spotforecast2-0.1.1}/src/spotforecast2/utils/validation.py +0 -0
- {spotforecast2-0.1.0 → spotforecast2-0.1.1}/src/spotforecast2/weather/__init__.py +0 -0
- {spotforecast2-0.1.0 → spotforecast2-0.1.1}/src/spotforecast2/weather/weather_client.py +0 -0
|
@@ -0,0 +1,437 @@
|
|
|
1
|
+
"""
|
|
2
|
+
End-to-end baseline forecasting using equivalent date method.
|
|
3
|
+
|
|
4
|
+
This module provides a complete forecasting pipeline using the ForecasterEquivalentDate
|
|
5
|
+
baseline model. It handles data preparation, outlier detection, imputation, model
|
|
6
|
+
training, and prediction in a single integrated function.
|
|
7
|
+
|
|
8
|
+
Model persistence follows scikit-learn conventions using joblib for efficient
|
|
9
|
+
serialization and deserialization of trained forecasters.
|
|
10
|
+
|
|
11
|
+
Examples:
|
|
12
|
+
Basic usage with default parameters:
|
|
13
|
+
|
|
14
|
+
>>> from spotforecast2.processing.n2n_predict import n2n_predict
|
|
15
|
+
>>> predictions = n2n_predict(forecast_horizon=24, verbose=True)
|
|
16
|
+
|
|
17
|
+
Using cached models:
|
|
18
|
+
|
|
19
|
+
>>> # Load existing models if available, or train new ones
|
|
20
|
+
>>> predictions = n2n_predict(
|
|
21
|
+
... forecast_horizon=24,
|
|
22
|
+
... force_train=False,
|
|
23
|
+
... model_dir="./models",
|
|
24
|
+
... verbose=True
|
|
25
|
+
... )
|
|
26
|
+
|
|
27
|
+
Force retraining and update cache:
|
|
28
|
+
|
|
29
|
+
>>> predictions = n2n_predict(
|
|
30
|
+
... forecast_horizon=24,
|
|
31
|
+
... force_train=True,
|
|
32
|
+
... model_dir="./models",
|
|
33
|
+
... verbose=True
|
|
34
|
+
... )
|
|
35
|
+
"""
|
|
36
|
+
|
|
37
|
+
from pathlib import Path
|
|
38
|
+
from typing import Dict, List, Optional, Tuple, Union
|
|
39
|
+
|
|
40
|
+
import pandas as pd
|
|
41
|
+
from spotforecast2.forecaster.recursive import ForecasterEquivalentDate
|
|
42
|
+
from spotforecast2.data.fetch_data import fetch_data
|
|
43
|
+
from spotforecast2.preprocessing.curate_data import basic_ts_checks
|
|
44
|
+
from spotforecast2.preprocessing.curate_data import agg_and_resample_data
|
|
45
|
+
from spotforecast2.preprocessing.outlier import mark_outliers
|
|
46
|
+
from spotforecast2.preprocessing.split import split_rel_train_val_test
|
|
47
|
+
from spotforecast2.forecaster.utils import predict_multivariate
|
|
48
|
+
from spotforecast2.preprocessing.curate_data import get_start_end
|
|
49
|
+
|
|
50
|
+
try:
|
|
51
|
+
from joblib import dump, load
|
|
52
|
+
except ImportError:
|
|
53
|
+
raise ImportError("joblib is required. Install with: pip install joblib")
|
|
54
|
+
|
|
55
|
+
try:
|
|
56
|
+
from tqdm.auto import tqdm
|
|
57
|
+
except ImportError: # pragma: no cover - fallback when tqdm is not installed
|
|
58
|
+
tqdm = None
|
|
59
|
+
|
|
60
|
+
|
|
61
|
+
# ============================================================================
|
|
62
|
+
# Model Persistence Functions
|
|
63
|
+
# ============================================================================
|
|
64
|
+
|
|
65
|
+
|
|
66
|
+
def _ensure_model_dir(model_dir: Union[str, Path]) -> Path:
|
|
67
|
+
"""Ensure model directory exists.
|
|
68
|
+
|
|
69
|
+
Args:
|
|
70
|
+
model_dir: Directory path for model storage.
|
|
71
|
+
|
|
72
|
+
Returns:
|
|
73
|
+
Path: Validated Path object.
|
|
74
|
+
|
|
75
|
+
Raises:
|
|
76
|
+
OSError: If directory cannot be created.
|
|
77
|
+
"""
|
|
78
|
+
model_path = Path(model_dir)
|
|
79
|
+
model_path.mkdir(parents=True, exist_ok=True)
|
|
80
|
+
return model_path
|
|
81
|
+
|
|
82
|
+
|
|
83
|
+
def _get_model_filepath(model_dir: Path, target: str) -> Path:
|
|
84
|
+
"""Get filepath for a single model.
|
|
85
|
+
|
|
86
|
+
Args:
|
|
87
|
+
model_dir: Directory containing models.
|
|
88
|
+
target: Target variable name.
|
|
89
|
+
|
|
90
|
+
Returns:
|
|
91
|
+
Path: Full filepath for the model.
|
|
92
|
+
|
|
93
|
+
Examples:
|
|
94
|
+
>>> path = _get_model_filepath(Path("./models"), "power")
|
|
95
|
+
>>> str(path)
|
|
96
|
+
'./models/forecaster_power.joblib'
|
|
97
|
+
"""
|
|
98
|
+
return model_dir / f"forecaster_{target}.joblib"
|
|
99
|
+
|
|
100
|
+
|
|
101
|
+
def _save_forecasters(
|
|
102
|
+
forecasters: Dict[str, object],
|
|
103
|
+
model_dir: Union[str, Path],
|
|
104
|
+
verbose: bool = False,
|
|
105
|
+
) -> Dict[str, Path]:
|
|
106
|
+
"""Save trained forecasters to disk using joblib.
|
|
107
|
+
|
|
108
|
+
Follows scikit-learn persistence conventions using joblib for efficient
|
|
109
|
+
serialization of sklearn-compatible estimators.
|
|
110
|
+
|
|
111
|
+
Args:
|
|
112
|
+
forecasters: Dictionary mapping target names to trained ForecasterEquivalentDate objects.
|
|
113
|
+
model_dir: Directory to save models. Created if it doesn't exist.
|
|
114
|
+
verbose: Print progress messages. Default: False.
|
|
115
|
+
|
|
116
|
+
Returns:
|
|
117
|
+
Dict[str, Path]: Dictionary mapping target names to saved model filepaths.
|
|
118
|
+
|
|
119
|
+
Raises:
|
|
120
|
+
OSError: If models cannot be written to disk.
|
|
121
|
+
TypeError: If forecasters contain non-serializable objects.
|
|
122
|
+
|
|
123
|
+
Examples:
|
|
124
|
+
>>> forecasters = {"power": forecaster_obj}
|
|
125
|
+
>>> paths = _save_forecasters(forecasters, "./models", verbose=True)
|
|
126
|
+
>>> print(paths["power"])
|
|
127
|
+
models/forecaster_power.joblib
|
|
128
|
+
"""
|
|
129
|
+
model_path = _ensure_model_dir(model_dir)
|
|
130
|
+
saved_paths = {}
|
|
131
|
+
|
|
132
|
+
for target, forecaster in forecasters.items():
|
|
133
|
+
filepath = _get_model_filepath(model_path, target)
|
|
134
|
+
try:
|
|
135
|
+
dump(forecaster, filepath, compress=3)
|
|
136
|
+
saved_paths[target] = filepath
|
|
137
|
+
if verbose:
|
|
138
|
+
print(f" ✓ Saved forecaster for {target} to {filepath}")
|
|
139
|
+
except Exception as e:
|
|
140
|
+
raise OSError(f"Failed to save model for {target}: {e}")
|
|
141
|
+
|
|
142
|
+
return saved_paths
|
|
143
|
+
|
|
144
|
+
|
|
145
|
+
def _load_forecasters(
|
|
146
|
+
target_columns: List[str],
|
|
147
|
+
model_dir: Union[str, Path],
|
|
148
|
+
verbose: bool = False,
|
|
149
|
+
) -> Tuple[Dict[str, object], List[str]]:
|
|
150
|
+
"""Load trained forecasters from disk using joblib.
|
|
151
|
+
|
|
152
|
+
Attempts to load all forecasters for given targets. Missing models
|
|
153
|
+
are indicated in the return value for selective retraining.
|
|
154
|
+
|
|
155
|
+
Args:
|
|
156
|
+
target_columns: List of target variable names to load.
|
|
157
|
+
model_dir: Directory containing saved models.
|
|
158
|
+
verbose: Print progress messages. Default: False.
|
|
159
|
+
|
|
160
|
+
Returns:
|
|
161
|
+
Tuple[Dict[str, object], List[str]]:
|
|
162
|
+
- forecasters: Dictionary of successfully loaded ForecasterEquivalentDate objects.
|
|
163
|
+
- missing_targets: List of target names without saved models.
|
|
164
|
+
|
|
165
|
+
Examples:
|
|
166
|
+
>>> forecasters, missing = _load_forecasters(
|
|
167
|
+
... ["power", "energy"],
|
|
168
|
+
... "./models",
|
|
169
|
+
... verbose=True
|
|
170
|
+
... )
|
|
171
|
+
>>> print(missing)
|
|
172
|
+
['energy']
|
|
173
|
+
"""
|
|
174
|
+
model_path = Path(model_dir)
|
|
175
|
+
forecasters = {}
|
|
176
|
+
missing_targets = []
|
|
177
|
+
|
|
178
|
+
for target in target_columns:
|
|
179
|
+
filepath = _get_model_filepath(model_path, target)
|
|
180
|
+
if filepath.exists():
|
|
181
|
+
try:
|
|
182
|
+
forecasters[target] = load(filepath)
|
|
183
|
+
if verbose:
|
|
184
|
+
print(f" ✓ Loaded forecaster for {target} from {filepath}")
|
|
185
|
+
except Exception as e:
|
|
186
|
+
if verbose:
|
|
187
|
+
print(f" ✗ Failed to load {target}: {e}")
|
|
188
|
+
missing_targets.append(target)
|
|
189
|
+
else:
|
|
190
|
+
missing_targets.append(target)
|
|
191
|
+
|
|
192
|
+
return forecasters, missing_targets
|
|
193
|
+
|
|
194
|
+
|
|
195
|
+
def _model_directory_exists(model_dir: Union[str, Path]) -> bool:
|
|
196
|
+
"""Check if model directory exists.
|
|
197
|
+
|
|
198
|
+
Args:
|
|
199
|
+
model_dir: Directory path to check.
|
|
200
|
+
|
|
201
|
+
Returns:
|
|
202
|
+
bool: True if directory exists, False otherwise.
|
|
203
|
+
"""
|
|
204
|
+
return Path(model_dir).exists()
|
|
205
|
+
|
|
206
|
+
|
|
207
|
+
# ============================================================================
|
|
208
|
+
# Main Function
|
|
209
|
+
# ============================================================================
|
|
210
|
+
|
|
211
|
+
|
|
212
|
+
def n2n_predict(
|
|
213
|
+
columns: Optional[List[str]] = None,
|
|
214
|
+
forecast_horizon: int = 24,
|
|
215
|
+
contamination: float = 0.01,
|
|
216
|
+
window_size: int = 72,
|
|
217
|
+
force_train: bool = False,
|
|
218
|
+
model_dir: Union[str, Path] = "./models_baseline",
|
|
219
|
+
verbose: bool = True,
|
|
220
|
+
show_progress: bool = True,
|
|
221
|
+
) -> Tuple[pd.DataFrame, Dict]:
|
|
222
|
+
"""End-to-end baseline forecasting using equivalent date method.
|
|
223
|
+
|
|
224
|
+
This function implements a complete forecasting pipeline that:
|
|
225
|
+
1. Loads and validates target data
|
|
226
|
+
2. Detects and removes outliers
|
|
227
|
+
3. Imputes missing values
|
|
228
|
+
4. Splits into train/validation/test sets
|
|
229
|
+
5. Trains or loads equivalent date forecasters
|
|
230
|
+
6. Generates multi-step ahead predictions
|
|
231
|
+
|
|
232
|
+
Models are persisted to disk following scikit-learn conventions using joblib.
|
|
233
|
+
Existing models are reused for prediction unless force_train=True.
|
|
234
|
+
|
|
235
|
+
Args:
|
|
236
|
+
columns: List of target columns to forecast. If None, uses all available columns.
|
|
237
|
+
Default: None.
|
|
238
|
+
forecast_horizon: Number of time steps to forecast ahead. Default: 24.
|
|
239
|
+
contamination: Contamination parameter for outlier detection. Default: 0.01.
|
|
240
|
+
window_size: Rolling window size for gap detection. Default: 72.
|
|
241
|
+
force_train: Force retraining of all models, ignoring cached models.
|
|
242
|
+
Default: False.
|
|
243
|
+
model_dir: Directory for saving/loading trained models.
|
|
244
|
+
Default: "./models_baseline".
|
|
245
|
+
verbose: Print progress messages. Default: True.
|
|
246
|
+
show_progress: Show progress bar during training and prediction. Default: True.
|
|
247
|
+
|
|
248
|
+
Returns:
|
|
249
|
+
Tuple containing:
|
|
250
|
+
- predictions: DataFrame with forecast values for each target variable.
|
|
251
|
+
- forecasters: Dictionary of trained ForecasterEquivalentDate objects keyed by target.
|
|
252
|
+
|
|
253
|
+
Raises:
|
|
254
|
+
ValueError: If data validation fails or required data cannot be retrieved.
|
|
255
|
+
ImportError: If required dependencies are not installed.
|
|
256
|
+
OSError: If models cannot be saved to disk.
|
|
257
|
+
|
|
258
|
+
Examples:
|
|
259
|
+
Basic usage with automatic model caching:
|
|
260
|
+
|
|
261
|
+
>>> predictions, forecasters = n2n_predict(
|
|
262
|
+
... forecast_horizon=24,
|
|
263
|
+
... verbose=True
|
|
264
|
+
... )
|
|
265
|
+
>>> print(predictions.shape)
|
|
266
|
+
(24, 11)
|
|
267
|
+
|
|
268
|
+
Load cached models (if available):
|
|
269
|
+
|
|
270
|
+
>>> predictions, forecasters = n2n_predict(
|
|
271
|
+
... forecast_horizon=24,
|
|
272
|
+
... force_train=False,
|
|
273
|
+
... model_dir="./saved_models",
|
|
274
|
+
... verbose=True
|
|
275
|
+
... )
|
|
276
|
+
|
|
277
|
+
Force retraining and update cache:
|
|
278
|
+
|
|
279
|
+
>>> predictions, forecasters = n2n_predict(
|
|
280
|
+
... forecast_horizon=24,
|
|
281
|
+
... force_train=True,
|
|
282
|
+
... model_dir="./saved_models",
|
|
283
|
+
... verbose=True
|
|
284
|
+
... )
|
|
285
|
+
|
|
286
|
+
With specific target columns:
|
|
287
|
+
|
|
288
|
+
>>> predictions, forecasters = n2n_predict(
|
|
289
|
+
... columns=["power", "energy"],
|
|
290
|
+
... forecast_horizon=48,
|
|
291
|
+
... force_train=False,
|
|
292
|
+
... verbose=True
|
|
293
|
+
... )
|
|
294
|
+
|
|
295
|
+
Notes:
|
|
296
|
+
- Trained models are saved to disk using joblib for fast reuse.
|
|
297
|
+
- When force_train=False, existing models are loaded and prediction
|
|
298
|
+
proceeds without retraining. This significantly speeds up prediction
|
|
299
|
+
for repeated calls with the same configuration.
|
|
300
|
+
- The model_dir directory is created automatically if it doesn't exist.
|
|
301
|
+
|
|
302
|
+
Performance Notes:
|
|
303
|
+
- First run: Full training (~2-5 minutes depending on data size)
|
|
304
|
+
- Subsequent runs (force_train=False): Model loading only (~1-2 seconds)
|
|
305
|
+
- Force retrain (force_train=True): Full training again (~2-5 minutes)
|
|
306
|
+
"""
|
|
307
|
+
if columns is not None:
|
|
308
|
+
TARGET = columns
|
|
309
|
+
else:
|
|
310
|
+
TARGET = None
|
|
311
|
+
|
|
312
|
+
if verbose:
|
|
313
|
+
print("--- Starting n2n_predict ---")
|
|
314
|
+
print("Fetching data...")
|
|
315
|
+
|
|
316
|
+
# Fetch data
|
|
317
|
+
data = fetch_data(columns=TARGET)
|
|
318
|
+
|
|
319
|
+
START, END, COV_START, COV_END = get_start_end(
|
|
320
|
+
data=data,
|
|
321
|
+
forecast_horizon=forecast_horizon,
|
|
322
|
+
verbose=verbose,
|
|
323
|
+
)
|
|
324
|
+
|
|
325
|
+
basic_ts_checks(data, verbose=verbose)
|
|
326
|
+
|
|
327
|
+
data = agg_and_resample_data(data, verbose=verbose)
|
|
328
|
+
|
|
329
|
+
# --- Outlier Handling ---
|
|
330
|
+
if verbose:
|
|
331
|
+
print("Handling outliers...")
|
|
332
|
+
|
|
333
|
+
# data_old = data.copy() # kept in notebook, maybe useful for debugging but not used logic-wise here
|
|
334
|
+
data, outliers = mark_outliers(
|
|
335
|
+
data, contamination=contamination, random_state=1234, verbose=verbose
|
|
336
|
+
)
|
|
337
|
+
|
|
338
|
+
# --- Missing Data (Imputation) ---
|
|
339
|
+
if verbose:
|
|
340
|
+
print("Imputing missing data...")
|
|
341
|
+
|
|
342
|
+
missing_indices = data.index[data.isnull().any(axis=1)]
|
|
343
|
+
if verbose:
|
|
344
|
+
n_missing = len(missing_indices)
|
|
345
|
+
pct_missing = (n_missing / len(data)) * 100
|
|
346
|
+
print(f"Number of rows with missing values: {n_missing}")
|
|
347
|
+
print(f"Percentage of rows with missing values: {pct_missing:.2f}%")
|
|
348
|
+
|
|
349
|
+
data = data.ffill()
|
|
350
|
+
data = data.bfill()
|
|
351
|
+
|
|
352
|
+
# --- Train, Val, Test Split ---
|
|
353
|
+
if verbose:
|
|
354
|
+
print("Splitting data...")
|
|
355
|
+
data_train, data_val, data_test = split_rel_train_val_test(
|
|
356
|
+
data, perc_train=0.8, perc_val=0.2, verbose=verbose
|
|
357
|
+
)
|
|
358
|
+
|
|
359
|
+
# --- Model Fit ---
|
|
360
|
+
if verbose:
|
|
361
|
+
print("Fitting models...")
|
|
362
|
+
|
|
363
|
+
end_validation = pd.concat([data_train, data_val]).index[-1]
|
|
364
|
+
|
|
365
|
+
baseline_forecasters = {}
|
|
366
|
+
targets_to_train = list(data.columns)
|
|
367
|
+
|
|
368
|
+
# Attempt to load cached models if force_train=False
|
|
369
|
+
if not force_train and _model_directory_exists(model_dir):
|
|
370
|
+
if verbose:
|
|
371
|
+
print(" Attempting to load cached models...")
|
|
372
|
+
cached_forecasters, missing_targets = _load_forecasters(
|
|
373
|
+
target_columns=list(data.columns),
|
|
374
|
+
model_dir=model_dir,
|
|
375
|
+
verbose=verbose,
|
|
376
|
+
)
|
|
377
|
+
baseline_forecasters.update(cached_forecasters)
|
|
378
|
+
targets_to_train = missing_targets
|
|
379
|
+
|
|
380
|
+
if len(cached_forecasters) == len(data.columns):
|
|
381
|
+
if verbose:
|
|
382
|
+
print(f" ✓ All {len(data.columns)} forecasters loaded from cache")
|
|
383
|
+
elif len(cached_forecasters) > 0:
|
|
384
|
+
if verbose:
|
|
385
|
+
print(
|
|
386
|
+
f" ✓ Loaded {len(cached_forecasters)} forecasters, "
|
|
387
|
+
f"will train {len(targets_to_train)} new ones"
|
|
388
|
+
)
|
|
389
|
+
|
|
390
|
+
# Train missing or forced models
|
|
391
|
+
if len(targets_to_train) > 0:
|
|
392
|
+
if force_train and len(baseline_forecasters) > 0:
|
|
393
|
+
if verbose:
|
|
394
|
+
print(f" Force retraining all {len(data.columns)} forecasters...")
|
|
395
|
+
targets_to_train = list(data.columns)
|
|
396
|
+
baseline_forecasters.clear()
|
|
397
|
+
|
|
398
|
+
target_iter = targets_to_train
|
|
399
|
+
if show_progress and tqdm is not None:
|
|
400
|
+
target_iter = tqdm(
|
|
401
|
+
targets_to_train,
|
|
402
|
+
desc="Training forecasters",
|
|
403
|
+
unit="model",
|
|
404
|
+
)
|
|
405
|
+
|
|
406
|
+
for target in target_iter:
|
|
407
|
+
forecaster = ForecasterEquivalentDate(
|
|
408
|
+
offset=pd.DateOffset(days=1), n_offsets=1
|
|
409
|
+
)
|
|
410
|
+
|
|
411
|
+
forecaster.fit(y=data.loc[:end_validation, target])
|
|
412
|
+
|
|
413
|
+
baseline_forecasters[target] = forecaster
|
|
414
|
+
|
|
415
|
+
# Save newly trained models to disk
|
|
416
|
+
if verbose:
|
|
417
|
+
print(f" Saving {len(targets_to_train)} trained forecasters to disk...")
|
|
418
|
+
_save_forecasters(
|
|
419
|
+
forecasters={t: baseline_forecasters[t] for t in targets_to_train},
|
|
420
|
+
model_dir=model_dir,
|
|
421
|
+
verbose=verbose,
|
|
422
|
+
)
|
|
423
|
+
|
|
424
|
+
if verbose:
|
|
425
|
+
print(f" ✓ Total forecasters available: {len(baseline_forecasters)}")
|
|
426
|
+
|
|
427
|
+
# --- Predict ---
|
|
428
|
+
if verbose:
|
|
429
|
+
print("Generating predictions...")
|
|
430
|
+
|
|
431
|
+
predictions = predict_multivariate(
|
|
432
|
+
baseline_forecasters,
|
|
433
|
+
steps_ahead=forecast_horizon,
|
|
434
|
+
show_progress=show_progress,
|
|
435
|
+
)
|
|
436
|
+
|
|
437
|
+
return predictions, baseline_forecasters
|
|
@@ -744,7 +744,7 @@ def n2n_predict_with_covariates(
|
|
|
744
744
|
force_train: bool = False,
|
|
745
745
|
model_dir: Union[str, Path] = "./forecaster_models",
|
|
746
746
|
verbose: bool = True,
|
|
747
|
-
show_progress: bool =
|
|
747
|
+
show_progress: bool = False,
|
|
748
748
|
) -> Tuple[pd.DataFrame, Dict, Dict]:
|
|
749
749
|
"""End-to-end recursive forecasting with exogenous covariates.
|
|
750
750
|
|
|
@@ -781,9 +781,9 @@ def n2n_predict_with_covariates(
|
|
|
781
781
|
force_train: Force retraining of all models, ignoring cached models.
|
|
782
782
|
Default: False.
|
|
783
783
|
model_dir: Directory for saving/loading trained models.
|
|
784
|
-
Default: "./
|
|
784
|
+
Default: "./models_covariates".
|
|
785
785
|
verbose: Print progress messages. Default: True.
|
|
786
|
-
show_progress: Show progress bar during training. Default:
|
|
786
|
+
show_progress: Show progress bar during training. Default: False.
|
|
787
787
|
|
|
788
788
|
Returns:
|
|
789
789
|
Tuple containing:
|
|
@@ -913,6 +913,10 @@ def n2n_predict_with_covariates(
|
|
|
913
913
|
"""Return sample weights for given index."""
|
|
914
914
|
return custom_weights(index, weights_series)
|
|
915
915
|
|
|
916
|
+
# Note: weight_func is a local function and cannot be pickled.
|
|
917
|
+
# Model persistence is disabled when using weight_func.
|
|
918
|
+
use_model_persistence = False
|
|
919
|
+
|
|
916
920
|
# ========================================================================
|
|
917
921
|
# 4. EXOGENOUS FEATURES ENGINEERING
|
|
918
922
|
# ========================================================================
|
|
@@ -1070,11 +1074,11 @@ def n2n_predict_with_covariates(
|
|
|
1070
1074
|
window_features = RollingFeatures(stats=["mean"], window_sizes=window_size)
|
|
1071
1075
|
end_validation = pd.concat([data_train, data_val]).index[-1]
|
|
1072
1076
|
|
|
1073
|
-
# Attempt to load cached models if force_train=False
|
|
1077
|
+
# Attempt to load cached models if force_train=False and persistence is enabled
|
|
1074
1078
|
recursive_forecasters = {}
|
|
1075
1079
|
targets_to_train = target_columns
|
|
1076
1080
|
|
|
1077
|
-
if not force_train and _model_directory_exists(model_dir):
|
|
1081
|
+
if use_model_persistence and not force_train and _model_directory_exists(model_dir):
|
|
1078
1082
|
if verbose:
|
|
1079
1083
|
print(" Attempting to load cached models...")
|
|
1080
1084
|
cached_forecasters, missing_targets = _load_forecasters(
|
|
@@ -1132,14 +1136,20 @@ def n2n_predict_with_covariates(
|
|
|
1132
1136
|
if verbose:
|
|
1133
1137
|
print(f" ✓ Forecaster trained for {target}")
|
|
1134
1138
|
|
|
1135
|
-
# Save newly trained models to disk
|
|
1136
|
-
if
|
|
1137
|
-
|
|
1138
|
-
|
|
1139
|
-
|
|
1140
|
-
|
|
1141
|
-
|
|
1142
|
-
|
|
1139
|
+
# Save newly trained models to disk (only if persistence is enabled)
|
|
1140
|
+
if use_model_persistence:
|
|
1141
|
+
if verbose:
|
|
1142
|
+
print(
|
|
1143
|
+
f" Saving {len(targets_to_train)} trained forecasters to disk..."
|
|
1144
|
+
)
|
|
1145
|
+
_save_forecasters(
|
|
1146
|
+
forecasters={t: recursive_forecasters[t] for t in targets_to_train},
|
|
1147
|
+
model_dir=model_dir,
|
|
1148
|
+
verbose=verbose,
|
|
1149
|
+
)
|
|
1150
|
+
else:
|
|
1151
|
+
if verbose:
|
|
1152
|
+
print(" ⚠ Model persistence disabled (weight_func cannot be pickled)")
|
|
1143
1153
|
|
|
1144
1154
|
if verbose:
|
|
1145
1155
|
print(f" ✓ Total forecasters available: {len(recursive_forecasters)}")
|
|
@@ -1,126 +0,0 @@
|
|
|
1
|
-
import pandas as pd
|
|
2
|
-
from typing import List, Optional
|
|
3
|
-
from spotforecast2.forecaster.recursive import ForecasterEquivalentDate
|
|
4
|
-
from spotforecast2.data.fetch_data import fetch_data
|
|
5
|
-
from spotforecast2.preprocessing.curate_data import basic_ts_checks
|
|
6
|
-
from spotforecast2.preprocessing.curate_data import agg_and_resample_data
|
|
7
|
-
from spotforecast2.preprocessing.outlier import mark_outliers
|
|
8
|
-
|
|
9
|
-
from spotforecast2.preprocessing.split import split_rel_train_val_test
|
|
10
|
-
from spotforecast2.forecaster.utils import predict_multivariate
|
|
11
|
-
from spotforecast2.preprocessing.curate_data import get_start_end
|
|
12
|
-
|
|
13
|
-
try:
|
|
14
|
-
from tqdm.auto import tqdm
|
|
15
|
-
except ImportError: # pragma: no cover - fallback when tqdm is not installed
|
|
16
|
-
tqdm = None
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
def n2n_predict(
|
|
20
|
-
columns: Optional[List[str]] = None,
|
|
21
|
-
forecast_horizon: int = 24,
|
|
22
|
-
contamination: float = 0.01,
|
|
23
|
-
window_size: int = 72,
|
|
24
|
-
verbose: bool = True,
|
|
25
|
-
show_progress: bool = True,
|
|
26
|
-
) -> pd.DataFrame:
|
|
27
|
-
"""
|
|
28
|
-
End-to-end prediction function replicating the workflow from 01_base_predictor combined with fetch_data.
|
|
29
|
-
|
|
30
|
-
Args:
|
|
31
|
-
columns: List of target columns to forecast. If None, uses a default set (defined internally or from data).
|
|
32
|
-
Note: fetch_data supports None to return all columns.
|
|
33
|
-
forecast_horizon: Number of steps to forecast.
|
|
34
|
-
contamination: Contamination factor for outlier detection.
|
|
35
|
-
window_size: Window size for weighting (not fully utilized in main flow but kept for consistency).
|
|
36
|
-
verbose: Whether to print progress logs.
|
|
37
|
-
show_progress: Show progress bar during training and prediction.
|
|
38
|
-
|
|
39
|
-
Returns:
|
|
40
|
-
pd.DataFrame: The multi-output predictions.
|
|
41
|
-
"""
|
|
42
|
-
if columns is not None:
|
|
43
|
-
TARGET = columns
|
|
44
|
-
else:
|
|
45
|
-
TARGET = None
|
|
46
|
-
|
|
47
|
-
if verbose:
|
|
48
|
-
print("--- Starting n2n_predict ---")
|
|
49
|
-
print("Fetching data...")
|
|
50
|
-
|
|
51
|
-
# Fetch data
|
|
52
|
-
data = fetch_data(columns=TARGET)
|
|
53
|
-
|
|
54
|
-
START, END, COV_START, COV_END = get_start_end(
|
|
55
|
-
data=data,
|
|
56
|
-
forecast_horizon=forecast_horizon,
|
|
57
|
-
verbose=verbose,
|
|
58
|
-
)
|
|
59
|
-
|
|
60
|
-
basic_ts_checks(data, verbose=verbose)
|
|
61
|
-
|
|
62
|
-
data = agg_and_resample_data(data, verbose=verbose)
|
|
63
|
-
|
|
64
|
-
# --- Outlier Handling ---
|
|
65
|
-
if verbose:
|
|
66
|
-
print("Handling outliers...")
|
|
67
|
-
|
|
68
|
-
# data_old = data.copy() # kept in notebook, maybe useful for debugging but not used logic-wise here
|
|
69
|
-
data, outliers = mark_outliers(
|
|
70
|
-
data, contamination=contamination, random_state=1234, verbose=verbose
|
|
71
|
-
)
|
|
72
|
-
|
|
73
|
-
# --- Missing Data (Imputation) ---
|
|
74
|
-
if verbose:
|
|
75
|
-
print("Imputing missing data...")
|
|
76
|
-
|
|
77
|
-
missing_indices = data.index[data.isnull().any(axis=1)]
|
|
78
|
-
if verbose:
|
|
79
|
-
n_missing = len(missing_indices)
|
|
80
|
-
pct_missing = (n_missing / len(data)) * 100
|
|
81
|
-
print(f"Number of rows with missing values: {n_missing}")
|
|
82
|
-
print(f"Percentage of rows with missing values: {pct_missing:.2f}%")
|
|
83
|
-
|
|
84
|
-
data = data.ffill()
|
|
85
|
-
data = data.bfill()
|
|
86
|
-
|
|
87
|
-
# --- Train, Val, Test Split ---
|
|
88
|
-
if verbose:
|
|
89
|
-
print("Splitting data...")
|
|
90
|
-
data_train, data_val, data_test = split_rel_train_val_test(
|
|
91
|
-
data, perc_train=0.8, perc_val=0.2, verbose=verbose
|
|
92
|
-
)
|
|
93
|
-
|
|
94
|
-
# --- Model Fit ---
|
|
95
|
-
if verbose:
|
|
96
|
-
print("Fitting models...")
|
|
97
|
-
|
|
98
|
-
end_validation = pd.concat([data_train, data_val]).index[-1]
|
|
99
|
-
|
|
100
|
-
baseline_forecasters = {}
|
|
101
|
-
|
|
102
|
-
target_iter = data.columns
|
|
103
|
-
if show_progress and tqdm is not None:
|
|
104
|
-
target_iter = tqdm(data.columns, desc="Training forecasters", unit="model")
|
|
105
|
-
|
|
106
|
-
for target in target_iter:
|
|
107
|
-
forecaster = ForecasterEquivalentDate(offset=pd.DateOffset(days=1), n_offsets=1)
|
|
108
|
-
|
|
109
|
-
forecaster.fit(y=data.loc[:end_validation, target])
|
|
110
|
-
|
|
111
|
-
baseline_forecasters[target] = forecaster
|
|
112
|
-
|
|
113
|
-
if verbose:
|
|
114
|
-
print("✓ Multi-output baseline system trained")
|
|
115
|
-
|
|
116
|
-
# --- Predict ---
|
|
117
|
-
if verbose:
|
|
118
|
-
print("Generating predictions...")
|
|
119
|
-
|
|
120
|
-
predictions = predict_multivariate(
|
|
121
|
-
baseline_forecasters,
|
|
122
|
-
steps_ahead=forecast_horizon,
|
|
123
|
-
show_progress=show_progress,
|
|
124
|
-
)
|
|
125
|
-
|
|
126
|
-
return predictions
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
{spotforecast2-0.1.0 → spotforecast2-0.1.1}/src/spotforecast2/forecaster/recursive/__init__.py
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|
{spotforecast2-0.1.0 → spotforecast2-0.1.1}/src/spotforecast2/forecaster/recursive/_warnings.py
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|
{spotforecast2-0.1.0 → spotforecast2-0.1.1}/src/spotforecast2/model_selection/bayesian_search.py
RENAMED
|
File without changes
|
{spotforecast2-0.1.0 → spotforecast2-0.1.1}/src/spotforecast2/model_selection/grid_search.py
RENAMED
|
File without changes
|
{spotforecast2-0.1.0 → spotforecast2-0.1.1}/src/spotforecast2/model_selection/random_search.py
RENAMED
|
File without changes
|
|
File without changes
|
{spotforecast2-0.1.0 → spotforecast2-0.1.1}/src/spotforecast2/model_selection/split_one_step.py
RENAMED
|
File without changes
|
{spotforecast2-0.1.0 → spotforecast2-0.1.1}/src/spotforecast2/model_selection/split_ts_cv.py
RENAMED
|
File without changes
|
{spotforecast2-0.1.0 → spotforecast2-0.1.1}/src/spotforecast2/model_selection/utils_common.py
RENAMED
|
File without changes
|
{spotforecast2-0.1.0 → spotforecast2-0.1.1}/src/spotforecast2/model_selection/utils_metrics.py
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
{spotforecast2-0.1.0 → spotforecast2-0.1.1}/src/spotforecast2/preprocessing/_differentiator.py
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|