spotforecast2 0.0.4__tar.gz → 0.0.5__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (47) hide show
  1. {spotforecast2-0.0.4 → spotforecast2-0.0.5}/PKG-INFO +6 -2
  2. {spotforecast2-0.0.4 → spotforecast2-0.0.5}/README.md +5 -1
  3. {spotforecast2-0.0.4 → spotforecast2-0.0.5}/pyproject.toml +1 -1
  4. {spotforecast2-0.0.4 → spotforecast2-0.0.5}/src/spotforecast2/exceptions.py +3 -3
  5. {spotforecast2-0.0.4 → spotforecast2-0.0.5}/src/spotforecast2/forecaster/utils.py +47 -47
  6. {spotforecast2-0.0.4 → spotforecast2-0.0.5}/src/spotforecast2/utils/validation.py +15 -15
  7. {spotforecast2-0.0.4 → spotforecast2-0.0.5}/src/spotforecast2/__init__.py +0 -0
  8. {spotforecast2-0.0.4 → spotforecast2-0.0.5}/src/spotforecast2/data/__init__.py +0 -0
  9. {spotforecast2-0.0.4 → spotforecast2-0.0.5}/src/spotforecast2/data/data.py +0 -0
  10. {spotforecast2-0.0.4 → spotforecast2-0.0.5}/src/spotforecast2/data/fetch_data.py +0 -0
  11. {spotforecast2-0.0.4 → spotforecast2-0.0.5}/src/spotforecast2/forecaster/__init__.py +0 -0
  12. {spotforecast2-0.0.4 → spotforecast2-0.0.5}/src/spotforecast2/forecaster/base.py +0 -0
  13. {spotforecast2-0.0.4 → spotforecast2-0.0.5}/src/spotforecast2/forecaster/metrics.py +0 -0
  14. {spotforecast2-0.0.4 → spotforecast2-0.0.5}/src/spotforecast2/forecaster/recursive/__init__.py +0 -0
  15. {spotforecast2-0.0.4 → spotforecast2-0.0.5}/src/spotforecast2/forecaster/recursive/_forecaster_equivalent_date.py +0 -0
  16. {spotforecast2-0.0.4 → spotforecast2-0.0.5}/src/spotforecast2/forecaster/recursive/_forecaster_recursive.py +0 -0
  17. {spotforecast2-0.0.4 → spotforecast2-0.0.5}/src/spotforecast2/forecaster/recursive/_warnings.py +0 -0
  18. {spotforecast2-0.0.4 → spotforecast2-0.0.5}/src/spotforecast2/model_selection/__init__.py +0 -0
  19. {spotforecast2-0.0.4 → spotforecast2-0.0.5}/src/spotforecast2/model_selection/bayesian_search.py +0 -0
  20. {spotforecast2-0.0.4 → spotforecast2-0.0.5}/src/spotforecast2/model_selection/grid_search.py +0 -0
  21. {spotforecast2-0.0.4 → spotforecast2-0.0.5}/src/spotforecast2/model_selection/random_search.py +0 -0
  22. {spotforecast2-0.0.4 → spotforecast2-0.0.5}/src/spotforecast2/model_selection/split_base.py +0 -0
  23. {spotforecast2-0.0.4 → spotforecast2-0.0.5}/src/spotforecast2/model_selection/split_one_step.py +0 -0
  24. {spotforecast2-0.0.4 → spotforecast2-0.0.5}/src/spotforecast2/model_selection/split_ts_cv.py +0 -0
  25. {spotforecast2-0.0.4 → spotforecast2-0.0.5}/src/spotforecast2/model_selection/utils_common.py +0 -0
  26. {spotforecast2-0.0.4 → spotforecast2-0.0.5}/src/spotforecast2/model_selection/utils_metrics.py +0 -0
  27. {spotforecast2-0.0.4 → spotforecast2-0.0.5}/src/spotforecast2/model_selection/validation.py +0 -0
  28. {spotforecast2-0.0.4 → spotforecast2-0.0.5}/src/spotforecast2/preprocessing/__init__.py +0 -0
  29. {spotforecast2-0.0.4 → spotforecast2-0.0.5}/src/spotforecast2/preprocessing/_binner.py +0 -0
  30. {spotforecast2-0.0.4 → spotforecast2-0.0.5}/src/spotforecast2/preprocessing/_common.py +0 -0
  31. {spotforecast2-0.0.4 → spotforecast2-0.0.5}/src/spotforecast2/preprocessing/_differentiator.py +0 -0
  32. {spotforecast2-0.0.4 → spotforecast2-0.0.5}/src/spotforecast2/preprocessing/_rolling.py +0 -0
  33. {spotforecast2-0.0.4 → spotforecast2-0.0.5}/src/spotforecast2/preprocessing/curate_data.py +0 -0
  34. {spotforecast2-0.0.4 → spotforecast2-0.0.5}/src/spotforecast2/preprocessing/imputation.py +0 -0
  35. {spotforecast2-0.0.4 → spotforecast2-0.0.5}/src/spotforecast2/preprocessing/outlier.py +0 -0
  36. {spotforecast2-0.0.4 → spotforecast2-0.0.5}/src/spotforecast2/preprocessing/split.py +0 -0
  37. {spotforecast2-0.0.4 → spotforecast2-0.0.5}/src/spotforecast2/processing/agg_predict.py +0 -0
  38. {spotforecast2-0.0.4 → spotforecast2-0.0.5}/src/spotforecast2/processing/n2n_predict.py +0 -0
  39. {spotforecast2-0.0.4 → spotforecast2-0.0.5}/src/spotforecast2/processing/n2n_predict_with_covariates.py +0 -0
  40. {spotforecast2-0.0.4 → spotforecast2-0.0.5}/src/spotforecast2/py.typed +0 -0
  41. {spotforecast2-0.0.4 → spotforecast2-0.0.5}/src/spotforecast2/utils/__init__.py +0 -0
  42. {spotforecast2-0.0.4 → spotforecast2-0.0.5}/src/spotforecast2/utils/convert_to_utc.py +0 -0
  43. {spotforecast2-0.0.4 → spotforecast2-0.0.5}/src/spotforecast2/utils/data_transform.py +0 -0
  44. {spotforecast2-0.0.4 → spotforecast2-0.0.5}/src/spotforecast2/utils/forecaster_config.py +0 -0
  45. {spotforecast2-0.0.4 → spotforecast2-0.0.5}/src/spotforecast2/utils/generate_holiday.py +0 -0
  46. {spotforecast2-0.0.4 → spotforecast2-0.0.5}/src/spotforecast2/weather/__init__.py +0 -0
  47. {spotforecast2-0.0.4 → spotforecast2-0.0.5}/src/spotforecast2/weather/weather_client.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: spotforecast2
3
- Version: 0.0.4
3
+ Version: 0.0.5
4
4
  Summary: Forecasting with spot
5
5
  Author: bartzbeielstein
6
6
  Author-email: bartzbeielstein <32470350+bartzbeielstein@users.noreply.github.com>
@@ -35,7 +35,11 @@ Requires-Python: >=3.13
35
35
  Provides-Extra: dev
36
36
  Description-Content-Type: text/markdown
37
37
 
38
- # spotforecast2
38
+ <div align="left">
39
+ <img src="logo/spotlogo.png" alt="spotforecast2 Logo" width="300">
40
+ </div>
41
+
42
+ # spotforecast2
39
43
 
40
44
  [![Python Version](https://img.shields.io/badge/python-3.13%2B-blue)](https://www.python.org/downloads/)
41
45
  [![PyPI Version](https://img.shields.io/pypi/v/spotforecast2)](https://pypi.org/project/spotforecast2/)
@@ -1,4 +1,8 @@
1
- # spotforecast2
1
+ <div align="left">
2
+ <img src="logo/spotlogo.png" alt="spotforecast2 Logo" width="300">
3
+ </div>
4
+
5
+ # spotforecast2
2
6
 
3
7
  [![Python Version](https://img.shields.io/badge/python-3.13%2B-blue)](https://www.python.org/downloads/)
4
8
  [![PyPI Version](https://img.shields.io/pypi/v/spotforecast2)](https://pypi.org/project/spotforecast2/)
@@ -1,6 +1,6 @@
1
1
  [project]
2
2
  name = "spotforecast2"
3
- version = "0.0.4"
3
+ version = "0.0.5"
4
4
  description = "Forecasting with spot"
5
5
  readme = "README.md"
6
6
  authors = [
@@ -671,10 +671,10 @@ def set_skforecast_warnings(suppress_warnings: bool, action: str = "ignore") ->
671
671
  Suppress spotforecast warnings.
672
672
 
673
673
  Args:
674
- suppress_warnings : bool
674
+ suppress_warnings: bool
675
675
  If True, spotforecast warnings will be suppressed.
676
- action : str, default 'ignore'
677
- Action to take regarding the warnings.
676
+ action: str, default 'ignore'
677
+ Action to take regarding the warnings.
678
678
  """
679
679
  if suppress_warnings:
680
680
  for category in warn_skforecast_categories:
@@ -42,16 +42,16 @@ def exog_to_direct(
42
42
  forecasting.
43
43
 
44
44
  Args:
45
- exog : pandas Series, pandas DataFrame
45
+ exog: pandas Series, pandas DataFrame
46
46
  Exogenous variables.
47
- steps : int
47
+ steps: int
48
48
  Number of steps that will be predicted using exog.
49
49
 
50
50
  Returns:
51
51
  tuple[pd.DataFrame, list[str]]:
52
- exog_direct : pandas DataFrame
52
+ exog_direct: pandas DataFrame
53
53
  Exogenous variables transformed.
54
- exog_direct_names : list
54
+ exog_direct_names: list
55
55
  Names of the columns of the exogenous variables transformed. Only
56
56
  created if `exog` is a pandas Series or DataFrame.
57
57
  """
@@ -90,17 +90,17 @@ def exog_to_direct_numpy(
90
90
  forecasting.
91
91
 
92
92
  Args:
93
- exog : numpy ndarray, pandas Series, pandas DataFrame
93
+ exog: numpy ndarray, pandas Series, pandas DataFrame
94
94
  Exogenous variables, shape(samples,). If exog is a pandas format, the
95
95
  direct exog names are created.
96
- steps : int
96
+ steps: int
97
97
  Number of steps that will be predicted using exog.
98
98
 
99
99
  Returns:
100
100
  tuple[np.ndarray, list[str] | None]:
101
- exog_direct : numpy ndarray
101
+ exog_direct: numpy ndarray
102
102
  Exogenous variables transformed.
103
- exog_direct_names : list, None
103
+ exog_direct_names: list, None
104
104
  Names of the columns of the exogenous variables transformed. Only
105
105
  created if `exog` is a pandas Series or DataFrame.
106
106
  """
@@ -136,18 +136,18 @@ def prepare_steps_direct(
136
136
  Prepare list of steps to be predicted in Direct Forecasters.
137
137
 
138
138
  Args:
139
- max_step : int, list, numpy ndarray
139
+ max_step: int, list, numpy ndarray
140
140
  Maximum number of future steps the forecaster will predict
141
141
  when using predict methods.
142
- steps : int, list, None, default None
142
+ steps: int, list, None, default None
143
143
  Predict n steps. The value of `steps` must be less than or equal to the
144
- value of steps defined when initializing the forecaster. Starts at 1.
145
-
146
- - If `int`: Only steps within the range of 1 to int are predicted.
147
- - If `list`: List of ints. Only the steps contained in the list
148
- are predicted.
149
- - If `None`: As many steps are predicted as were defined at
150
- initialization.
144
+ value of steps defined when initializing the forecaster. Starts at 1.
145
+
146
+ - If `int`: Only steps within the range of 1 to int are predicted.
147
+ - If `list`: List of ints. Only the steps contained in the list
148
+ are predicted.
149
+ - If `None`: As many steps are predicted as were defined at
150
+ initialization.
151
151
 
152
152
  Returns:
153
153
  list[int]:
@@ -188,14 +188,14 @@ def transform_numpy(
188
188
  have inverse_transform method.
189
189
 
190
190
  Args:
191
- array : numpy ndarray
191
+ array: numpy ndarray
192
192
  Array to be transformed.
193
- transformer : scikit-learn alike transformer, preprocessor, or ColumnTransformer.
193
+ transformer: scikit-learn alike transformer, preprocessor, or ColumnTransformer.
194
194
  Scikit-learn alike transformer (preprocessor) with methods: fit, transform,
195
195
  fit_transform and inverse_transform.
196
- fit : bool, default False
196
+ fit: bool, default False
197
197
  Train the transformer before applying it.
198
- inverse_transform : bool, default False
198
+ inverse_transform: bool, default False
199
199
  Transform back the data to the original representation. This is not available
200
200
  when using transformers of class scikit-learn ColumnTransformers.
201
201
 
@@ -565,25 +565,25 @@ def check_residuals_input(
565
565
  Check residuals input arguments in Forecasters.
566
566
 
567
567
  Args:
568
- forecaster_name : str
568
+ forecaster_name: str
569
569
  Forecaster name.
570
- use_in_sample_residuals : bool
570
+ use_in_sample_residuals: bool
571
571
  Indicates if in sample or out sample residuals are used.
572
- in_sample_residuals_ : numpy ndarray, dict
572
+ in_sample_residuals_: numpy ndarray, dict
573
573
  Residuals of the model when predicting training data.
574
- out_sample_residuals_ : numpy ndarray, dict
574
+ out_sample_residuals_: numpy ndarray, dict
575
575
  Residuals of the model when predicting non training data.
576
- use_binned_residuals : bool
576
+ use_binned_residuals: bool
577
577
  Indicates if residuals are binned.
578
- in_sample_residuals_by_bin_ : dict
578
+ in_sample_residuals_by_bin_: dict
579
579
  In sample residuals binned according to the predicted value each residual
580
580
  is associated with.
581
- out_sample_residuals_by_bin_ : dict
581
+ out_sample_residuals_by_bin_: dict
582
582
  Out of sample residuals binned according to the predicted value each residual
583
583
  is associated with.
584
- levels : list, default None
584
+ levels: list, default None
585
585
  Names of the series (levels) to be predicted (Forecasters multiseries).
586
- encoding : str, default None
586
+ encoding: str, default None
587
587
  Encoding used to identify the different series (ForecasterRecursiveMultiSeries).
588
588
 
589
589
  Returns:
@@ -673,23 +673,23 @@ def date_to_index_position(
673
673
  represents the position of the datetime in the index.
674
674
 
675
675
  Args:
676
- index : pandas Index
676
+ index: pandas Index
677
677
  Original datetime index (must be a pandas DatetimeIndex if `date_input`
678
678
  is not an int).
679
- date_input : int, str, pandas Timestamp
680
- Datetime to transform to integer.
679
+ date_input: int, str, pandas Timestamp
680
+ Datetime to transform to integer.
681
681
 
682
- + If int, returns the same integer.
683
- + If str or pandas Timestamp, it is converted and expanded into the index.
684
- method : str, default 'prediction'
685
- Can be 'prediction' or 'validation'.
682
+ - If int, returns the same integer.
683
+ - If str or pandas Timestamp, it is converted and expanded into the index.
684
+ method: str, default 'prediction'
685
+ Can be 'prediction' or 'validation'.
686
686
 
687
- + If 'prediction', the date must be later than the last date in the index.
688
- + If 'validation', the date must be within the index range.
689
- date_literal : str, default 'steps'
690
- Variable name used in error messages.
691
- kwargs_pd_to_datetime : dict, default {}
692
- Additional keyword arguments to pass to `pd.to_datetime()`.
687
+ - If 'prediction', the date must be later than the last date in the index.
688
+ - If 'validation', the date must be within the index range.
689
+ date_literal: str, default 'steps'
690
+ Variable name used in error messages.
691
+ kwargs_pd_to_datetime: dict, default {}
692
+ Additional keyword arguments to pass to `pd.to_datetime()`.
693
693
 
694
694
  Returns:
695
695
  int:
@@ -758,11 +758,11 @@ def initialize_estimator(
758
758
  Returns the valid estimator object.
759
759
 
760
760
  Args:
761
- estimator : estimator or pipeline compatible with the scikit-learn API, default None
761
+ estimator: estimator or pipeline compatible with the scikit-learn API, default None
762
762
  An instance of a estimator or pipeline compatible with the scikit-learn API.
763
- regressor : estimator or pipeline compatible with the scikit-learn API, default None
764
- Deprecated. An instance of a estimator or pipeline compatible with the
765
- scikit-learn API.
763
+ regressor: estimator or pipeline compatible with the scikit-learn API, default None
764
+ Deprecated. An instance of a estimator or pipeline compatible with the
765
+ scikit-learn API.
766
766
 
767
767
  Returns:
768
768
  estimator or pipeline compatible with the scikit-learn API
@@ -407,50 +407,50 @@ def check_predict_input(
407
407
  trained.
408
408
 
409
409
  Args:
410
- forecaster_name : str
410
+ forecaster_name: str
411
411
  Forecaster name.
412
- steps : int, list
412
+ steps: int, list
413
413
  Number of future steps predicted.
414
414
  is_fitted: bool
415
415
  Tag to identify if the estimator has been fitted (trained).
416
- exog_in_ : bool
416
+ exog_in_: bool
417
417
  If the forecaster has been trained using exogenous variable/s.
418
- index_type_ : type
418
+ index_type_: type
419
419
  Type of index of the input used in training.
420
- index_freq_ : str
420
+ index_freq_: str
421
421
  Frequency of Index of the input used in training.
422
422
  window_size: int
423
423
  Size of the window needed to create the predictors. It is equal to
424
424
  `max_lag`.
425
- last_window : pandas Series, pandas DataFrame, None
425
+ last_window: pandas Series, pandas DataFrame, None
426
426
  Values of the series used to create the predictors (lags) need in the
427
427
  first iteration of prediction (t + 1).
428
- last_window_exog : pandas Series, pandas DataFrame, default None
428
+ last_window_exog: pandas Series, pandas DataFrame, default None
429
429
  Values of the exogenous variables aligned with `last_window` in
430
430
  ForecasterStats predictions.
431
- exog : pandas Series, pandas DataFrame, dict, default None
431
+ exog: pandas Series, pandas DataFrame, dict, default None
432
432
  Exogenous variable/s included as predictor/s.
433
- exog_names_in_ : list, default None
433
+ exog_names_in_: list, default None
434
434
  Names of the exogenous variables used during training.
435
- interval : list, tuple, default None
435
+ interval: list, tuple, default None
436
436
  Confidence of the prediction interval estimated. Sequence of percentiles
437
437
  to compute, which must be between 0 and 100 inclusive. For example,
438
438
  interval of 95% should be as `interval = [2.5, 97.5]`.
439
- alpha : float, default None
439
+ alpha: float, default None
440
440
  The confidence intervals used in ForecasterStats are (1 - alpha) %.
441
441
  max_step: int, default None
442
442
  Maximum number of steps allowed (`ForecasterDirect` and
443
443
  `ForecasterDirectMultiVariate`).
444
- levels : str, list, default None
444
+ levels: str, list, default None
445
445
  Time series to be predicted (`ForecasterRecursiveMultiSeries`
446
446
  and `ForecasterRnn).
447
- levels_forecaster : str, list, default None
447
+ levels_forecaster: str, list, default None
448
448
  Time series used as output data of a multiseries problem in a RNN problem
449
449
  (`ForecasterRnn`).
450
- series_names_in_ : list, default None
450
+ series_names_in_: list, default None
451
451
  Names of the columns used during fit (`ForecasterRecursiveMultiSeries`,
452
452
  `ForecasterDirectMultiVariate` and `ForecasterRnn`).
453
- encoding : str, default None
453
+ encoding: str, default None
454
454
  Encoding used to identify the different series (`ForecasterRecursiveMultiSeries`).
455
455
 
456
456
  Returns: