spotforecast2 0.0.3__tar.gz → 0.0.5__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- spotforecast2-0.0.5/PKG-INFO +81 -0
- spotforecast2-0.0.5/README.md +44 -0
- {spotforecast2-0.0.3 → spotforecast2-0.0.5}/pyproject.toml +9 -3
- {spotforecast2-0.0.3 → spotforecast2-0.0.5}/src/spotforecast2/exceptions.py +3 -3
- {spotforecast2-0.0.3 → spotforecast2-0.0.5}/src/spotforecast2/forecaster/utils.py +47 -47
- {spotforecast2-0.0.3 → spotforecast2-0.0.5}/src/spotforecast2/utils/validation.py +15 -15
- spotforecast2-0.0.3/PKG-INFO +0 -47
- spotforecast2-0.0.3/README.md +0 -22
- spotforecast2-0.0.3/src/spotforecast2/.DS_Store +0 -0
- spotforecast2-0.0.3/src/spotforecast2/forecaster/.DS_Store +0 -0
- {spotforecast2-0.0.3 → spotforecast2-0.0.5}/src/spotforecast2/__init__.py +0 -0
- {spotforecast2-0.0.3 → spotforecast2-0.0.5}/src/spotforecast2/data/__init__.py +0 -0
- {spotforecast2-0.0.3 → spotforecast2-0.0.5}/src/spotforecast2/data/data.py +0 -0
- {spotforecast2-0.0.3 → spotforecast2-0.0.5}/src/spotforecast2/data/fetch_data.py +0 -0
- {spotforecast2-0.0.3 → spotforecast2-0.0.5}/src/spotforecast2/forecaster/__init__.py +0 -0
- {spotforecast2-0.0.3 → spotforecast2-0.0.5}/src/spotforecast2/forecaster/base.py +0 -0
- {spotforecast2-0.0.3 → spotforecast2-0.0.5}/src/spotforecast2/forecaster/metrics.py +0 -0
- {spotforecast2-0.0.3 → spotforecast2-0.0.5}/src/spotforecast2/forecaster/recursive/__init__.py +0 -0
- {spotforecast2-0.0.3 → spotforecast2-0.0.5}/src/spotforecast2/forecaster/recursive/_forecaster_equivalent_date.py +0 -0
- {spotforecast2-0.0.3 → spotforecast2-0.0.5}/src/spotforecast2/forecaster/recursive/_forecaster_recursive.py +0 -0
- {spotforecast2-0.0.3 → spotforecast2-0.0.5}/src/spotforecast2/forecaster/recursive/_warnings.py +0 -0
- {spotforecast2-0.0.3 → spotforecast2-0.0.5}/src/spotforecast2/model_selection/__init__.py +0 -0
- {spotforecast2-0.0.3 → spotforecast2-0.0.5}/src/spotforecast2/model_selection/bayesian_search.py +0 -0
- {spotforecast2-0.0.3 → spotforecast2-0.0.5}/src/spotforecast2/model_selection/grid_search.py +0 -0
- {spotforecast2-0.0.3 → spotforecast2-0.0.5}/src/spotforecast2/model_selection/random_search.py +0 -0
- {spotforecast2-0.0.3 → spotforecast2-0.0.5}/src/spotforecast2/model_selection/split_base.py +0 -0
- {spotforecast2-0.0.3 → spotforecast2-0.0.5}/src/spotforecast2/model_selection/split_one_step.py +0 -0
- {spotforecast2-0.0.3 → spotforecast2-0.0.5}/src/spotforecast2/model_selection/split_ts_cv.py +0 -0
- {spotforecast2-0.0.3 → spotforecast2-0.0.5}/src/spotforecast2/model_selection/utils_common.py +0 -0
- {spotforecast2-0.0.3 → spotforecast2-0.0.5}/src/spotforecast2/model_selection/utils_metrics.py +0 -0
- {spotforecast2-0.0.3 → spotforecast2-0.0.5}/src/spotforecast2/model_selection/validation.py +0 -0
- {spotforecast2-0.0.3 → spotforecast2-0.0.5}/src/spotforecast2/preprocessing/__init__.py +0 -0
- {spotforecast2-0.0.3 → spotforecast2-0.0.5}/src/spotforecast2/preprocessing/_binner.py +0 -0
- {spotforecast2-0.0.3 → spotforecast2-0.0.5}/src/spotforecast2/preprocessing/_common.py +0 -0
- {spotforecast2-0.0.3 → spotforecast2-0.0.5}/src/spotforecast2/preprocessing/_differentiator.py +0 -0
- {spotforecast2-0.0.3 → spotforecast2-0.0.5}/src/spotforecast2/preprocessing/_rolling.py +0 -0
- {spotforecast2-0.0.3 → spotforecast2-0.0.5}/src/spotforecast2/preprocessing/curate_data.py +0 -0
- {spotforecast2-0.0.3 → spotforecast2-0.0.5}/src/spotforecast2/preprocessing/imputation.py +0 -0
- {spotforecast2-0.0.3 → spotforecast2-0.0.5}/src/spotforecast2/preprocessing/outlier.py +0 -0
- {spotforecast2-0.0.3 → spotforecast2-0.0.5}/src/spotforecast2/preprocessing/split.py +0 -0
- {spotforecast2-0.0.3 → spotforecast2-0.0.5}/src/spotforecast2/processing/agg_predict.py +0 -0
- {spotforecast2-0.0.3 → spotforecast2-0.0.5}/src/spotforecast2/processing/n2n_predict.py +0 -0
- {spotforecast2-0.0.3 → spotforecast2-0.0.5}/src/spotforecast2/processing/n2n_predict_with_covariates.py +0 -0
- {spotforecast2-0.0.3 → spotforecast2-0.0.5}/src/spotforecast2/py.typed +0 -0
- {spotforecast2-0.0.3 → spotforecast2-0.0.5}/src/spotforecast2/utils/__init__.py +0 -0
- {spotforecast2-0.0.3 → spotforecast2-0.0.5}/src/spotforecast2/utils/convert_to_utc.py +0 -0
- {spotforecast2-0.0.3 → spotforecast2-0.0.5}/src/spotforecast2/utils/data_transform.py +0 -0
- {spotforecast2-0.0.3 → spotforecast2-0.0.5}/src/spotforecast2/utils/forecaster_config.py +0 -0
- {spotforecast2-0.0.3 → spotforecast2-0.0.5}/src/spotforecast2/utils/generate_holiday.py +0 -0
- {spotforecast2-0.0.3 → spotforecast2-0.0.5}/src/spotforecast2/weather/__init__.py +0 -0
- {spotforecast2-0.0.3 → spotforecast2-0.0.5}/src/spotforecast2/weather/weather_client.py +0 -0
|
@@ -0,0 +1,81 @@
|
|
|
1
|
+
Metadata-Version: 2.3
|
|
2
|
+
Name: spotforecast2
|
|
3
|
+
Version: 0.0.5
|
|
4
|
+
Summary: Forecasting with spot
|
|
5
|
+
Author: bartzbeielstein
|
|
6
|
+
Author-email: bartzbeielstein <32470350+bartzbeielstein@users.noreply.github.com>
|
|
7
|
+
Requires-Dist: astral>=3.2
|
|
8
|
+
Requires-Dist: feature-engine>=1.9.3
|
|
9
|
+
Requires-Dist: flake8>=7.3.0
|
|
10
|
+
Requires-Dist: holidays>=0.90
|
|
11
|
+
Requires-Dist: ipykernel>=7.1.0
|
|
12
|
+
Requires-Dist: jupyter>=1.1.1
|
|
13
|
+
Requires-Dist: lightgbm>=4.6.0
|
|
14
|
+
Requires-Dist: matplotlib>=3.10.8
|
|
15
|
+
Requires-Dist: numba>=0.63.1
|
|
16
|
+
Requires-Dist: optuna>=4.7.0
|
|
17
|
+
Requires-Dist: pandas>=3.0.0
|
|
18
|
+
Requires-Dist: plotly>=6.5.2
|
|
19
|
+
Requires-Dist: pyarrow>=23.0.0
|
|
20
|
+
Requires-Dist: scikit-learn>=1.8.0
|
|
21
|
+
Requires-Dist: spotoptim>=0.0.160
|
|
22
|
+
Requires-Dist: tqdm>=4.67.2
|
|
23
|
+
Requires-Dist: pytest>=9.0.2 ; extra == 'dev'
|
|
24
|
+
Requires-Dist: pytest-cov>=6.0.0 ; extra == 'dev'
|
|
25
|
+
Requires-Dist: black>=24.1.0 ; extra == 'dev'
|
|
26
|
+
Requires-Dist: isort>=5.13.0 ; extra == 'dev'
|
|
27
|
+
Requires-Dist: ruff>=0.3.0 ; extra == 'dev'
|
|
28
|
+
Requires-Dist: mkdocs>=1.6.1 ; extra == 'dev'
|
|
29
|
+
Requires-Dist: mkdocs-material>=9.7.1 ; extra == 'dev'
|
|
30
|
+
Requires-Dist: mkdocstrings>=1.0.2 ; extra == 'dev'
|
|
31
|
+
Requires-Dist: mkdocstrings-python>=2.0.1 ; extra == 'dev'
|
|
32
|
+
Requires-Dist: safety>=3.0.0 ; extra == 'dev'
|
|
33
|
+
Requires-Dist: bandit>=1.8.0 ; extra == 'dev'
|
|
34
|
+
Requires-Python: >=3.13
|
|
35
|
+
Provides-Extra: dev
|
|
36
|
+
Description-Content-Type: text/markdown
|
|
37
|
+
|
|
38
|
+
<div align="left">
|
|
39
|
+
<img src="logo/spotlogo.png" alt="spotforecast2 Logo" width="300">
|
|
40
|
+
</div>
|
|
41
|
+
|
|
42
|
+
# spotforecast2
|
|
43
|
+
|
|
44
|
+
[](https://www.python.org/downloads/)
|
|
45
|
+
[](https://pypi.org/project/spotforecast2/)
|
|
46
|
+
[](https://pypi.org/project/spotforecast2/)
|
|
47
|
+
[](https://github.com/sequential-parameter-optimization/spotforecast2/blob/main/LICENSE)
|
|
48
|
+
|
|
49
|
+
**Testing & Quality**
|
|
50
|
+
|
|
51
|
+
[](https://github.com/sequential-parameter-optimization/spotforecast2/actions/workflows/ci.yml)
|
|
52
|
+
[](https://sequential-parameter-optimization.github.io/spotforecast2/)
|
|
53
|
+
[](https://github.com/sequential-parameter-optimization/spotforecast2/releases)
|
|
54
|
+
|
|
55
|
+
**Status**
|
|
56
|
+
|
|
57
|
+
[](https://github.com/sequential-parameter-optimization/spotforecast2)
|
|
58
|
+
[](https://github.com/psf/black)
|
|
59
|
+
|
|
60
|
+
## About spotforecast2
|
|
61
|
+
|
|
62
|
+
`spotforecast2` is a Python library for time series forecasting.
|
|
63
|
+
|
|
64
|
+
Parts of the code are ported from `skforecast` to reduce external dependencies.
|
|
65
|
+
Many thanks to the [skforecast team](https://skforecast.org/0.20.0/more/about-skforecast.html) for their great work!
|
|
66
|
+
|
|
67
|
+
|
|
68
|
+
# License
|
|
69
|
+
|
|
70
|
+
`spotforecast2` software: [BSD-3-Clause License](https://github.com/sequential-parameter-optimization/spotforecast2?tab=BSD-3-Clause-1-ov-file)
|
|
71
|
+
|
|
72
|
+
|
|
73
|
+
# References
|
|
74
|
+
|
|
75
|
+
## skforecast:
|
|
76
|
+
|
|
77
|
+
* Amat Rodrigo, J., & Escobar Ortiz, J. (2026). skforecast (Version 0.20.0) [Computer software]. https://doi.org/10.5281/zenodo.8382788
|
|
78
|
+
|
|
79
|
+
## spotoptim:
|
|
80
|
+
|
|
81
|
+
* [spotoptim documentation](https://sequential-parameter-optimization.github.io/spotoptim/)
|
|
@@ -0,0 +1,44 @@
|
|
|
1
|
+
<div align="left">
|
|
2
|
+
<img src="logo/spotlogo.png" alt="spotforecast2 Logo" width="300">
|
|
3
|
+
</div>
|
|
4
|
+
|
|
5
|
+
# spotforecast2
|
|
6
|
+
|
|
7
|
+
[](https://www.python.org/downloads/)
|
|
8
|
+
[](https://pypi.org/project/spotforecast2/)
|
|
9
|
+
[](https://pypi.org/project/spotforecast2/)
|
|
10
|
+
[](https://github.com/sequential-parameter-optimization/spotforecast2/blob/main/LICENSE)
|
|
11
|
+
|
|
12
|
+
**Testing & Quality**
|
|
13
|
+
|
|
14
|
+
[](https://github.com/sequential-parameter-optimization/spotforecast2/actions/workflows/ci.yml)
|
|
15
|
+
[](https://sequential-parameter-optimization.github.io/spotforecast2/)
|
|
16
|
+
[](https://github.com/sequential-parameter-optimization/spotforecast2/releases)
|
|
17
|
+
|
|
18
|
+
**Status**
|
|
19
|
+
|
|
20
|
+
[](https://github.com/sequential-parameter-optimization/spotforecast2)
|
|
21
|
+
[](https://github.com/psf/black)
|
|
22
|
+
|
|
23
|
+
## About spotforecast2
|
|
24
|
+
|
|
25
|
+
`spotforecast2` is a Python library for time series forecasting.
|
|
26
|
+
|
|
27
|
+
Parts of the code are ported from `skforecast` to reduce external dependencies.
|
|
28
|
+
Many thanks to the [skforecast team](https://skforecast.org/0.20.0/more/about-skforecast.html) for their great work!
|
|
29
|
+
|
|
30
|
+
|
|
31
|
+
# License
|
|
32
|
+
|
|
33
|
+
`spotforecast2` software: [BSD-3-Clause License](https://github.com/sequential-parameter-optimization/spotforecast2?tab=BSD-3-Clause-1-ov-file)
|
|
34
|
+
|
|
35
|
+
|
|
36
|
+
# References
|
|
37
|
+
|
|
38
|
+
## skforecast:
|
|
39
|
+
|
|
40
|
+
* Amat Rodrigo, J., & Escobar Ortiz, J. (2026). skforecast (Version 0.20.0) [Computer software]. https://doi.org/10.5281/zenodo.8382788
|
|
41
|
+
|
|
42
|
+
## spotoptim:
|
|
43
|
+
|
|
44
|
+
* [spotoptim documentation](https://sequential-parameter-optimization.github.io/spotoptim/)
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
[project]
|
|
2
2
|
name = "spotforecast2"
|
|
3
|
-
version = "0.0.
|
|
3
|
+
version = "0.0.5"
|
|
4
4
|
description = "Forecasting with spot"
|
|
5
5
|
readme = "README.md"
|
|
6
6
|
authors = [
|
|
@@ -30,11 +30,17 @@ dependencies = [
|
|
|
30
30
|
requires = ["uv_build>=0.9.18,<0.10.0"]
|
|
31
31
|
build-backend = "uv_build"
|
|
32
32
|
|
|
33
|
-
[
|
|
33
|
+
[project.optional-dependencies]
|
|
34
34
|
dev = [
|
|
35
|
+
"pytest>=9.0.2",
|
|
36
|
+
"pytest-cov>=6.0.0",
|
|
37
|
+
"black>=24.1.0",
|
|
38
|
+
"isort>=5.13.0",
|
|
39
|
+
"ruff>=0.3.0",
|
|
35
40
|
"mkdocs>=1.6.1",
|
|
36
41
|
"mkdocs-material>=9.7.1",
|
|
37
42
|
"mkdocstrings>=1.0.2",
|
|
38
43
|
"mkdocstrings-python>=2.0.1",
|
|
39
|
-
"
|
|
44
|
+
"safety>=3.0.0",
|
|
45
|
+
"bandit>=1.8.0",
|
|
40
46
|
]
|
|
@@ -671,10 +671,10 @@ def set_skforecast_warnings(suppress_warnings: bool, action: str = "ignore") ->
|
|
|
671
671
|
Suppress spotforecast warnings.
|
|
672
672
|
|
|
673
673
|
Args:
|
|
674
|
-
suppress_warnings
|
|
674
|
+
suppress_warnings: bool
|
|
675
675
|
If True, spotforecast warnings will be suppressed.
|
|
676
|
-
action
|
|
677
|
-
|
|
676
|
+
action: str, default 'ignore'
|
|
677
|
+
Action to take regarding the warnings.
|
|
678
678
|
"""
|
|
679
679
|
if suppress_warnings:
|
|
680
680
|
for category in warn_skforecast_categories:
|
|
@@ -42,16 +42,16 @@ def exog_to_direct(
|
|
|
42
42
|
forecasting.
|
|
43
43
|
|
|
44
44
|
Args:
|
|
45
|
-
exog
|
|
45
|
+
exog: pandas Series, pandas DataFrame
|
|
46
46
|
Exogenous variables.
|
|
47
|
-
steps
|
|
47
|
+
steps: int
|
|
48
48
|
Number of steps that will be predicted using exog.
|
|
49
49
|
|
|
50
50
|
Returns:
|
|
51
51
|
tuple[pd.DataFrame, list[str]]:
|
|
52
|
-
exog_direct
|
|
52
|
+
exog_direct: pandas DataFrame
|
|
53
53
|
Exogenous variables transformed.
|
|
54
|
-
exog_direct_names
|
|
54
|
+
exog_direct_names: list
|
|
55
55
|
Names of the columns of the exogenous variables transformed. Only
|
|
56
56
|
created if `exog` is a pandas Series or DataFrame.
|
|
57
57
|
"""
|
|
@@ -90,17 +90,17 @@ def exog_to_direct_numpy(
|
|
|
90
90
|
forecasting.
|
|
91
91
|
|
|
92
92
|
Args:
|
|
93
|
-
exog
|
|
93
|
+
exog: numpy ndarray, pandas Series, pandas DataFrame
|
|
94
94
|
Exogenous variables, shape(samples,). If exog is a pandas format, the
|
|
95
95
|
direct exog names are created.
|
|
96
|
-
steps
|
|
96
|
+
steps: int
|
|
97
97
|
Number of steps that will be predicted using exog.
|
|
98
98
|
|
|
99
99
|
Returns:
|
|
100
100
|
tuple[np.ndarray, list[str] | None]:
|
|
101
|
-
exog_direct
|
|
101
|
+
exog_direct: numpy ndarray
|
|
102
102
|
Exogenous variables transformed.
|
|
103
|
-
exog_direct_names
|
|
103
|
+
exog_direct_names: list, None
|
|
104
104
|
Names of the columns of the exogenous variables transformed. Only
|
|
105
105
|
created if `exog` is a pandas Series or DataFrame.
|
|
106
106
|
"""
|
|
@@ -136,18 +136,18 @@ def prepare_steps_direct(
|
|
|
136
136
|
Prepare list of steps to be predicted in Direct Forecasters.
|
|
137
137
|
|
|
138
138
|
Args:
|
|
139
|
-
max_step
|
|
139
|
+
max_step: int, list, numpy ndarray
|
|
140
140
|
Maximum number of future steps the forecaster will predict
|
|
141
141
|
when using predict methods.
|
|
142
|
-
steps
|
|
142
|
+
steps: int, list, None, default None
|
|
143
143
|
Predict n steps. The value of `steps` must be less than or equal to the
|
|
144
|
-
|
|
145
|
-
|
|
146
|
-
|
|
147
|
-
|
|
148
|
-
|
|
149
|
-
|
|
150
|
-
|
|
144
|
+
value of steps defined when initializing the forecaster. Starts at 1.
|
|
145
|
+
|
|
146
|
+
- If `int`: Only steps within the range of 1 to int are predicted.
|
|
147
|
+
- If `list`: List of ints. Only the steps contained in the list
|
|
148
|
+
are predicted.
|
|
149
|
+
- If `None`: As many steps are predicted as were defined at
|
|
150
|
+
initialization.
|
|
151
151
|
|
|
152
152
|
Returns:
|
|
153
153
|
list[int]:
|
|
@@ -188,14 +188,14 @@ def transform_numpy(
|
|
|
188
188
|
have inverse_transform method.
|
|
189
189
|
|
|
190
190
|
Args:
|
|
191
|
-
array
|
|
191
|
+
array: numpy ndarray
|
|
192
192
|
Array to be transformed.
|
|
193
|
-
transformer
|
|
193
|
+
transformer: scikit-learn alike transformer, preprocessor, or ColumnTransformer.
|
|
194
194
|
Scikit-learn alike transformer (preprocessor) with methods: fit, transform,
|
|
195
195
|
fit_transform and inverse_transform.
|
|
196
|
-
fit
|
|
196
|
+
fit: bool, default False
|
|
197
197
|
Train the transformer before applying it.
|
|
198
|
-
inverse_transform
|
|
198
|
+
inverse_transform: bool, default False
|
|
199
199
|
Transform back the data to the original representation. This is not available
|
|
200
200
|
when using transformers of class scikit-learn ColumnTransformers.
|
|
201
201
|
|
|
@@ -565,25 +565,25 @@ def check_residuals_input(
|
|
|
565
565
|
Check residuals input arguments in Forecasters.
|
|
566
566
|
|
|
567
567
|
Args:
|
|
568
|
-
forecaster_name
|
|
568
|
+
forecaster_name: str
|
|
569
569
|
Forecaster name.
|
|
570
|
-
use_in_sample_residuals
|
|
570
|
+
use_in_sample_residuals: bool
|
|
571
571
|
Indicates if in sample or out sample residuals are used.
|
|
572
|
-
in_sample_residuals_
|
|
572
|
+
in_sample_residuals_: numpy ndarray, dict
|
|
573
573
|
Residuals of the model when predicting training data.
|
|
574
|
-
out_sample_residuals_
|
|
574
|
+
out_sample_residuals_: numpy ndarray, dict
|
|
575
575
|
Residuals of the model when predicting non training data.
|
|
576
|
-
use_binned_residuals
|
|
576
|
+
use_binned_residuals: bool
|
|
577
577
|
Indicates if residuals are binned.
|
|
578
|
-
in_sample_residuals_by_bin_
|
|
578
|
+
in_sample_residuals_by_bin_: dict
|
|
579
579
|
In sample residuals binned according to the predicted value each residual
|
|
580
580
|
is associated with.
|
|
581
|
-
out_sample_residuals_by_bin_
|
|
581
|
+
out_sample_residuals_by_bin_: dict
|
|
582
582
|
Out of sample residuals binned according to the predicted value each residual
|
|
583
583
|
is associated with.
|
|
584
|
-
levels
|
|
584
|
+
levels: list, default None
|
|
585
585
|
Names of the series (levels) to be predicted (Forecasters multiseries).
|
|
586
|
-
encoding
|
|
586
|
+
encoding: str, default None
|
|
587
587
|
Encoding used to identify the different series (ForecasterRecursiveMultiSeries).
|
|
588
588
|
|
|
589
589
|
Returns:
|
|
@@ -673,23 +673,23 @@ def date_to_index_position(
|
|
|
673
673
|
represents the position of the datetime in the index.
|
|
674
674
|
|
|
675
675
|
Args:
|
|
676
|
-
index
|
|
676
|
+
index: pandas Index
|
|
677
677
|
Original datetime index (must be a pandas DatetimeIndex if `date_input`
|
|
678
678
|
is not an int).
|
|
679
|
-
|
|
680
|
-
|
|
679
|
+
date_input: int, str, pandas Timestamp
|
|
680
|
+
Datetime to transform to integer.
|
|
681
681
|
|
|
682
|
-
|
|
683
|
-
|
|
684
|
-
|
|
685
|
-
|
|
682
|
+
- If int, returns the same integer.
|
|
683
|
+
- If str or pandas Timestamp, it is converted and expanded into the index.
|
|
684
|
+
method: str, default 'prediction'
|
|
685
|
+
Can be 'prediction' or 'validation'.
|
|
686
686
|
|
|
687
|
-
|
|
688
|
-
|
|
689
|
-
|
|
690
|
-
|
|
691
|
-
|
|
692
|
-
|
|
687
|
+
- If 'prediction', the date must be later than the last date in the index.
|
|
688
|
+
- If 'validation', the date must be within the index range.
|
|
689
|
+
date_literal: str, default 'steps'
|
|
690
|
+
Variable name used in error messages.
|
|
691
|
+
kwargs_pd_to_datetime: dict, default {}
|
|
692
|
+
Additional keyword arguments to pass to `pd.to_datetime()`.
|
|
693
693
|
|
|
694
694
|
Returns:
|
|
695
695
|
int:
|
|
@@ -758,11 +758,11 @@ def initialize_estimator(
|
|
|
758
758
|
Returns the valid estimator object.
|
|
759
759
|
|
|
760
760
|
Args:
|
|
761
|
-
estimator
|
|
761
|
+
estimator: estimator or pipeline compatible with the scikit-learn API, default None
|
|
762
762
|
An instance of a estimator or pipeline compatible with the scikit-learn API.
|
|
763
|
-
|
|
764
|
-
|
|
765
|
-
|
|
763
|
+
regressor: estimator or pipeline compatible with the scikit-learn API, default None
|
|
764
|
+
Deprecated. An instance of a estimator or pipeline compatible with the
|
|
765
|
+
scikit-learn API.
|
|
766
766
|
|
|
767
767
|
Returns:
|
|
768
768
|
estimator or pipeline compatible with the scikit-learn API
|
|
@@ -407,50 +407,50 @@ def check_predict_input(
|
|
|
407
407
|
trained.
|
|
408
408
|
|
|
409
409
|
Args:
|
|
410
|
-
forecaster_name
|
|
410
|
+
forecaster_name: str
|
|
411
411
|
Forecaster name.
|
|
412
|
-
steps
|
|
412
|
+
steps: int, list
|
|
413
413
|
Number of future steps predicted.
|
|
414
414
|
is_fitted: bool
|
|
415
415
|
Tag to identify if the estimator has been fitted (trained).
|
|
416
|
-
exog_in_
|
|
416
|
+
exog_in_: bool
|
|
417
417
|
If the forecaster has been trained using exogenous variable/s.
|
|
418
|
-
index_type_
|
|
418
|
+
index_type_: type
|
|
419
419
|
Type of index of the input used in training.
|
|
420
|
-
index_freq_
|
|
420
|
+
index_freq_: str
|
|
421
421
|
Frequency of Index of the input used in training.
|
|
422
422
|
window_size: int
|
|
423
423
|
Size of the window needed to create the predictors. It is equal to
|
|
424
424
|
`max_lag`.
|
|
425
|
-
last_window
|
|
425
|
+
last_window: pandas Series, pandas DataFrame, None
|
|
426
426
|
Values of the series used to create the predictors (lags) need in the
|
|
427
427
|
first iteration of prediction (t + 1).
|
|
428
|
-
last_window_exog
|
|
428
|
+
last_window_exog: pandas Series, pandas DataFrame, default None
|
|
429
429
|
Values of the exogenous variables aligned with `last_window` in
|
|
430
430
|
ForecasterStats predictions.
|
|
431
|
-
exog
|
|
431
|
+
exog: pandas Series, pandas DataFrame, dict, default None
|
|
432
432
|
Exogenous variable/s included as predictor/s.
|
|
433
|
-
exog_names_in_
|
|
433
|
+
exog_names_in_: list, default None
|
|
434
434
|
Names of the exogenous variables used during training.
|
|
435
|
-
interval
|
|
435
|
+
interval: list, tuple, default None
|
|
436
436
|
Confidence of the prediction interval estimated. Sequence of percentiles
|
|
437
437
|
to compute, which must be between 0 and 100 inclusive. For example,
|
|
438
438
|
interval of 95% should be as `interval = [2.5, 97.5]`.
|
|
439
|
-
alpha
|
|
439
|
+
alpha: float, default None
|
|
440
440
|
The confidence intervals used in ForecasterStats are (1 - alpha) %.
|
|
441
441
|
max_step: int, default None
|
|
442
442
|
Maximum number of steps allowed (`ForecasterDirect` and
|
|
443
443
|
`ForecasterDirectMultiVariate`).
|
|
444
|
-
levels
|
|
444
|
+
levels: str, list, default None
|
|
445
445
|
Time series to be predicted (`ForecasterRecursiveMultiSeries`
|
|
446
446
|
and `ForecasterRnn).
|
|
447
|
-
levels_forecaster
|
|
447
|
+
levels_forecaster: str, list, default None
|
|
448
448
|
Time series used as output data of a multiseries problem in a RNN problem
|
|
449
449
|
(`ForecasterRnn`).
|
|
450
|
-
series_names_in_
|
|
450
|
+
series_names_in_: list, default None
|
|
451
451
|
Names of the columns used during fit (`ForecasterRecursiveMultiSeries`,
|
|
452
452
|
`ForecasterDirectMultiVariate` and `ForecasterRnn`).
|
|
453
|
-
encoding
|
|
453
|
+
encoding: str, default None
|
|
454
454
|
Encoding used to identify the different series (`ForecasterRecursiveMultiSeries`).
|
|
455
455
|
|
|
456
456
|
Returns:
|
spotforecast2-0.0.3/PKG-INFO
DELETED
|
@@ -1,47 +0,0 @@
|
|
|
1
|
-
Metadata-Version: 2.3
|
|
2
|
-
Name: spotforecast2
|
|
3
|
-
Version: 0.0.3
|
|
4
|
-
Summary: Forecasting with spot
|
|
5
|
-
Author: bartzbeielstein
|
|
6
|
-
Author-email: bartzbeielstein <32470350+bartzbeielstein@users.noreply.github.com>
|
|
7
|
-
Requires-Dist: astral>=3.2
|
|
8
|
-
Requires-Dist: feature-engine>=1.9.3
|
|
9
|
-
Requires-Dist: flake8>=7.3.0
|
|
10
|
-
Requires-Dist: holidays>=0.90
|
|
11
|
-
Requires-Dist: ipykernel>=7.1.0
|
|
12
|
-
Requires-Dist: jupyter>=1.1.1
|
|
13
|
-
Requires-Dist: lightgbm>=4.6.0
|
|
14
|
-
Requires-Dist: matplotlib>=3.10.8
|
|
15
|
-
Requires-Dist: numba>=0.63.1
|
|
16
|
-
Requires-Dist: optuna>=4.7.0
|
|
17
|
-
Requires-Dist: pandas>=3.0.0
|
|
18
|
-
Requires-Dist: plotly>=6.5.2
|
|
19
|
-
Requires-Dist: pyarrow>=23.0.0
|
|
20
|
-
Requires-Dist: scikit-learn>=1.8.0
|
|
21
|
-
Requires-Dist: spotoptim>=0.0.160
|
|
22
|
-
Requires-Dist: tqdm>=4.67.2
|
|
23
|
-
Requires-Python: >=3.13
|
|
24
|
-
Description-Content-Type: text/markdown
|
|
25
|
-
|
|
26
|
-
# About spotforecast2
|
|
27
|
-
|
|
28
|
-
`spotforecast2` is a Python library for time series forecasting.
|
|
29
|
-
|
|
30
|
-
Parts of the code are ported from `skforecast` to reduce external dependencies.
|
|
31
|
-
Many thanks to the [skforecast team](https://skforecast.org/0.20.0/more/about-skforecast.html) for their great work!
|
|
32
|
-
|
|
33
|
-
|
|
34
|
-
# License
|
|
35
|
-
|
|
36
|
-
`spotforecast2` software: [BSD-3-Clause License](https://github.com/sequential-parameter-optimization/spotforecast2?tab=BSD-3-Clause-1-ov-file)
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
# References
|
|
40
|
-
|
|
41
|
-
## skforecast:
|
|
42
|
-
|
|
43
|
-
* Amat Rodrigo, J., & Escobar Ortiz, J. (2026). skforecast (Version 0.20.0) [Computer software]. https://doi.org/10.5281/zenodo.8382788
|
|
44
|
-
|
|
45
|
-
## spotoptim:
|
|
46
|
-
|
|
47
|
-
* [spotoptim documentation](https://sequential-parameter-optimization.github.io/spotoptim/)
|
spotforecast2-0.0.3/README.md
DELETED
|
@@ -1,22 +0,0 @@
|
|
|
1
|
-
# About spotforecast2
|
|
2
|
-
|
|
3
|
-
`spotforecast2` is a Python library for time series forecasting.
|
|
4
|
-
|
|
5
|
-
Parts of the code are ported from `skforecast` to reduce external dependencies.
|
|
6
|
-
Many thanks to the [skforecast team](https://skforecast.org/0.20.0/more/about-skforecast.html) for their great work!
|
|
7
|
-
|
|
8
|
-
|
|
9
|
-
# License
|
|
10
|
-
|
|
11
|
-
`spotforecast2` software: [BSD-3-Clause License](https://github.com/sequential-parameter-optimization/spotforecast2?tab=BSD-3-Clause-1-ov-file)
|
|
12
|
-
|
|
13
|
-
|
|
14
|
-
# References
|
|
15
|
-
|
|
16
|
-
## skforecast:
|
|
17
|
-
|
|
18
|
-
* Amat Rodrigo, J., & Escobar Ortiz, J. (2026). skforecast (Version 0.20.0) [Computer software]. https://doi.org/10.5281/zenodo.8382788
|
|
19
|
-
|
|
20
|
-
## spotoptim:
|
|
21
|
-
|
|
22
|
-
* [spotoptim documentation](https://sequential-parameter-optimization.github.io/spotoptim/)
|
|
Binary file
|
|
Binary file
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
{spotforecast2-0.0.3 → spotforecast2-0.0.5}/src/spotforecast2/forecaster/recursive/__init__.py
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|
{spotforecast2-0.0.3 → spotforecast2-0.0.5}/src/spotforecast2/forecaster/recursive/_warnings.py
RENAMED
|
File without changes
|
|
File without changes
|
{spotforecast2-0.0.3 → spotforecast2-0.0.5}/src/spotforecast2/model_selection/bayesian_search.py
RENAMED
|
File without changes
|
{spotforecast2-0.0.3 → spotforecast2-0.0.5}/src/spotforecast2/model_selection/grid_search.py
RENAMED
|
File without changes
|
{spotforecast2-0.0.3 → spotforecast2-0.0.5}/src/spotforecast2/model_selection/random_search.py
RENAMED
|
File without changes
|
|
File without changes
|
{spotforecast2-0.0.3 → spotforecast2-0.0.5}/src/spotforecast2/model_selection/split_one_step.py
RENAMED
|
File without changes
|
{spotforecast2-0.0.3 → spotforecast2-0.0.5}/src/spotforecast2/model_selection/split_ts_cv.py
RENAMED
|
File without changes
|
{spotforecast2-0.0.3 → spotforecast2-0.0.5}/src/spotforecast2/model_selection/utils_common.py
RENAMED
|
File without changes
|
{spotforecast2-0.0.3 → spotforecast2-0.0.5}/src/spotforecast2/model_selection/utils_metrics.py
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
{spotforecast2-0.0.3 → spotforecast2-0.0.5}/src/spotforecast2/preprocessing/_differentiator.py
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|