sports2d 0.8.21__tar.gz → 0.8.22__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {sports2d-0.8.21 → sports2d-0.8.22}/PKG-INFO +2 -2
- {sports2d-0.8.21 → sports2d-0.8.22}/Sports2D/Demo/Config_demo.toml +5 -4
- {sports2d-0.8.21 → sports2d-0.8.22}/Sports2D/Sports2D.py +4 -0
- {sports2d-0.8.21 → sports2d-0.8.22}/Sports2D/process.py +308 -237
- {sports2d-0.8.21 → sports2d-0.8.22}/pyproject.toml +1 -1
- {sports2d-0.8.21 → sports2d-0.8.22}/sports2d.egg-info/PKG-INFO +2 -2
- {sports2d-0.8.21 → sports2d-0.8.22}/sports2d.egg-info/requires.txt +1 -1
- {sports2d-0.8.21 → sports2d-0.8.22}/.github/workflows/continuous-integration.yml +0 -0
- {sports2d-0.8.21 → sports2d-0.8.22}/.github/workflows/joss_pdf.yml +0 -0
- {sports2d-0.8.21 → sports2d-0.8.22}/.github/workflows/publish-on-release.yml +0 -0
- {sports2d-0.8.21 → sports2d-0.8.22}/.gitignore +0 -0
- {sports2d-0.8.21 → sports2d-0.8.22}/CITATION.cff +0 -0
- {sports2d-0.8.21 → sports2d-0.8.22}/Content/Demo_plots.png +0 -0
- {sports2d-0.8.21 → sports2d-0.8.22}/Content/Demo_results.png +0 -0
- {sports2d-0.8.21 → sports2d-0.8.22}/Content/Demo_terminal.png +0 -0
- {sports2d-0.8.21 → sports2d-0.8.22}/Content/Person_selection.png +0 -0
- {sports2d-0.8.21 → sports2d-0.8.22}/Content/Video_tuto_Sports2D_Colab.png +0 -0
- {sports2d-0.8.21 → sports2d-0.8.22}/Content/joint_convention.png +0 -0
- {sports2d-0.8.21 → sports2d-0.8.22}/Content/paper.bib +0 -0
- {sports2d-0.8.21 → sports2d-0.8.22}/Content/paper.md +0 -0
- {sports2d-0.8.21 → sports2d-0.8.22}/Content/sports2d_blender.gif +0 -0
- {sports2d-0.8.21 → sports2d-0.8.22}/Content/sports2d_opensim.gif +0 -0
- {sports2d-0.8.21 → sports2d-0.8.22}/LICENSE +0 -0
- {sports2d-0.8.21 → sports2d-0.8.22}/README.md +0 -0
- {sports2d-0.8.21 → sports2d-0.8.22}/Sports2D/Demo/Calib_demo.toml +0 -0
- {sports2d-0.8.21 → sports2d-0.8.22}/Sports2D/Demo/demo.mp4 +0 -0
- {sports2d-0.8.21 → sports2d-0.8.22}/Sports2D/Sports2D.ipynb +0 -0
- {sports2d-0.8.21 → sports2d-0.8.22}/Sports2D/Utilities/__init__.py +0 -0
- {sports2d-0.8.21 → sports2d-0.8.22}/Sports2D/Utilities/common.py +0 -0
- {sports2d-0.8.21 → sports2d-0.8.22}/Sports2D/Utilities/tests.py +0 -0
- {sports2d-0.8.21 → sports2d-0.8.22}/Sports2D/__init__.py +0 -0
- {sports2d-0.8.21 → sports2d-0.8.22}/setup.cfg +0 -0
- {sports2d-0.8.21 → sports2d-0.8.22}/sports2d.egg-info/SOURCES.txt +0 -0
- {sports2d-0.8.21 → sports2d-0.8.22}/sports2d.egg-info/dependency_links.txt +0 -0
- {sports2d-0.8.21 → sports2d-0.8.22}/sports2d.egg-info/entry_points.txt +0 -0
- {sports2d-0.8.21 → sports2d-0.8.22}/sports2d.egg-info/top_level.txt +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: sports2d
|
|
3
|
-
Version: 0.8.
|
|
3
|
+
Version: 0.8.22
|
|
4
4
|
Summary: Compute 2D human pose and angles from a video or a webcam.
|
|
5
5
|
Author-email: David Pagnon <contact@david-pagnon.com>
|
|
6
6
|
Maintainer-email: David Pagnon <contact@david-pagnon.com>
|
|
@@ -38,7 +38,7 @@ Requires-Dist: openvino
|
|
|
38
38
|
Requires-Dist: opencv-python<4.12
|
|
39
39
|
Requires-Dist: imageio_ffmpeg
|
|
40
40
|
Requires-Dist: deep-sort-realtime
|
|
41
|
-
Requires-Dist: Pose2Sim>=0.10.
|
|
41
|
+
Requires-Dist: Pose2Sim>=0.10.38
|
|
42
42
|
Dynamic: license-file
|
|
43
43
|
|
|
44
44
|
|
|
@@ -97,7 +97,7 @@ tracking_mode = 'sports2d' # 'sports2d' or 'deepsort'. 'deepsort' is slower, har
|
|
|
97
97
|
keypoint_likelihood_threshold = 0.3 # Keypoints whose likelihood is lower will not be taken into account
|
|
98
98
|
average_likelihood_threshold = 0.5 # Person will be ignored if average likelihood of good keypoints is lower than this value
|
|
99
99
|
keypoint_number_threshold = 0.3 # Person will be ignored if the number of good keypoints (above keypoint_likelihood_threshold) is less than this fraction
|
|
100
|
-
|
|
100
|
+
max_distance = 100 # in px or None # If a person is detected further than max_distance from its position on the previous frame, it will be considered as a new one
|
|
101
101
|
|
|
102
102
|
[px_to_meters_conversion]
|
|
103
103
|
# Pixel to meters conversion
|
|
@@ -131,11 +131,12 @@ correct_segment_angles_with_floor_angle = true # If the camera is tilted, correc
|
|
|
131
131
|
|
|
132
132
|
[post-processing]
|
|
133
133
|
interpolate = true
|
|
134
|
-
interp_gap_smaller_than = 10 #
|
|
134
|
+
interp_gap_smaller_than = 10 # Do not interpolate larger gaps
|
|
135
135
|
fill_large_gaps_with = 'last_value' # 'last_value', 'nan', or 'zeros'
|
|
136
136
|
sections_to_keep = 'all' # 'all', 'largest', 'first', 'last'
|
|
137
|
-
#
|
|
138
|
-
|
|
137
|
+
# Keep 'all' valid sections even when they are interspersed with undetected chunks, or the 'largest' valid section, or the 'first' one, or the 'last' one
|
|
138
|
+
min_chunk_size = 10 # Minimum number of valid frames in a row to keep a chunk of data for a person
|
|
139
|
+
reject_outliers = true # Hampel filter for outlier rejection before other filtering methods. Rejects outliers that are outside of a 95% confidence interal from the median in a sliding window of size 7.
|
|
139
140
|
|
|
140
141
|
filter = true
|
|
141
142
|
show_graphs = true # Show plots of raw and processed results
|
|
@@ -152,6 +152,7 @@ DEFAULT_CONFIG = {'base': {'video_input': ['demo.mp4'],
|
|
|
152
152
|
'keypoint_likelihood_threshold': 0.3,
|
|
153
153
|
'average_likelihood_threshold': 0.5,
|
|
154
154
|
'keypoint_number_threshold': 0.3,
|
|
155
|
+
'max_distance': 100,
|
|
155
156
|
'CUSTOM': { 'name': 'Hip',
|
|
156
157
|
'id': 19,
|
|
157
158
|
'children': [{'name': 'RHip',
|
|
@@ -233,6 +234,7 @@ DEFAULT_CONFIG = {'base': {'video_input': ['demo.mp4'],
|
|
|
233
234
|
'interp_gap_smaller_than': 10,
|
|
234
235
|
'fill_large_gaps_with': 'last_value',
|
|
235
236
|
'sections_to_keep':'all',
|
|
237
|
+
'min_chunk_size': 10,
|
|
236
238
|
'reject_outliers': True,
|
|
237
239
|
'filter': True,
|
|
238
240
|
'show_graphs': True,
|
|
@@ -315,6 +317,7 @@ CONFIG_HELP = {'config': ["C", "path to a toml configuration file"],
|
|
|
315
317
|
'keypoint_likelihood_threshold': ["", "detected keypoints are not retained if likelihood is below this threshold. 0.3 if not specified"],
|
|
316
318
|
'average_likelihood_threshold': ["", "detected persons are not retained if average keypoint likelihood is below this threshold. 0.5 if not specified"],
|
|
317
319
|
'keypoint_number_threshold': ["", "detected persons are not retained if number of detected keypoints is below this threshold. 0.3 if not specified, i.e., i.e., 30 percent"],
|
|
320
|
+
'max_distance': ["", "If a person is detected further than max_distance from its position on the previous frame, it will be considered as a new one. in px or None, 100 by default."],
|
|
318
321
|
'fastest_frames_to_remove_percent': ["", "Frames with high speed are considered as outliers. Defaults to 0.1"],
|
|
319
322
|
'close_to_zero_speed_px': ["", "Sum for all keypoints: about 50 px/frame or 0.2 m/frame. Defaults to 50"],
|
|
320
323
|
'large_hip_knee_angles': ["", "Hip and knee angles below this value are considered as imprecise. Defaults to 45"],
|
|
@@ -326,6 +329,7 @@ CONFIG_HELP = {'config': ["C", "path to a toml configuration file"],
|
|
|
326
329
|
'interp_gap_smaller_than': ["", "interpolate sequences of missing data if they are less than N frames long. 10 if not specified"],
|
|
327
330
|
'fill_large_gaps_with': ["", "last_value, nan, or zeros. last_value if not specified"],
|
|
328
331
|
'sections_to_keep': ["", "all, largest, first, or last. Keep 'all' valid sections even when they are interspersed with undetected chunks, or the 'largest' valid section, or the 'first' one, or the 'last' one"],
|
|
332
|
+
'min_chunk_size': ["", "Minimum number of valid frames in a row to keep a chunk of data for a person. 10 if not specified"],
|
|
329
333
|
'reject_outliers': ["", "reject outliers with Hampel filter before other filtering methods. true if not specified"],
|
|
330
334
|
'filter': ["", "filter results. true if not specified"],
|
|
331
335
|
'filter_type': ["", "butterworth, kalman, gcv_spline, gaussian, median, or loess. butterworth if not specified"],
|
|
@@ -87,12 +87,15 @@ from Pose2Sim.triangulation import indices_of_first_last_non_nan_chunks
|
|
|
87
87
|
from Pose2Sim.personAssociation import *
|
|
88
88
|
from Pose2Sim.filtering import *
|
|
89
89
|
|
|
90
|
+
# Silence numpy "RuntimeWarning: Mean of empty slice"
|
|
91
|
+
import warnings
|
|
92
|
+
warnings.filterwarnings("ignore", category=RuntimeWarning, message="Mean of empty slice")
|
|
93
|
+
|
|
90
94
|
# Not safe, but to be used until OpenMMLab/RTMlib's SSL certificates are updated
|
|
91
95
|
import ssl
|
|
92
96
|
ssl._create_default_https_context = ssl._create_unverified_context
|
|
93
97
|
|
|
94
98
|
|
|
95
|
-
|
|
96
99
|
DEFAULT_MASS = 70
|
|
97
100
|
DEFAULT_HEIGHT = 1.7
|
|
98
101
|
|
|
@@ -798,6 +801,8 @@ def pose_plots(trc_data_unfiltered, trc_data, person_id, show=True):
|
|
|
798
801
|
INPUTS:
|
|
799
802
|
- trc_data_unfiltered: pd.DataFrame. The unfiltered trc data
|
|
800
803
|
- trc_data: pd.DataFrame. The filtered trc data
|
|
804
|
+
- person_id: int. The ID of the person
|
|
805
|
+
- show: bool. Whether to show the plots
|
|
801
806
|
|
|
802
807
|
OUTPUT:
|
|
803
808
|
- matplotlib window with tabbed figures for each keypoint
|
|
@@ -806,7 +811,6 @@ def pose_plots(trc_data_unfiltered, trc_data, person_id, show=True):
|
|
|
806
811
|
os_name = platform.system()
|
|
807
812
|
if os_name == 'Windows':
|
|
808
813
|
mpl.use('qt5agg') # windows
|
|
809
|
-
|
|
810
814
|
mpl.rc('figure', max_open_warning=0)
|
|
811
815
|
|
|
812
816
|
keypoints_names = trc_data.columns[1::3]
|
|
@@ -1142,6 +1146,8 @@ def select_persons_on_vid(video_file_path, frame_range, all_pose_coords):
|
|
|
1142
1146
|
|
|
1143
1147
|
# Change color on hover
|
|
1144
1148
|
for person_idx, bbox in enumerate(all_bboxes[frame_idx]):
|
|
1149
|
+
if person_idx >= len(rects): # Skip if rect doesn't exist
|
|
1150
|
+
continue
|
|
1145
1151
|
if ~np.isnan(bbox).any():
|
|
1146
1152
|
x_min, y_min, x_max, y_max = bbox.astype(int)
|
|
1147
1153
|
if x_min <= x <= x_max and y_min <= y <= y_max:
|
|
@@ -1269,7 +1275,7 @@ def select_persons_on_vid(video_file_path, frame_range, all_pose_coords):
|
|
|
1269
1275
|
return selected_persons
|
|
1270
1276
|
|
|
1271
1277
|
|
|
1272
|
-
def compute_floor_line(trc_data, keypoint_names = ['LBigToe', 'RBigToe'], toe_speed_below = 7,
|
|
1278
|
+
def compute_floor_line(trc_data, score_data, keypoint_names = ['LBigToe', 'RBigToe'], toe_speed_below = 7, score_threshold=0.5):
|
|
1273
1279
|
'''
|
|
1274
1280
|
Compute the floor line equation, angle, and direction
|
|
1275
1281
|
from the feet keypoints when they have zero speed.
|
|
@@ -1287,20 +1293,25 @@ def compute_floor_line(trc_data, keypoint_names = ['LBigToe', 'RBigToe'], toe_sp
|
|
|
1287
1293
|
- gait_direction: float. Left if < 0, 'right' otherwise
|
|
1288
1294
|
'''
|
|
1289
1295
|
|
|
1290
|
-
# Remove frames where the person is mostly not moving (outlier)
|
|
1291
|
-
speeds_kpts = np.array([np.insert(np.linalg.norm(trc_data[kpt].diff(), axis=1)[1:],0,0)
|
|
1292
|
-
for kpt in trc_data.columns.unique()[1:]]).T
|
|
1293
|
-
av_speeds = np.array([np.nanmean(speed_kpt) if not np.isnan(speed_kpt).all() else 0 for speed_kpt in speeds_kpts])
|
|
1294
|
-
trc_data = trc_data[av_speeds>tot_speed_above]
|
|
1295
|
-
|
|
1296
1296
|
# Retrieve zero-speed coordinates for the foot
|
|
1297
1297
|
low_speeds_X, low_speeds_Y = [], []
|
|
1298
1298
|
gait_direction_val = []
|
|
1299
1299
|
for kpt in keypoint_names:
|
|
1300
|
-
|
|
1300
|
+
# Remove frames without data
|
|
1301
|
+
trc_data_kpt = trc_data[kpt].iloc[:,:2]
|
|
1302
|
+
score_data_kpt = score_data[kpt]
|
|
1303
|
+
start, end = indices_of_first_last_non_nan_chunks(score_data_kpt, chunk_choice_method='all')
|
|
1304
|
+
trc_data_kpt_trim = trc_data_kpt.iloc[start:end].reset_index(drop=True)
|
|
1305
|
+
score_data_kpt_trim = score_data_kpt.iloc[start:end].reset_index(drop=True)
|
|
1306
|
+
|
|
1307
|
+
# Compute speeds
|
|
1308
|
+
speeds = np.linalg.norm(trc_data_kpt_trim.diff(), axis=1)
|
|
1309
|
+
|
|
1310
|
+
# Remove speeds with low confidence
|
|
1311
|
+
speeds = np.where(score_data_kpt_trim>score_threshold, speeds, np.nan)
|
|
1301
1312
|
|
|
1302
|
-
|
|
1303
|
-
low_speeds_coords =
|
|
1313
|
+
# Get coordinates with low speeds, high
|
|
1314
|
+
low_speeds_coords = trc_data_kpt_trim[speeds<toe_speed_below]
|
|
1304
1315
|
low_speeds_coords = low_speeds_coords[low_speeds_coords!=0]
|
|
1305
1316
|
|
|
1306
1317
|
low_speeds_X_kpt = low_speeds_coords.iloc[:,0].tolist()
|
|
@@ -1445,6 +1456,7 @@ def process_fun(config_dict, video_file, time_range, frame_rate, result_dir):
|
|
|
1445
1456
|
mode = config_dict.get('pose').get('mode')
|
|
1446
1457
|
det_frequency = config_dict.get('pose').get('det_frequency')
|
|
1447
1458
|
tracking_mode = config_dict.get('pose').get('tracking_mode')
|
|
1459
|
+
max_distance = config_dict.get('pose').get('max_distance', None)
|
|
1448
1460
|
if tracking_mode == 'deepsort':
|
|
1449
1461
|
deepsort_params = config_dict.get('pose').get('deepsort_params')
|
|
1450
1462
|
try:
|
|
@@ -1492,7 +1504,7 @@ def process_fun(config_dict, video_file, time_range, frame_rate, result_dir):
|
|
|
1492
1504
|
interp_gap_smaller_than = config_dict.get('post-processing').get('interp_gap_smaller_than')
|
|
1493
1505
|
fill_large_gaps_with = config_dict.get('post-processing').get('fill_large_gaps_with')
|
|
1494
1506
|
sections_to_keep = config_dict.get('post-processing').get('sections_to_keep')
|
|
1495
|
-
|
|
1507
|
+
min_chunk_size = config_dict.get('post-processing').get('min_chunk_size')
|
|
1496
1508
|
do_filter = config_dict.get('post-processing').get('filter')
|
|
1497
1509
|
handle_LR_swap = config_dict.get('post-processing').get('handle_LR_swap', False)
|
|
1498
1510
|
reject_outliers = config_dict.get('post-processing').get('reject_outliers', False)
|
|
@@ -1514,7 +1526,8 @@ def process_fun(config_dict, video_file, time_range, frame_rate, result_dir):
|
|
|
1514
1526
|
# Create output directories
|
|
1515
1527
|
if video_file == "webcam":
|
|
1516
1528
|
current_date = datetime.now().strftime("%Y%m%d_%H%M%S")
|
|
1517
|
-
|
|
1529
|
+
video_file_stem = f'webcam_{current_date}'
|
|
1530
|
+
output_dir_name = f'{video_file_stem}_Sports2D'
|
|
1518
1531
|
video_file_path = result_dir / output_dir_name / f'webcam_{current_date}_raw.mp4'
|
|
1519
1532
|
else:
|
|
1520
1533
|
video_file_stem = video_file.stem
|
|
@@ -1623,6 +1636,7 @@ def process_fun(config_dict, video_file, time_range, frame_rate, result_dir):
|
|
|
1623
1636
|
# Load pose file in px
|
|
1624
1637
|
Q_coords, _, time_col, keypoints_names, _ = read_trc(load_trc_px)
|
|
1625
1638
|
t0 = time_col[0]
|
|
1639
|
+
tf = time_col.iloc[-1]
|
|
1626
1640
|
keypoints_ids = [i for i in range(len(keypoints_names))]
|
|
1627
1641
|
keypoints_all, scores_all = load_pose_file(Q_coords)
|
|
1628
1642
|
|
|
@@ -1640,6 +1654,7 @@ def process_fun(config_dict, video_file, time_range, frame_rate, result_dir):
|
|
|
1640
1654
|
keypoints_ids = [node.id for _, _, node in RenderTree(pose_model) if node.id!=None]
|
|
1641
1655
|
keypoints_names = [node.name for _, _, node in RenderTree(pose_model) if node.id!=None]
|
|
1642
1656
|
t0 = 0
|
|
1657
|
+
tf = (cap.get(cv2.CAP_PROP_FRAME_COUNT)-1) / fps if cap.get(cv2.CAP_PROP_FRAME_COUNT)>0 else float('inf')
|
|
1643
1658
|
|
|
1644
1659
|
# Set up pose tracker
|
|
1645
1660
|
try:
|
|
@@ -1652,14 +1667,12 @@ def process_fun(config_dict, video_file, time_range, frame_rate, result_dir):
|
|
|
1652
1667
|
except:
|
|
1653
1668
|
logging.error('Error: Pose estimation failed. Check in Config.toml that pose_model and mode are valid.')
|
|
1654
1669
|
raise ValueError('Error: Pose estimation failed. Check in Config.toml that pose_model and mode are valid.')
|
|
1655
|
-
|
|
1656
|
-
# if tracking_mode not in ['deepsort', 'sports2d']:
|
|
1657
|
-
# logging.warning(f"Tracking mode {tracking_mode} not recognized. Using sports2d method.")
|
|
1658
|
-
# tracking_mode = 'sports2d'
|
|
1659
|
-
# logging.info(f'Pose tracking set up for "{pose_model_name}" model.')
|
|
1660
|
-
# logging.info(f'Mode: {mode}.\n')
|
|
1661
1670
|
logging.info(f'Persons are detected every {det_frequency} frames and tracked inbetween. Tracking is done with {tracking_mode}.')
|
|
1662
|
-
|
|
1671
|
+
|
|
1672
|
+
if tracking_mode == 'deepsort':
|
|
1673
|
+
logging.info(f'Deepsort parameters: {deepsort_params}.')
|
|
1674
|
+
if tracking_mode not in ['deepsort', 'sports2d']:
|
|
1675
|
+
logging.warning(f"Tracking mode {tracking_mode} is not implemented. 'sports2d' is recommended.")
|
|
1663
1676
|
logging.info(f'{"All persons are" if nb_persons_to_detect=="all" else f"{nb_persons_to_detect} persons are" if nb_persons_to_detect>1 else "1 person is"} analyzed. Person ordering method is {person_ordering_method}.')
|
|
1664
1677
|
logging.info(f"{keypoint_likelihood_threshold=}, {average_likelihood_threshold=}, {keypoint_number_threshold=}")
|
|
1665
1678
|
|
|
@@ -1691,7 +1704,11 @@ def process_fun(config_dict, video_file, time_range, frame_rate, result_dir):
|
|
|
1691
1704
|
frame_processing_times = []
|
|
1692
1705
|
frame_count = 0
|
|
1693
1706
|
first_frame = max(int(t0 * fps), frame_range[0])
|
|
1694
|
-
|
|
1707
|
+
last_frame = min(int(tf * fps), frame_range[1]-1)
|
|
1708
|
+
if first_frame >= last_frame:
|
|
1709
|
+
logging.error('Error: No frames to process. Check that your time_range is coherent with the video duration.')
|
|
1710
|
+
raise ValueError('Error: No frames to process. Check that your time_range is coherent with the video duration.')
|
|
1711
|
+
|
|
1695
1712
|
while cap.isOpened():
|
|
1696
1713
|
# Skip to the starting frame
|
|
1697
1714
|
if frame_count < first_frame:
|
|
@@ -1714,9 +1731,6 @@ def process_fun(config_dict, video_file, time_range, frame_rate, result_dir):
|
|
|
1714
1731
|
if save_angles:
|
|
1715
1732
|
all_frames_angles.append([])
|
|
1716
1733
|
continue
|
|
1717
|
-
# else: # does not store all frames in memory if they are not saved or used for ordering
|
|
1718
|
-
# if save_img or save_vid or person_ordering_method == 'on_click':
|
|
1719
|
-
# frames.append(frame.copy())
|
|
1720
1734
|
|
|
1721
1735
|
# Retrieve pose or Estimate pose and track people
|
|
1722
1736
|
if load_trc_px:
|
|
@@ -1732,22 +1746,57 @@ def process_fun(config_dict, video_file, time_range, frame_rate, result_dir):
|
|
|
1732
1746
|
# Detect poses
|
|
1733
1747
|
keypoints, scores = pose_tracker(frame)
|
|
1734
1748
|
|
|
1735
|
-
# Non maximum suppression (at pose level, not detection)
|
|
1749
|
+
# Non maximum suppression (at pose level, not detection, and only using likely keypoints)
|
|
1736
1750
|
frame_shape = frame.shape
|
|
1737
|
-
|
|
1738
|
-
|
|
1739
|
-
|
|
1740
|
-
|
|
1741
|
-
|
|
1751
|
+
mask_scores = np.mean(scores, axis=1) > 0.2
|
|
1752
|
+
|
|
1753
|
+
likely_keypoints = np.where(mask_scores[:, np.newaxis, np.newaxis], keypoints, np.nan)
|
|
1754
|
+
likely_scores = np.where(mask_scores[:, np.newaxis], scores, np.nan)
|
|
1755
|
+
likely_bboxes = bbox_xyxy_compute(frame_shape, likely_keypoints, padding=0)
|
|
1756
|
+
score_likely_bboxes = np.nanmean(likely_scores, axis=1)
|
|
1757
|
+
|
|
1758
|
+
valid_indices = np.where(~np.isnan(score_likely_bboxes))[0]
|
|
1759
|
+
if len(valid_indices) > 0:
|
|
1760
|
+
valid_bboxes = likely_bboxes[valid_indices]
|
|
1761
|
+
valid_scores = score_likely_bboxes[valid_indices]
|
|
1762
|
+
keep_valid = nms(valid_bboxes, valid_scores, nms_thr=0.45)
|
|
1763
|
+
keep = valid_indices[keep_valid]
|
|
1764
|
+
else:
|
|
1765
|
+
keep = []
|
|
1766
|
+
keypoints, scores = likely_keypoints[keep], likely_scores[keep]
|
|
1767
|
+
|
|
1768
|
+
# # Debugging: display detected keypoints on the frame
|
|
1769
|
+
# colors = [(255,0,0), (0,255,0), (0,0,255), (255,255,0), (255,0,255), (0,255,255), (128,0,0), (0,128,0), (0,0,128), (128,128,0), (128,0,128), (0,128,128)]
|
|
1770
|
+
# bboxes = likely_bboxes[keep]
|
|
1771
|
+
# for person_idx in range(len(keypoints)):
|
|
1772
|
+
# for kpt_idx, kpt in enumerate(keypoints[person_idx]):
|
|
1773
|
+
# if not np.isnan(kpt).any():
|
|
1774
|
+
# cv2.circle(frame, (int(kpt[0]), int(kpt[1])), 3, colors[person_idx%len(colors)], -1)
|
|
1775
|
+
# if not np.isnan(bboxes[person_idx]).any():
|
|
1776
|
+
# cv2.rectangle(frame, (int(bboxes[person_idx][0]), int(bboxes[person_idx][1])), (int(bboxes[person_idx][2]), int(bboxes[person_idx][3])), colors[person_idx%len(colors)], 1)
|
|
1777
|
+
# cv2.imshow(f'{video_file} Sports2D', frame)
|
|
1778
|
+
|
|
1742
1779
|
# Track poses across frames
|
|
1743
1780
|
if tracking_mode == 'deepsort':
|
|
1744
1781
|
keypoints, scores = sort_people_deepsort(keypoints, scores, deepsort_tracker, frame, frame_count)
|
|
1745
1782
|
if tracking_mode == 'sports2d':
|
|
1746
1783
|
if 'prev_keypoints' not in locals(): prev_keypoints = keypoints
|
|
1747
|
-
prev_keypoints, keypoints, scores = sort_people_sports2d(prev_keypoints, keypoints, scores=scores)
|
|
1784
|
+
prev_keypoints, keypoints, scores = sort_people_sports2d(prev_keypoints, keypoints, scores=scores, max_dist=max_distance)
|
|
1748
1785
|
else:
|
|
1749
1786
|
pass
|
|
1750
|
-
|
|
1787
|
+
|
|
1788
|
+
# # Debugging: display detected keypoints on the frame
|
|
1789
|
+
# colors = [(255,0,0), (0,255,0), (0,0,255), (255,255,0), (255,0,255), (0,255,255), (128,0,0), (0,128,0), (0,0,128), (128,128,0), (128,0,128), (0,128,128)]
|
|
1790
|
+
# for person_idx in range(len(keypoints)):
|
|
1791
|
+
# for kpt_idx, kpt in enumerate(keypoints[person_idx]):
|
|
1792
|
+
# if not np.isnan(kpt).any():
|
|
1793
|
+
# cv2.circle(frame, (int(kpt[0]), int(kpt[1])), 3, colors[person_idx%len(colors)], -1)
|
|
1794
|
+
# # if not np.isnan(bboxes[person_idx]).any():
|
|
1795
|
+
# # cv2.rectangle(frame, (int(bboxes[person_idx][0]), int(bboxes[person_idx][1])), (int(bboxes[person_idx][2]), int(bboxes[person_idx][3])), colors[person_idx%len(colors)], 1)
|
|
1796
|
+
# cv2.imshow(f'{video_file} Sports2D', frame)
|
|
1797
|
+
# # if (cv2.waitKey(1) & 0xFF) == ord('q') or (cv2.waitKey(1) & 0xFF) == 27:
|
|
1798
|
+
# # break
|
|
1799
|
+
# # input()
|
|
1751
1800
|
|
|
1752
1801
|
# Process coordinates and compute angles
|
|
1753
1802
|
valid_X, valid_Y, valid_scores = [], [], []
|
|
@@ -1771,6 +1820,18 @@ def process_fun(config_dict, video_file, time_range, frame_rate, result_dir):
|
|
|
1771
1820
|
person_Y = np.full_like(person_Y, np.nan)
|
|
1772
1821
|
person_scores = np.full_like(person_scores, np.nan)
|
|
1773
1822
|
|
|
1823
|
+
|
|
1824
|
+
|
|
1825
|
+
## RECREATE KEYPOINTS, SCORES
|
|
1826
|
+
|
|
1827
|
+
|
|
1828
|
+
|
|
1829
|
+
|
|
1830
|
+
|
|
1831
|
+
|
|
1832
|
+
|
|
1833
|
+
|
|
1834
|
+
|
|
1774
1835
|
# Check whether the person is looking to the left or right
|
|
1775
1836
|
if flip_left_right:
|
|
1776
1837
|
person_X_flipped = flip_left_right_direction(person_X, L_R_direction_idx, keypoints_names, keypoints_ids)
|
|
@@ -1915,16 +1976,38 @@ def process_fun(config_dict, video_file, time_range, frame_rate, result_dir):
|
|
|
1915
1976
|
if save_pose:
|
|
1916
1977
|
logging.info('\nPost-processing pose:')
|
|
1917
1978
|
# Process pose for each person
|
|
1918
|
-
trc_data, trc_data_unfiltered = [], []
|
|
1979
|
+
trc_data, trc_data_unfiltered, score_data = [], [], []
|
|
1980
|
+
first_run_starts_everyone, last_run_ends_everyone = [], []
|
|
1919
1981
|
for i, idx_person in enumerate(selected_persons):
|
|
1920
1982
|
pose_path_person = pose_output_path.parent / (pose_output_path.stem + f'_person{i:02d}.trc')
|
|
1921
1983
|
all_frames_X_person = pd.DataFrame(all_frames_X_processed[:,idx_person,:], columns=new_keypoints_names)
|
|
1922
1984
|
all_frames_Y_person = pd.DataFrame(all_frames_Y_processed[:,idx_person,:], columns=new_keypoints_names)
|
|
1985
|
+
score_data.append(pd.DataFrame(all_frames_scores_processed[:,idx_person,:], columns=new_keypoints_names))
|
|
1923
1986
|
if calculate_angles or save_angles:
|
|
1924
1987
|
all_frames_X_flipped_person = pd.DataFrame(all_frames_X_flipped_processed[:,idx_person,:], columns=new_keypoints_names)
|
|
1925
|
-
|
|
1926
|
-
|
|
1927
|
-
if
|
|
1988
|
+
|
|
1989
|
+
# Interpolate
|
|
1990
|
+
if not interpolate:
|
|
1991
|
+
logging.info(f'- Person {i}: No interpolation.')
|
|
1992
|
+
all_frames_X_person_interp = all_frames_X_person
|
|
1993
|
+
all_frames_Y_person_interp = all_frames_Y_person
|
|
1994
|
+
else:
|
|
1995
|
+
logging.info(f'- Person {i}: Interpolating missing sequences if they are smaller than {interp_gap_smaller_than} frames. Large gaps filled with {fill_large_gaps_with}.')
|
|
1996
|
+
all_frames_X_person_interp = all_frames_X_person.apply(interpolate_zeros_nans, axis=0, args = [interp_gap_smaller_than, 'linear'])
|
|
1997
|
+
all_frames_Y_person_interp = all_frames_Y_person.apply(interpolate_zeros_nans, axis=0, args = [interp_gap_smaller_than, 'linear'])
|
|
1998
|
+
|
|
1999
|
+
# Find the first and last valid chunks of data
|
|
2000
|
+
first_run_starts, last_run_ends = [], []
|
|
2001
|
+
for col in all_frames_X_person.columns:
|
|
2002
|
+
first_run_start, last_run_end = indices_of_first_last_non_nan_chunks(all_frames_X_person_interp[col], min_chunk_size=min_chunk_size, chunk_choice_method=sections_to_keep)
|
|
2003
|
+
first_run_starts += [first_run_start]
|
|
2004
|
+
last_run_ends += [last_run_end]
|
|
2005
|
+
first_run_start_min, last_run_end_max = min(first_run_starts), max(last_run_ends)
|
|
2006
|
+
first_run_starts_everyone += [first_run_starts]
|
|
2007
|
+
last_run_ends_everyone += [last_run_ends]
|
|
2008
|
+
|
|
2009
|
+
# Do not process person if no section of min_chunk_size valid frames in a row
|
|
2010
|
+
if (first_run_start_min, last_run_end_max) == (0,0):
|
|
1928
2011
|
all_frames_X_processed[:,idx_person,:], all_frames_X_flipped_processed[:,idx_person,:], all_frames_Y_processed[:,idx_person,:] = np.nan, np.nan, np.nan
|
|
1929
2012
|
columns=np.array([[c]*3 for c in all_frames_X_person.columns]).flatten()
|
|
1930
2013
|
trc_data_i = pd.DataFrame(0, index=all_frames_X_person.index, columns=['time']+list(columns))
|
|
@@ -1932,105 +2015,92 @@ def process_fun(config_dict, video_file, time_range, frame_rate, result_dir):
|
|
|
1932
2015
|
trc_data.append(trc_data_i)
|
|
1933
2016
|
trc_data_unfiltered_i = trc_data_i.copy()
|
|
1934
2017
|
trc_data_unfiltered.append(trc_data_unfiltered_i)
|
|
1935
|
-
|
|
1936
|
-
|
|
2018
|
+
logging.info(f' Person {i}: Less than {min_chunk_size} valid frames in a row. Deleting person.')
|
|
2019
|
+
continue
|
|
1937
2020
|
|
|
2021
|
+
# Fill remaining gaps
|
|
2022
|
+
if fill_large_gaps_with.lower() == 'last_value':
|
|
2023
|
+
for col_id, col in enumerate(all_frames_X_person_interp.columns):
|
|
2024
|
+
first_run_start, last_run_end = first_run_starts[col_id], last_run_ends[col_id]
|
|
2025
|
+
for coord_df in [all_frames_X_person_interp, all_frames_Y_person_interp, all_frames_Z_homog]:
|
|
2026
|
+
coord_df.loc[:first_run_start, col] = np.nan
|
|
2027
|
+
coord_df.loc[last_run_end:, col] = np.nan
|
|
2028
|
+
coord_df.loc[first_run_start:last_run_end, col] = coord_df.loc[first_run_start:last_run_end, col].ffill().bfill()
|
|
2029
|
+
elif fill_large_gaps_with.lower() == 'zeros':
|
|
2030
|
+
all_frames_X_person_interp.replace(np.nan, 0, inplace=True)
|
|
2031
|
+
all_frames_Y_person_interp.replace(np.nan, 0, inplace=True)
|
|
2032
|
+
|
|
2033
|
+
# if handle_LR_swap:
|
|
2034
|
+
# logging.info(f'Handling left-right swaps.')
|
|
2035
|
+
# all_frames_X_person_interp = all_frames_X_person_interp.apply(LR_unswap, axis=0)
|
|
2036
|
+
# all_frames_Y_person_interp = all_frames_Y_person_interp.apply(LR_unswap, axis=0)
|
|
2037
|
+
|
|
2038
|
+
if reject_outliers:
|
|
2039
|
+
logging.info('Rejecting outliers with a Hampel filter.')
|
|
2040
|
+
all_frames_X_person_interp = all_frames_X_person_interp.apply(hampel_filter, axis=0, args = [round(7*frame_rate/30), 2])
|
|
2041
|
+
all_frames_Y_person_interp = all_frames_Y_person_interp.apply(hampel_filter, axis=0, args = [round(7*frame_rate/30), 2])
|
|
2042
|
+
|
|
2043
|
+
if not do_filter:
|
|
2044
|
+
logging.info(f'No filtering.')
|
|
2045
|
+
all_frames_X_person_filt = all_frames_X_person_interp
|
|
2046
|
+
all_frames_Y_person_filt = all_frames_Y_person_interp
|
|
1938
2047
|
else:
|
|
1939
|
-
|
|
1940
|
-
|
|
1941
|
-
|
|
1942
|
-
|
|
1943
|
-
|
|
2048
|
+
if filter_type == ('butterworth' or 'butterworth_on_speed'):
|
|
2049
|
+
cutoff = butterworth_filter_cutoff
|
|
2050
|
+
if video_file == 'webcam':
|
|
2051
|
+
if cutoff / (fps / 2) >= 1:
|
|
2052
|
+
cutoff_old = cutoff
|
|
2053
|
+
cutoff = fps/(2+0.001)
|
|
2054
|
+
args = f'\n{cutoff_old:.1f} Hz cut-off framerate too large for a real-time framerate of {fps:.1f} Hz. Using a cut-off framerate of {cutoff:.1f} Hz instead.'
|
|
2055
|
+
butterworth_filter_cutoff = cutoff
|
|
2056
|
+
filt_type = 'Butterworth' if filter_type == 'butterworth' else 'Butterworth on speed'
|
|
2057
|
+
args = f'{filt_type} filter, {butterworth_filter_order}th order, {butterworth_filter_cutoff} Hz.'
|
|
2058
|
+
frame_rate = fps
|
|
2059
|
+
elif filter_type == 'gcv_spline':
|
|
2060
|
+
args = f'GVC Spline filter, which automatically evaluates the best trade-off between smoothness and fidelity to data.'
|
|
2061
|
+
elif filter_type == 'kalman':
|
|
2062
|
+
args = f'Kalman filter, trusting measurement {kalman_filter_trust_ratio} times more than the process matrix.'
|
|
2063
|
+
elif filter_type == 'gaussian':
|
|
2064
|
+
args = f'Gaussian filter, Sigma kernel {gaussian_filter_kernel}.'
|
|
2065
|
+
elif filter_type == 'loess':
|
|
2066
|
+
args = f'LOESS filter, window size of {loess_filter_kernel} frames.'
|
|
2067
|
+
elif filter_type == 'median':
|
|
2068
|
+
args = f'Median filter, kernel of {median_filter_kernel}.'
|
|
1944
2069
|
else:
|
|
1945
|
-
logging.
|
|
1946
|
-
|
|
1947
|
-
|
|
1948
|
-
|
|
1949
|
-
|
|
1950
|
-
|
|
1951
|
-
|
|
1952
|
-
|
|
1953
|
-
|
|
1954
|
-
|
|
1955
|
-
|
|
1956
|
-
|
|
1957
|
-
|
|
1958
|
-
|
|
1959
|
-
|
|
1960
|
-
|
|
1961
|
-
|
|
1962
|
-
|
|
1963
|
-
|
|
1964
|
-
|
|
1965
|
-
|
|
1966
|
-
|
|
1967
|
-
if
|
|
1968
|
-
|
|
1969
|
-
|
|
1970
|
-
|
|
1971
|
-
|
|
1972
|
-
|
|
1973
|
-
|
|
1974
|
-
|
|
1975
|
-
|
|
1976
|
-
|
|
1977
|
-
|
|
1978
|
-
|
|
1979
|
-
if video_file == 'webcam':
|
|
1980
|
-
if cutoff / (fps / 2) >= 1:
|
|
1981
|
-
cutoff_old = cutoff
|
|
1982
|
-
cutoff = fps/(2+0.001)
|
|
1983
|
-
args = f'\n{cutoff_old:.1f} Hz cut-off framerate too large for a real-time framerate of {fps:.1f} Hz. Using a cut-off framerate of {cutoff:.1f} Hz instead.'
|
|
1984
|
-
butterworth_filter_cutoff = cutoff
|
|
1985
|
-
filt_type = 'Butterworth' if filter_type == 'butterworth' else 'Butterworth on speed'
|
|
1986
|
-
args = f'{filt_type} filter, {butterworth_filter_order}th order, {butterworth_filter_cutoff} Hz.'
|
|
1987
|
-
frame_rate = fps
|
|
1988
|
-
elif filter_type == 'gcv_spline':
|
|
1989
|
-
args = f'GVC Spline filter, which automatically evaluates the best trade-off between smoothness and fidelity to data.'
|
|
1990
|
-
elif filter_type == 'kalman':
|
|
1991
|
-
args = f'Kalman filter, trusting measurement {kalman_filter_trust_ratio} times more than the process matrix.'
|
|
1992
|
-
elif filter_type == 'gaussian':
|
|
1993
|
-
args = f'Gaussian filter, Sigma kernel {gaussian_filter_kernel}.'
|
|
1994
|
-
elif filter_type == 'loess':
|
|
1995
|
-
args = f'LOESS filter, window size of {loess_filter_kernel} frames.'
|
|
1996
|
-
elif filter_type == 'median':
|
|
1997
|
-
args = f'Median filter, kernel of {median_filter_kernel}.'
|
|
1998
|
-
else:
|
|
1999
|
-
logging.error(f"Invalid filter_type: {filter_type}. Must be 'butterworth', 'gcv_spline', 'kalman', 'gaussian', 'loess', or 'median'.")
|
|
2000
|
-
raise ValueError(f"Invalid filter_type: {filter_type}. Must be 'butterworth', 'gcv_spline', 'kalman', 'gaussian', 'loess', or 'median'.")
|
|
2001
|
-
|
|
2002
|
-
logging.info(f'Filtering with {args}')
|
|
2003
|
-
all_frames_X_person_filt = all_frames_X_person_interp.apply(filter1d, axis=0, args = [Pose2Sim_config_dict, filter_type, frame_rate])
|
|
2004
|
-
all_frames_Y_person_filt = all_frames_Y_person_interp.apply(filter1d, axis=0, args = [Pose2Sim_config_dict, filter_type, frame_rate])
|
|
2005
|
-
|
|
2006
|
-
|
|
2007
|
-
# Build TRC file
|
|
2008
|
-
trc_data_i = trc_data_from_XYZtime(all_frames_X_person_filt, all_frames_Y_person_filt, all_frames_Z_homog, all_frames_time)
|
|
2009
|
-
trc_data.append(trc_data_i)
|
|
2010
|
-
if not load_trc_px:
|
|
2011
|
-
make_trc_with_trc_data(trc_data_i, str(pose_path_person), fps=fps)
|
|
2012
|
-
logging.info(f'Pose in pixels saved to {pose_path_person.resolve()}.')
|
|
2013
|
-
|
|
2014
|
-
# Plotting coordinates before and after interpolation and filtering
|
|
2015
|
-
columns_to_concat = []
|
|
2016
|
-
for kpt in range(len(all_frames_X_person.columns)):
|
|
2017
|
-
columns_to_concat.extend([all_frames_X_person.iloc[:,kpt], all_frames_Y_person.iloc[:,kpt], all_frames_Z_homog.iloc[:,kpt]])
|
|
2018
|
-
trc_data_unfiltered_i = pd.concat([all_frames_time] + columns_to_concat, axis=1)
|
|
2019
|
-
trc_data_unfiltered.append(trc_data_unfiltered_i)
|
|
2020
|
-
if not to_meters and (show_plots or save_plots):
|
|
2021
|
-
pw = pose_plots(trc_data_unfiltered_i, trc_data_i, i, show=show_plots)
|
|
2022
|
-
if save_plots:
|
|
2023
|
-
for n, f in enumerate(pw.figure_handles):
|
|
2024
|
-
dpi = pw.canvases[i].figure.dpi
|
|
2025
|
-
f.set_size_inches(1280/dpi, 720/dpi)
|
|
2026
|
-
title = pw.tabs.tabText(n)
|
|
2027
|
-
plot_path = plots_output_dir / (pose_output_path.stem + f'_person{i:02d}_px_{title.replace(" ","_").replace("/","_")}.png')
|
|
2028
|
-
f.savefig(plot_path, dpi=dpi, bbox_inches='tight')
|
|
2029
|
-
logging.info(f'Pose plots (px) saved in {plots_output_dir}.')
|
|
2030
|
-
|
|
2031
|
-
all_frames_X_processed[:,idx_person,:], all_frames_Y_processed[:,idx_person,:] = all_frames_X_person_filt, all_frames_Y_person_filt
|
|
2032
|
-
if calculate_angles or save_angles:
|
|
2033
|
-
all_frames_X_flipped_processed[:,idx_person,:] = all_frames_X_flipped_person
|
|
2070
|
+
logging.error(f"Invalid filter_type: {filter_type}. Must be 'butterworth', 'gcv_spline', 'kalman', 'gaussian', 'loess', or 'median'.")
|
|
2071
|
+
raise ValueError(f"Invalid filter_type: {filter_type}. Must be 'butterworth', 'gcv_spline', 'kalman', 'gaussian', 'loess', or 'median'.")
|
|
2072
|
+
|
|
2073
|
+
logging.info(f'Filtering with {args}')
|
|
2074
|
+
all_frames_X_person_filt = all_frames_X_person_interp.apply(filter1d, axis=0, args = [Pose2Sim_config_dict, filter_type, frame_rate])
|
|
2075
|
+
all_frames_Y_person_filt = all_frames_Y_person_interp.apply(filter1d, axis=0, args = [Pose2Sim_config_dict, filter_type, frame_rate])
|
|
2076
|
+
|
|
2077
|
+
# Build TRC file
|
|
2078
|
+
trc_data_i = trc_data_from_XYZtime(all_frames_X_person_filt, all_frames_Y_person_filt, all_frames_Z_homog, all_frames_time)
|
|
2079
|
+
trc_data.append(trc_data_i)
|
|
2080
|
+
if not load_trc_px:
|
|
2081
|
+
make_trc_with_trc_data(trc_data_i, str(pose_path_person), fps=fps)
|
|
2082
|
+
logging.info(f'Pose in pixels saved to {pose_path_person.resolve()}.')
|
|
2083
|
+
|
|
2084
|
+
# Plotting coordinates before and after interpolation and filtering
|
|
2085
|
+
columns_to_concat = []
|
|
2086
|
+
for kpt in range(len(all_frames_X_person.columns)):
|
|
2087
|
+
columns_to_concat.extend([all_frames_X_person.iloc[:,kpt], all_frames_Y_person.iloc[:,kpt], all_frames_Z_homog.iloc[:,kpt]])
|
|
2088
|
+
trc_data_unfiltered_i = pd.concat([all_frames_time] + columns_to_concat, axis=1)
|
|
2089
|
+
trc_data_unfiltered.append(trc_data_unfiltered_i)
|
|
2090
|
+
if not to_meters and (show_plots or save_plots):
|
|
2091
|
+
pw = pose_plots(trc_data_unfiltered_i, trc_data_i, i, show=show_plots)
|
|
2092
|
+
if save_plots:
|
|
2093
|
+
for n, f in enumerate(pw.figure_handles):
|
|
2094
|
+
dpi = pw.canvases[i].figure.dpi
|
|
2095
|
+
f.set_size_inches(1280/dpi, 720/dpi)
|
|
2096
|
+
title = pw.tabs.tabText(n)
|
|
2097
|
+
plot_path = plots_output_dir / (pose_output_path.stem + f'_person{i:02d}_px_{title.replace(" ","_").replace("/","_")}.png')
|
|
2098
|
+
f.savefig(plot_path, dpi=dpi, bbox_inches='tight')
|
|
2099
|
+
logging.info(f'Pose plots (px) saved in {plots_output_dir}.')
|
|
2100
|
+
|
|
2101
|
+
all_frames_X_processed[:,idx_person,:], all_frames_Y_processed[:,idx_person,:] = all_frames_X_person_filt, all_frames_Y_person_filt
|
|
2102
|
+
if calculate_angles or save_angles:
|
|
2103
|
+
all_frames_X_flipped_processed[:,idx_person,:] = all_frames_X_flipped_person
|
|
2034
2104
|
|
|
2035
2105
|
|
|
2036
2106
|
#%% Convert px to meters
|
|
@@ -2054,11 +2124,11 @@ def process_fun(config_dict, video_file, time_range, frame_rate, result_dir):
|
|
|
2054
2124
|
# estimated from the line formed by the toes when they are on the ground (where speed = 0)
|
|
2055
2125
|
try:
|
|
2056
2126
|
if all(key in trc_data[0] for key in ['LBigToe', 'RBigToe']):
|
|
2057
|
-
floor_angle_estim, xy_origin_estim, _ = compute_floor_line(trc_data[0], keypoint_names=['LBigToe', 'RBigToe'], toe_speed_below=toe_speed_below_px_frame)
|
|
2127
|
+
floor_angle_estim, xy_origin_estim, _ = compute_floor_line(trc_data[0], score_data[0], keypoint_names=['LBigToe', 'RBigToe'], toe_speed_below=toe_speed_below_px_frame, score_threshold=average_likelihood_threshold)
|
|
2058
2128
|
else:
|
|
2059
|
-
floor_angle_estim, xy_origin_estim, _ = compute_floor_line(trc_data[0], keypoint_names=['LAnkle', 'RAnkle'], toe_speed_below=toe_speed_below_px_frame)
|
|
2060
|
-
xy_origin_estim[
|
|
2061
|
-
logging.warning(f'The RBigToe and LBigToe are missing from your model. Using ankles - 13 cm to compute the floor line.')
|
|
2129
|
+
floor_angle_estim, xy_origin_estim, _ = compute_floor_line(trc_data[0], score_data[0], keypoint_names=['LAnkle', 'RAnkle'], toe_speed_below=toe_speed_below_px_frame, score_threshold=average_likelihood_threshold)
|
|
2130
|
+
xy_origin_estim[1] = xy_origin_estim[1] + 0.13*px_per_m # approx. height of the ankle above the floor
|
|
2131
|
+
logging.warning(f'The RBigToe and LBigToe are missing from your pose estimation model. Using ankles - 13 cm to compute the floor line.')
|
|
2062
2132
|
except:
|
|
2063
2133
|
floor_angle_estim = 0
|
|
2064
2134
|
xy_origin_estim = cam_width/2, cam_height/2
|
|
@@ -2069,7 +2139,7 @@ def process_fun(config_dict, video_file, time_range, frame_rate, result_dir):
|
|
|
2069
2139
|
cx, cy = xy_origin_estim
|
|
2070
2140
|
else:
|
|
2071
2141
|
cx, cy = xy_origin
|
|
2072
|
-
logging.info(f'Using height of person #0 ({first_person_height}m) to convert coordinates in meters
|
|
2142
|
+
logging.info(f'Using height of person #0 ({first_person_height}m) to convert coordinates in meters.\n'
|
|
2073
2143
|
f'Floor angle: {np.degrees(floor_angle_estim) if not floor_angle=="auto" else f"auto (estimation: {round(np.degrees(floor_angle_estim),2)}°)"}, '
|
|
2074
2144
|
f'xy_origin: {xy_origin if not xy_origin=="auto" else f"auto (estimation: {[round(c) for c in xy_origin_estim]})"} px.')
|
|
2075
2145
|
|
|
@@ -2083,9 +2153,9 @@ def process_fun(config_dict, video_file, time_range, frame_rate, result_dir):
|
|
|
2083
2153
|
if visible_side_i == 'auto':
|
|
2084
2154
|
try:
|
|
2085
2155
|
if all(key in trc_data[i] for key in ['LBigToe', 'RBigToe']):
|
|
2086
|
-
_, _, gait_direction = compute_floor_line(trc_data[i], keypoint_names=['LBigToe', 'RBigToe'], toe_speed_below=toe_speed_below_px_frame)
|
|
2156
|
+
_, _, gait_direction = compute_floor_line(trc_data[i], score_data[0], keypoint_names=['LBigToe', 'RBigToe'], toe_speed_below=toe_speed_below_px_frame, score_threshold=average_likelihood_threshold)
|
|
2087
2157
|
else:
|
|
2088
|
-
_, _, gait_direction = compute_floor_line(trc_data[i], keypoint_names=['LAnkle', 'RAnkle'], toe_speed_below=toe_speed_below_px_frame)
|
|
2158
|
+
_, _, gait_direction = compute_floor_line(trc_data[i], score_data[0], keypoint_names=['LAnkle', 'RAnkle'], toe_speed_below=toe_speed_below_px_frame, score_threshold=average_likelihood_threshold)
|
|
2089
2159
|
logging.warning(f'The RBigToe and LBigToe are missing from your model. Gait direction will be determined from the ankle points.')
|
|
2090
2160
|
visible_side_i = 'right' if gait_direction > 0.3 \
|
|
2091
2161
|
else 'left' if gait_direction < -0.3 \
|
|
@@ -2103,8 +2173,8 @@ def process_fun(config_dict, video_file, time_range, frame_rate, result_dir):
|
|
|
2103
2173
|
# Convert to meters
|
|
2104
2174
|
px_to_m_i = [convert_px_to_meters(trc_data[i][kpt_name], first_person_height, height_px, cx, cy, -floor_angle_estim, visible_side=visible_side_i) for kpt_name in new_keypoints_names]
|
|
2105
2175
|
trc_data_m_i = pd.concat([all_frames_time.rename('time')]+px_to_m_i, axis=1)
|
|
2106
|
-
for c in 3*np.arange(len(trc_data_m_i.columns[3::3]))+1: # only X coordinates
|
|
2107
|
-
first_run_start, last_run_end =
|
|
2176
|
+
for c_id, c in enumerate(3*np.arange(len(trc_data_m_i.columns[3::3]))+1): # only X coordinates
|
|
2177
|
+
first_run_start, last_run_end = first_run_starts_everyone[i][c_id], last_run_ends_everyone[i][c_id]
|
|
2108
2178
|
trc_data_m_i.iloc[:first_run_start,c+2] = np.nan
|
|
2109
2179
|
trc_data_m_i.iloc[last_run_end:,c+2] = np.nan
|
|
2110
2180
|
trc_data_m_i.iloc[first_run_start:last_run_end,c+2] = trc_data_m_i.iloc[first_run_start:last_run_end,c+2].ffill().bfill()
|
|
@@ -2205,86 +2275,95 @@ def process_fun(config_dict, video_file, time_range, frame_rate, result_dir):
|
|
|
2205
2275
|
if new_visible_side[i] == 'left' and not flip_left_right:
|
|
2206
2276
|
all_frames_angles_homog[:, idx_person, :] = -all_frames_angles_homog[:, idx_person, :]
|
|
2207
2277
|
|
|
2208
|
-
|
|
2209
|
-
|
|
2210
|
-
|
|
2211
|
-
all_frames_angles_processed[:,idx_person,:] = np.nan
|
|
2212
|
-
logging.info(f'- Person {i}: Less than 4 valid frames. Deleting person.')
|
|
2213
|
-
|
|
2278
|
+
if not interpolate:
|
|
2279
|
+
logging.info(f'- Person {i}: No interpolation.')
|
|
2280
|
+
all_frames_angles_person_interp = all_frames_angles_person
|
|
2214
2281
|
else:
|
|
2215
|
-
|
|
2216
|
-
|
|
2217
|
-
|
|
2218
|
-
|
|
2219
|
-
|
|
2220
|
-
|
|
2221
|
-
|
|
2222
|
-
|
|
2223
|
-
|
|
2224
|
-
|
|
2225
|
-
|
|
2226
|
-
|
|
2227
|
-
|
|
2228
|
-
|
|
2229
|
-
|
|
2282
|
+
logging.info(f'- Person {i}: Interpolating missing sequences if they are smaller than {interp_gap_smaller_than} frames. Large gaps filled with {fill_large_gaps_with}.')
|
|
2283
|
+
all_frames_angles_person_interp = all_frames_angles_person.apply(interpolate_zeros_nans, axis=0, args = [interp_gap_smaller_than, 'linear'])
|
|
2284
|
+
|
|
2285
|
+
# Find the first and last valid chunks of data
|
|
2286
|
+
first_run_starts, last_run_ends = [], []
|
|
2287
|
+
for col in all_frames_angles_person.columns:
|
|
2288
|
+
first_run_start, last_run_end = indices_of_first_last_non_nan_chunks(all_frames_angles_person_interp[col], min_chunk_size=min_chunk_size, chunk_choice_method=sections_to_keep)
|
|
2289
|
+
first_run_starts += [first_run_start]
|
|
2290
|
+
last_run_ends += [last_run_end]
|
|
2291
|
+
first_run_start_min, last_run_end_max = min(first_run_starts), max(last_run_ends)
|
|
2292
|
+
|
|
2293
|
+
# Do not process person if no section of min_chunk_size valid frames in a row
|
|
2294
|
+
if (first_run_start_min, last_run_end_max) == (0,0):
|
|
2295
|
+
all_frames_angles_processed[:,idx_person,:]= np.nan
|
|
2296
|
+
logging.info(f' Person {i}: Less than {min_chunk_size} valid frames in a row. Deleting person.')
|
|
2297
|
+
continue
|
|
2298
|
+
|
|
2299
|
+
# Fill remaining gaps
|
|
2300
|
+
if fill_large_gaps_with == 'last_value':
|
|
2301
|
+
for col_id, col in enumerate(all_frames_angles_person_interp.columns):
|
|
2302
|
+
first_run_start, last_run_end = first_run_starts[col_id], last_run_ends[col_id]
|
|
2303
|
+
all_frames_angles_person_interp.loc[:first_run_start, col] = np.nan
|
|
2304
|
+
all_frames_angles_person_interp.loc[last_run_end:, col] = np.nan
|
|
2305
|
+
all_frames_angles_person_interp.loc[first_run_start:last_run_end, col] = all_frames_angles_person_interp.loc[first_run_start:last_run_end, col].ffill().bfill()
|
|
2306
|
+
elif fill_large_gaps_with == 'zeros':
|
|
2307
|
+
all_frames_angles_person_interp.replace(np.nan, 0, inplace=True)
|
|
2230
2308
|
|
|
2231
|
-
|
|
2232
|
-
|
|
2233
|
-
|
|
2234
|
-
|
|
2235
|
-
|
|
2236
|
-
|
|
2237
|
-
|
|
2238
|
-
|
|
2309
|
+
# Filter
|
|
2310
|
+
if reject_outliers:
|
|
2311
|
+
logging.info(f'Rejecting outliers with a Hampel filter.')
|
|
2312
|
+
all_frames_angles_person_interp = all_frames_angles_person_interp.apply(hampel_filter, axis=0)
|
|
2313
|
+
|
|
2314
|
+
if not do_filter:
|
|
2315
|
+
logging.info(f'No filtering.')
|
|
2316
|
+
all_frames_angles_person_filt = all_frames_angles_person_interp
|
|
2317
|
+
else:
|
|
2318
|
+
if filter_type == ('butterworth' or 'butterworth_on_speed'):
|
|
2319
|
+
cutoff = butterworth_filter_cutoff
|
|
2320
|
+
if video_file == 'webcam':
|
|
2321
|
+
if cutoff / (fps / 2) >= 1:
|
|
2322
|
+
cutoff_old = cutoff
|
|
2323
|
+
cutoff = fps/(2+0.001)
|
|
2324
|
+
args = f'\n{cutoff_old:.1f} Hz cut-off framerate too large for a real-time framerate of {fps:.1f} Hz. Using a cut-off framerate of {cutoff:.1f} Hz instead.'
|
|
2325
|
+
butterworth_filter_cutoff = cutoff
|
|
2326
|
+
filt_type = 'Butterworth' if filter_type == 'butterworth' else 'Butterworth on speed'
|
|
2327
|
+
args = f'{filt_type} filter, {butterworth_filter_order}th order, {butterworth_filter_cutoff} Hz.'
|
|
2328
|
+
frame_rate = fps
|
|
2329
|
+
elif filter_type == 'gcv_spline':
|
|
2330
|
+
args = f'GVC Spline filter, which automatically evaluates the best trade-off between smoothness and fidelity to data.'
|
|
2331
|
+
elif filter_type == 'kalman':
|
|
2332
|
+
args = f'Kalman filter, trusting measurement {kalman_filter_trust_ratio} times more than the process matrix.'
|
|
2333
|
+
elif filter_type == 'gaussian':
|
|
2334
|
+
args = f'Gaussian filter, Sigma kernel {gaussian_filter_kernel}.'
|
|
2335
|
+
elif filter_type == 'loess':
|
|
2336
|
+
args = f'LOESS filter, window size of {loess_filter_kernel} frames.'
|
|
2337
|
+
elif filter_type == 'median':
|
|
2338
|
+
args = f'Median filter, kernel of {median_filter_kernel}.'
|
|
2239
2339
|
else:
|
|
2240
|
-
|
|
2241
|
-
|
|
2242
|
-
|
|
2243
|
-
|
|
2244
|
-
|
|
2245
|
-
|
|
2246
|
-
|
|
2247
|
-
|
|
2248
|
-
|
|
2249
|
-
|
|
2250
|
-
|
|
2251
|
-
|
|
2252
|
-
|
|
2253
|
-
|
|
2254
|
-
|
|
2255
|
-
|
|
2256
|
-
|
|
2257
|
-
|
|
2258
|
-
|
|
2259
|
-
|
|
2260
|
-
|
|
2261
|
-
|
|
2262
|
-
|
|
2263
|
-
|
|
2264
|
-
|
|
2265
|
-
|
|
2266
|
-
|
|
2267
|
-
|
|
2268
|
-
# Add floor_angle_estim to segment angles
|
|
2269
|
-
if correct_segment_angles_with_floor_angle and to_meters:
|
|
2270
|
-
logging.info(f'Correcting segment angles by removing the {round(np.degrees(floor_angle_estim),2)}° floor angle.')
|
|
2271
|
-
for ang_name in all_frames_angles_person_filt.columns:
|
|
2272
|
-
if 'horizontal' in angle_dict[ang_name][1]:
|
|
2273
|
-
all_frames_angles_person_filt[ang_name] -= np.degrees(floor_angle_estim)
|
|
2274
|
-
|
|
2275
|
-
# Remove columns with all nan values
|
|
2276
|
-
all_frames_angles_processed[:,idx_person,:] = all_frames_angles_person_filt
|
|
2277
|
-
all_frames_angles_person_filt.dropna(axis=1, how='all', inplace=True)
|
|
2278
|
-
all_frames_angles_person = all_frames_angles_person[all_frames_angles_person_filt.columns]
|
|
2279
|
-
|
|
2280
|
-
# Build mot file
|
|
2281
|
-
angle_data = make_mot_with_angles(all_frames_angles_person_filt, all_frames_time, str(angles_path_person))
|
|
2282
|
-
logging.info(f'Angles saved to {angles_path_person.resolve()}.')
|
|
2283
|
-
|
|
2284
|
-
# Plotting angles before and after interpolation and filtering
|
|
2285
|
-
all_frames_angles_person.insert(0, 'time', all_frames_time)
|
|
2286
|
-
if save_plots and (show_plots or save_plots):
|
|
2287
|
-
pw = angle_plots(all_frames_angles_person, angle_data, i, show=show_plots) # i = current person
|
|
2340
|
+
logging.error(f"Invalid filter_type: {filter_type}. Must be 'butterworth', 'gcv_spline', 'kalman', 'gaussian', 'loess', or 'median'.")
|
|
2341
|
+
raise ValueError(f"Invalid filter_type: {filter_type}. Must be 'butterworth', 'gcv_spline', 'kalman', 'gaussian', 'loess', or 'median'.")
|
|
2342
|
+
|
|
2343
|
+
logging.info(f'Filtering with {args}')
|
|
2344
|
+
all_frames_angles_person_filt = all_frames_angles_person_interp.apply(filter1d, axis=0, args = [Pose2Sim_config_dict, filter_type, frame_rate])
|
|
2345
|
+
|
|
2346
|
+
# Add floor_angle_estim to segment angles
|
|
2347
|
+
if correct_segment_angles_with_floor_angle and to_meters:
|
|
2348
|
+
logging.info(f'Correcting segment angles by removing the {round(np.degrees(floor_angle_estim),2)}° floor angle.')
|
|
2349
|
+
for ang_name in all_frames_angles_person_filt.columns:
|
|
2350
|
+
if 'horizontal' in angle_dict[ang_name][1]:
|
|
2351
|
+
all_frames_angles_person_filt[ang_name] -= np.degrees(floor_angle_estim)
|
|
2352
|
+
|
|
2353
|
+
# Remove columns with all nan values
|
|
2354
|
+
all_frames_angles_processed[:,idx_person,:] = all_frames_angles_person_filt
|
|
2355
|
+
all_frames_angles_person_filt.dropna(axis=1, how='all', inplace=True)
|
|
2356
|
+
all_frames_angles_person = all_frames_angles_person[all_frames_angles_person_filt.columns]
|
|
2357
|
+
|
|
2358
|
+
# Build mot file
|
|
2359
|
+
angle_data = make_mot_with_angles(all_frames_angles_person_filt, all_frames_time, str(angles_path_person))
|
|
2360
|
+
logging.info(f'Angles saved to {angles_path_person.resolve()}.')
|
|
2361
|
+
|
|
2362
|
+
# Plotting angles before and after interpolation and filtering
|
|
2363
|
+
all_frames_angles_person.insert(0, 'time', all_frames_time)
|
|
2364
|
+
if show_plots or save_plots:
|
|
2365
|
+
pw = angle_plots(all_frames_angles_person, angle_data, i, show=show_plots) # i = current person
|
|
2366
|
+
if save_plots:
|
|
2288
2367
|
for n, f in enumerate(pw.figure_handles):
|
|
2289
2368
|
dpi = pw.canvases[i].figure.dpi
|
|
2290
2369
|
f.set_size_inches(1280/dpi, 720/dpi)
|
|
@@ -2392,25 +2471,17 @@ def process_fun(config_dict, video_file, time_range, frame_rate, result_dir):
|
|
|
2392
2471
|
# Delete person if less than 4 valid frames
|
|
2393
2472
|
pose_path_person = pose_output_path.parent / (pose_output_path.stem + f'_person{i:02d}.trc')
|
|
2394
2473
|
all_frames_X_person = pd.DataFrame(all_frames_X_homog[:,i,:], columns=new_keypoints_names)
|
|
2395
|
-
|
|
2396
|
-
|
|
2397
|
-
# heights_m.append(DEFAULT_HEIGHT)
|
|
2398
|
-
# masses.append(DEFAULT_MASS)
|
|
2399
|
-
logging.info(f'Less than 4 valid frames. Deleting person.')
|
|
2474
|
+
if new_visible_side[i] == 'none':
|
|
2475
|
+
logging.info(f'Skipping marker augmentation and inverse kinematics because visible_side is "none".')
|
|
2400
2476
|
else:
|
|
2401
|
-
|
|
2402
|
-
|
|
2403
|
-
|
|
2404
|
-
|
|
2405
|
-
|
|
2406
|
-
|
|
2407
|
-
|
|
2408
|
-
|
|
2409
|
-
mass_i = participant_masses[i] if len(participant_masses)>i else 70
|
|
2410
|
-
if len(participant_masses)<=i:
|
|
2411
|
-
logging.warning(f'No mass provided. Using 70 kg as default.')
|
|
2412
|
-
heights_m.append(height_m_i)
|
|
2413
|
-
masses.append(mass_i)
|
|
2477
|
+
# Provide missing data to Pose2Sim_config_dict
|
|
2478
|
+
height_m_i = compute_height(trc_data_m_i.iloc[:,1:], keypoints_names,
|
|
2479
|
+
fastest_frames_to_remove_percent=fastest_frames_to_remove_percent, close_to_zero_speed=close_to_zero_speed_m, large_hip_knee_angles=large_hip_knee_angles, trimmed_extrema_percent=trimmed_extrema_percent)
|
|
2480
|
+
mass_i = participant_masses[i] if len(participant_masses)>i else DEFAULT_MASS
|
|
2481
|
+
if len(participant_masses)<=i:
|
|
2482
|
+
logging.warning(f'No mass provided. Using {DEFAULT_MASS} kg as default.')
|
|
2483
|
+
heights_m.append(height_m_i)
|
|
2484
|
+
masses.append(mass_i)
|
|
2414
2485
|
|
|
2415
2486
|
Pose2Sim_config_dict['project']['participant_height'] = heights_m
|
|
2416
2487
|
Pose2Sim_config_dict['project']['participant_mass'] = masses
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: sports2d
|
|
3
|
-
Version: 0.8.
|
|
3
|
+
Version: 0.8.22
|
|
4
4
|
Summary: Compute 2D human pose and angles from a video or a webcam.
|
|
5
5
|
Author-email: David Pagnon <contact@david-pagnon.com>
|
|
6
6
|
Maintainer-email: David Pagnon <contact@david-pagnon.com>
|
|
@@ -38,7 +38,7 @@ Requires-Dist: openvino
|
|
|
38
38
|
Requires-Dist: opencv-python<4.12
|
|
39
39
|
Requires-Dist: imageio_ffmpeg
|
|
40
40
|
Requires-Dist: deep-sort-realtime
|
|
41
|
-
Requires-Dist: Pose2Sim>=0.10.
|
|
41
|
+
Requires-Dist: Pose2Sim>=0.10.38
|
|
42
42
|
Dynamic: license-file
|
|
43
43
|
|
|
44
44
|
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|