spio 0.4.1__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (134) hide show
  1. spio-0.4.1/LICENSE +202 -0
  2. spio-0.4.1/MANIFEST.in +12 -0
  3. spio-0.4.1/PKG-INFO +297 -0
  4. spio-0.4.1/README.md +268 -0
  5. spio-0.4.1/pyproject.toml +41 -0
  6. spio-0.4.1/setup.cfg +4 -0
  7. spio-0.4.1/setup.py +62 -0
  8. spio-0.4.1/spio/__init__.py +20 -0
  9. spio-0.4.1/spio/compiler/__init__.py +6 -0
  10. spio-0.4.1/spio/compiler/arch.py +10 -0
  11. spio-0.4.1/spio/compiler/compile.py +75 -0
  12. spio-0.4.1/spio/compiler/compile_kernel.py +95 -0
  13. spio-0.4.1/spio/compiler/compile_nvcc.py +84 -0
  14. spio-0.4.1/spio/compiler/compiler_pool.py +102 -0
  15. spio-0.4.1/spio/cuda/__init__.py +9 -0
  16. spio-0.4.1/spio/cuda/cdriver.pxd +120 -0
  17. spio-0.4.1/spio/cuda/driver.pyi +60 -0
  18. spio-0.4.1/spio/cuda/driver.pyx +369 -0
  19. spio-0.4.1/spio/cuda/nvrtc_ctypes.py +205 -0
  20. spio-0.4.1/spio/functional/__init__.py +8 -0
  21. spio-0.4.1/spio/functional/conv2d_gw8_function.py +239 -0
  22. spio-0.4.1/spio/generators/__init__.py +18 -0
  23. spio-0.4.1/spio/generators/async_strip_loader.py +52 -0
  24. spio-0.4.1/spio/generators/checkerboard.py +34 -0
  25. spio-0.4.1/spio/generators/data_type.py +29 -0
  26. spio-0.4.1/spio/generators/dim.py +84 -0
  27. spio-0.4.1/spio/generators/dims.py +92 -0
  28. spio-0.4.1/spio/generators/fold.py +48 -0
  29. spio-0.4.1/spio/generators/fragment.py +58 -0
  30. spio-0.4.1/spio/generators/fragment_index.py +148 -0
  31. spio-0.4.1/spio/generators/fragment_type.py +23 -0
  32. spio-0.4.1/spio/generators/gen_specs.py +36 -0
  33. spio-0.4.1/spio/generators/generators.py +165 -0
  34. spio-0.4.1/spio/generators/index.py +109 -0
  35. spio-0.4.1/spio/generators/macros.py +23 -0
  36. spio-0.4.1/spio/generators/matmul.py +206 -0
  37. spio-0.4.1/spio/generators/params.py +40 -0
  38. spio-0.4.1/spio/generators/subindex_protocol.py +29 -0
  39. spio-0.4.1/spio/generators/tensor.py +135 -0
  40. spio-0.4.1/spio/include/__init__.py +1 -0
  41. spio-0.4.1/spio/include/spio/__init__.py +0 -0
  42. spio-0.4.1/spio/include/spio/allocator.h +80 -0
  43. spio-0.4.1/spio/include/spio/async_strip_loader.cuh +77 -0
  44. spio-0.4.1/spio/include/spio/checkerboard_index.h +125 -0
  45. spio-0.4.1/spio/include/spio/dim.h +309 -0
  46. spio-0.4.1/spio/include/spio/dim_info.h +156 -0
  47. spio-0.4.1/spio/include/spio/fifo.cuh +192 -0
  48. spio-0.4.1/spio/include/spio/fragment.cuh +272 -0
  49. spio-0.4.1/spio/include/spio/fragment_index.h +246 -0
  50. spio-0.4.1/spio/include/spio/fragment_load_index.h +279 -0
  51. spio-0.4.1/spio/include/spio/fragment_mma.cuh +84 -0
  52. spio-0.4.1/spio/include/spio/index.h +153 -0
  53. spio-0.4.1/spio/include/spio/index_base.h +20 -0
  54. spio-0.4.1/spio/include/spio/ldmatrix.cuh +102 -0
  55. spio-0.4.1/spio/include/spio/macros.h +12 -0
  56. spio-0.4.1/spio/include/spio/mathutil.h +25 -0
  57. spio-0.4.1/spio/include/spio/memory.cuh +26 -0
  58. spio-0.4.1/spio/include/spio/mma.cuh +59 -0
  59. spio-0.4.1/spio/include/spio/pipeline.h +48 -0
  60. spio-0.4.1/spio/include/spio/semaphore.cuh +85 -0
  61. spio-0.4.1/spio/include/spio/strip_loader_params.h +22 -0
  62. spio-0.4.1/spio/include/spio/tensor.h +497 -0
  63. spio-0.4.1/spio/include/spio.cuh +16 -0
  64. spio-0.4.1/spio/kernels/__init__.py +23 -0
  65. spio-0.4.1/spio/kernels/conv2d_gw8_kernel.py +213 -0
  66. spio-0.4.1/spio/kernels/conv2d_gw8_params.py +215 -0
  67. spio-0.4.1/spio/kernels/conv2d_gw8_wgrad_kernel.py +285 -0
  68. spio-0.4.1/spio/kernels/conv2d_stats.py +126 -0
  69. spio-0.4.1/spio/kernels/kernel.py +162 -0
  70. spio-0.4.1/spio/kernels/kernel_cache.py +115 -0
  71. spio-0.4.1/spio/kernels/kernel_factory.py +218 -0
  72. spio-0.4.1/spio/kernels/kernel_key.py +34 -0
  73. spio-0.4.1/spio/kernels/kernel_params_logger.py +113 -0
  74. spio-0.4.1/spio/kernels/kernel_util.py +14 -0
  75. spio-0.4.1/spio/kernels/launch_params.py +27 -0
  76. spio-0.4.1/spio/kernels/params.py +23 -0
  77. spio-0.4.1/spio/kernels/performance_model_cache.py +489 -0
  78. spio-0.4.1/spio/kernels/stats.py +74 -0
  79. spio-0.4.1/spio/layers/__init__.py +4 -0
  80. spio-0.4.1/spio/layers/conv2d_gw8.py +140 -0
  81. spio-0.4.1/spio/layers/make.py +15 -0
  82. spio-0.4.1/spio/reflection/__init__.py +10 -0
  83. spio-0.4.1/spio/reflection/arg_info.py +154 -0
  84. spio-0.4.1/spio/reflection/conv2d_gw8_reflection.py +163 -0
  85. spio-0.4.1/spio/reflection/reflection.py +207 -0
  86. spio-0.4.1/spio/src/__init__.py +1 -0
  87. spio-0.4.1/spio/src/conv2d_gw8.cu +271 -0
  88. spio-0.4.1/spio/src/conv2d_gw8_wgrad.cu +254 -0
  89. spio-0.4.1/spio/src/layernorm_2d.cu +270 -0
  90. spio-0.4.1/spio/src_tests/Conv2dGw8Params.dat +81 -0
  91. spio-0.4.1/spio/src_tests/__init__.py +11 -0
  92. spio-0.4.1/spio/src_tests/add.cu +9 -0
  93. spio-0.4.1/spio/src_tests/fifo.cu +51 -0
  94. spio-0.4.1/spio/src_tests/index.cu +31 -0
  95. spio-0.4.1/spio/src_tests/ldmatrix.cu +135 -0
  96. spio-0.4.1/spio/src_tests/memcpy_simple.cu +51 -0
  97. spio-0.4.1/spio/src_tests/mma.cu +134 -0
  98. spio-0.4.1/spio/src_tests/mma_checkerboard_16c.cu +171 -0
  99. spio-0.4.1/spio/src_tests/preprocess_data_file.py +82 -0
  100. spio-0.4.1/spio/src_tests/row_memcpy.cu +122 -0
  101. spio-0.4.1/spio/src_tests/run_test.py +318 -0
  102. spio-0.4.1/spio/src_tests/semaphore.cu +47 -0
  103. spio-0.4.1/spio/src_tests/utest.h +1700 -0
  104. spio-0.4.1/spio/transform/__init__.py +8 -0
  105. spio-0.4.1/spio/transform/_transform.py +110 -0
  106. spio-0.4.1/spio/util/__init__.py +14 -0
  107. spio-0.4.1/spio/util/cache_dir.py +8 -0
  108. spio-0.4.1/spio/util/class_names.py +15 -0
  109. spio-0.4.1/spio/util/close.py +74 -0
  110. spio-0.4.1/spio/util/device_info.py +34 -0
  111. spio-0.4.1/spio/util/interval_timer.py +117 -0
  112. spio-0.4.1/spio/util/load_parameter_set.py +77 -0
  113. spio-0.4.1/spio/util/logger.py +17 -0
  114. spio-0.4.1/spio/util/math.py +21 -0
  115. spio-0.4.1/spio/util/memory_format.py +29 -0
  116. spio-0.4.1/spio/util/parse_dataclass.py +38 -0
  117. spio-0.4.1/spio/util/parse_kwargs.py +24 -0
  118. spio-0.4.1/spio/util/tensor_format.py +17 -0
  119. spio-0.4.1/spio/util/test_matrices.py +60 -0
  120. spio-0.4.1/spio.egg-info/PKG-INFO +297 -0
  121. spio-0.4.1/spio.egg-info/SOURCES.txt +132 -0
  122. spio-0.4.1/spio.egg-info/dependency_links.txt +1 -0
  123. spio-0.4.1/spio.egg-info/requires.txt +10 -0
  124. spio-0.4.1/spio.egg-info/top_level.txt +1 -0
  125. spio-0.4.1/tests/test_conv2d_gw8.py +227 -0
  126. spio-0.4.1/tests/test_cpp.py +545 -0
  127. spio-0.4.1/tests/test_cuda_driver.py +73 -0
  128. spio-0.4.1/tests/test_dtype.py +16 -0
  129. spio-0.4.1/tests/test_kernel.py +210 -0
  130. spio-0.4.1/tests/test_ldmatrix.py +143 -0
  131. spio-0.4.1/tests/test_nvcc.py +11 -0
  132. spio-0.4.1/tests/test_stats.py +52 -0
  133. spio-0.4.1/tests/test_synchronization.py +80 -0
  134. spio-0.4.1/tests/test_util.py +50 -0
spio-0.4.1/LICENSE ADDED
@@ -0,0 +1,202 @@
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ APPENDIX: How to apply the Apache License to your work.
179
+
180
+ To apply the Apache License to your work, attach the following
181
+ boilerplate notice, with the fields enclosed by brackets "[]"
182
+ replaced with your own identifying information. (Don't include
183
+ the brackets!) The text should be enclosed in the appropriate
184
+ comment syntax for the file format. We also recommend that a
185
+ file or class name and description of purpose be included on the
186
+ same "printed page" as the copyright notice for easier
187
+ identification within third-party archives.
188
+
189
+ Copyright [yyyy] [name of copyright owner]
190
+
191
+ Licensed under the Apache License, Version 2.0 (the "License");
192
+ you may not use this file except in compliance with the License.
193
+ You may obtain a copy of the License at
194
+
195
+ http://www.apache.org/licenses/LICENSE-2.0
196
+
197
+ Unless required by applicable law or agreed to in writing, software
198
+ distributed under the License is distributed on an "AS IS" BASIS,
199
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
+ See the License for the specific language governing permissions and
201
+ limitations under the License.
202
+
spio-0.4.1/MANIFEST.in ADDED
@@ -0,0 +1,12 @@
1
+ include LICENSE.txt
2
+ include README.md
3
+ include pyproject.toml
4
+
5
+ recursive-include spio *.py *.pyx *.pxd *.cu *.h *.cuh *.dat
6
+
7
+ # Exclude unnecessary files and directories
8
+ exclude *.pyc
9
+ exclude *.pyo
10
+ exclude .DS_Store
11
+ prune tests/__pycache__
12
+ prune spio/__pycache__
spio-0.4.1/PKG-INFO ADDED
@@ -0,0 +1,297 @@
1
+ Metadata-Version: 2.4
2
+ Name: spio
3
+ Version: 0.4.1
4
+ Summary: Efficient CUDA kernels for training convolutional neural networks with PyTorch.
5
+ Author-email: Andrew Lavin <alavin@acm.org>
6
+ Project-URL: Homepage, https://github.com/andravin/spio
7
+ Project-URL: Issues, https://github.com/andravin/spio/issues
8
+ Classifier: Programming Language :: Python :: 3 :: Only
9
+ Classifier: Programming Language :: Python :: 3.9
10
+ Classifier: Programming Language :: Python :: 3.10
11
+ Classifier: Programming Language :: Python :: 3.11
12
+ Classifier: Programming Language :: Python :: 3.12
13
+ Classifier: License :: OSI Approved :: Apache Software License
14
+ Classifier: Operating System :: POSIX :: Linux
15
+ Requires-Python: >=3.9
16
+ Description-Content-Type: text/markdown
17
+ License-File: LICENSE
18
+ Requires-Dist: torch>=2.4.0
19
+ Requires-Dist: nvidia-cuda-nvrtc-cu12
20
+ Requires-Dist: nvidia-cuda-runtime-cu12
21
+ Requires-Dist: pytest
22
+ Requires-Dist: xgboost
23
+ Requires-Dist: appdirs
24
+ Requires-Dist: requests
25
+ Requires-Dist: filelock
26
+ Requires-Dist: packaging
27
+ Requires-Dist: importlib_resources>=6.0.0
28
+ Dynamic: license-file
29
+
30
+ # Spio
31
+
32
+ Experimental CUDA kernel framework unifying typed dimensions, NVRTC JIT specialization, and ML‑guided tuning.
33
+
34
+ [![PyPI version](https://img.shields.io/pypi/v/spio.svg)](https://pypi.org/project/spio/)
35
+ [![License: Apache-2.0](https://img.shields.io/badge/license-Apache--2.0-blue.svg)](LICENSE)
36
+
37
+ ## Overview
38
+
39
+ Spio is an experimental CUDA research playground that packages several forward-looking ideas for building next-generation GPU kernels: strongly typed tensor dimensions, pipeline-oriented code generation, and machine-learned performance models that steer NVRTC-compiled kernels at runtime.
40
+
41
+ ## Key Features
42
+
43
+ ### 🔧 Typed Dimension System
44
+
45
+ Unlike “Named Tensors,” which attach string names to dimensions and validate them at run time, Spio uses Typed Dimensions: each dimension is a distinct C++ type generated at build time and checked at compile time.
46
+
47
+ - Named Tensors (strings, run-time):
48
+ - Dimension identity is a string evaluated at run time
49
+ - Errors surface during execution
50
+ - Requires lookups and checks in hot paths
51
+
52
+ - Typed Dimensions (types, compile-time):
53
+ - Each logical dimension is a unique C++ type (e.g., I, J, K8)
54
+ - Misuses fail to compile (zero run-time overhead)
55
+ - Operator overloading maps types to per-tensor positions/strides
56
+
57
+ When the same dimension type appears in different tensors, it represents the same logical dimension; each tensor still defines its own size and stride for that dimension based on its layout. This enables position-free indexing—users don’t track index positions, sizes, or strides across tensors; the type system ensures correctness at compile time.
58
+
59
+ In practice, the generated tensor classes overload the indexing operator (e.g., `operator[]` and helpers like `get&lt;Dim&gt;()`) to accept dimension types. For each dimension type present in a tensor’s layout, the overload applies that tensor’s stride for that type; if a dimension type not used by the tensor is provided, the expression fails to compile (static_assert), with zero run-time name lookups or checks.
60
+
61
+ ### ⚡ Just-in-Time Kernel Generation
62
+
63
+ Spio compiles kernels at runtime with NVIDIA’s NVRTC (libnvrtc) and tunes them for your GPU. No CUDA toolkit install is needed because Spio relies on the CUDA headers and NVRTC shared libraries that NVIDIA distributes as Python packages (the same infrastructure PyTorch depends on). And there’s no host C compiler involved at runtime—Spio invokes kernels directly through the CUDA driver API, so no generated launcher wrappers are required.
64
+
65
+ This contrasts with packages like Triton Language that require a C compiler at runtime.
66
+
67
+ ### 🎯 Performance Models
68
+
69
+ Machine learning models predict optimal kernel configurations based on layer parameters and hardware characteristics. This eliminates expensive auto-tuning while achieving better performance than heuristic-based approaches.
70
+
71
+ ### 🚀 PyTorch Integration
72
+
73
+ Seamless integration with PyTorch through custom operators and `torch.compile` support. Drop-in replacement for existing operations with significant speedups.
74
+
75
+ ## Performance Results
76
+
77
+ ### Algorithm Innovation
78
+
79
+ The cuDNN Conv2d kernels use "implicit GEMM" with 1D horizontal tiling, causing excessive memory traffic due to overlapping reads in the convolution halo. Spio uses 2D tiling with a circular-buffer overlap-add algorithm that:
80
+
81
+ - Reduces tile overlap and global memory traffic
82
+ - Maximizes register usage through loop unrolling
83
+ - Increases occupancy by minimizing local memory footprint
84
+ - Leverages Tensor Cores with 8×8 matrix operations for a group width of 8
85
+
86
+ ### Benchmark Results
87
+
88
+ On NVIDIA GeForce RTX 3090, Spio approaches theoretical DRAM bandwidth limits for forward pass (FProp), input gradients (DGrad), and weight gradients (WGrad), while PyTorch/cuDNN implementations suffer from excess data transfers.
89
+
90
+ On NVIDIA GeForce RTX 4090, Spio exceeds the effective DRAM bandwidth limit for small batch sizes by effectively utilizing the 72 MB L2 cache:
91
+
92
+ ![Benchmark Result on NVIDIA GeForce RTX 4090](figures/batch_size_vs_eff_bandwidth__nvidia_geforce_rtx_4090__convfirst_64c_3r_3s_8gw.png)
93
+
94
+ Benchmarks use realistic workloads with layers embedded in ConvFirst or MBConv blocks to accurately reflect real-world performance.
95
+
96
+ ## Quick Start
97
+
98
+ ### Prerequisites
99
+
100
+ - Linux x86_64
101
+ - NVIDIA GPU: Ampere (sm_80/sm_86) or Ada (sm_89)
102
+ - NVIDIA driver (compatible with CUDA 12 runtime)
103
+ - Python 3.9+
104
+
105
+ ### Installation
106
+
107
+ Create and activate a virtual environment (recommended):
108
+
109
+ ```bash
110
+ python3 -m venv spio_env
111
+ source spio_env/bin/activate
112
+
113
+ # Upgrade pip.
114
+ python -m pip install --upgrade pip
115
+ ```
116
+
117
+ Then install Spio from PyPI using pip:
118
+
119
+ ```bash
120
+ pip install spio
121
+ ```
122
+
123
+ Notes:
124
+
125
+ - PyTorch (torch>=2.4.0) is an explicit dependency and will be installed automatically when you install Spio; no separate install step is required.
126
+ - CUDA toolkit installation is not required. Spio relies on NVIDIA's CUDA runtime and NVRTC libraries that are pulled in via wheels and are the same libraries PyTorch uses.
127
+
128
+ Alternatively, install Spio from source. For this, you will need a C compiler. On Ubuntu:
129
+
130
+ ```bash
131
+ sudo apt update && sudo apt install -y build-essential
132
+ ```
133
+
134
+ Then clone the Spio repository and install:
135
+
136
+ ```bash
137
+ git clone https://github.com/andravin/spio.git
138
+ cd spio
139
+ pip install .
140
+
141
+ # Run tests (optional)
142
+ cd tests
143
+ SPIO_WORKERS=$(nproc) pytest .
144
+ ```
145
+
146
+ Exit the virtual environment when finished.
147
+
148
+ ```bash
149
+ deactivate
150
+ ```
151
+
152
+ ### Usage
153
+
154
+ ```python
155
+ import torch
156
+ import spio
157
+
158
+ # Replace PyTorch grouped convolution
159
+ x = torch.randn(32, 64, 56, 56, device='cuda', dtype=torch.float16)
160
+ weight = torch.randn(64, 8, 3, 3, device='cuda', dtype=torch.float16)
161
+
162
+ # Automatic kernel selection and compilation
163
+ output = spio.grouped_conv2d(x, weight, groups=8)
164
+ ```
165
+
166
+ ## Typed Dimensions
167
+
168
+ Spio’s typed dimensions system represents dimensions as distinct C++ types (not run-time strings). The generator emits those types (e.g., I, J, K16, BLOCK_I), and kernels use operator overloading to map them to the correct position and stride per tensor. The same dimension type denotes the same logical axis across tensors, while each tensor provides its own size/stride. Because dimension identity is a type, mistakes are caught at compile time, with no run-time name lookups or checks. This is what enables index-position-free indexing and aggressive compile-time optimization (constexpr indexing, loop unrolling).
169
+
170
+ Operator overloading details:
171
+
172
+ - The generated tensor classes define typed indexing (operator[] chains and get&lt;Dim&gt;() helpers) that accept dimension types in any order and compute offsets using that tensor’s per-dimension strides.
173
+ - If you pass a dimension type that the tensor does not declare, the code fails to compile via static_assert, preventing invalid indexing from reaching run time.
174
+
175
+ Define tensor layouts for a matrix multiply kernel in the Python generator:
176
+
177
+ ```python
178
+ # Dimension 'i' represents the same logical dimension across all tensors
179
+ # But each tensor defines its own size and stride for 'i' based on its layout
180
+ tensor_a = gen.Tensor(
181
+ "A", gen.dtype.uint4,
182
+ # Dimension 'i' is at position 1 with size m
183
+ gen.Dims(k16=k16, i=m, k8=2),
184
+ constant=True
185
+ )
186
+ smem_tensor_a = gen.Tensor(
187
+ "SmemA", gen.dtype.uint4,
188
+ # Fold dimension 'i' with stride 16 at position 2 with size block_x16
189
+ gen.Dims(ping=2, k16=config.chunk_k16, i16=block_x16, checkers=32)
190
+ )
191
+ tensor_c = gen.Tensor(
192
+ "C", gen.dtype.uint4,
193
+ # Dimension 'i' is at position 0 with size m
194
+ gen.Dims(i=m, j8=n8)
195
+ )
196
+ global_load_index = gen.Index("GlobalLoadIndex", gen.Dims(x16=block_x16, x=16, k8=2))
197
+
198
+
199
+ # Define additional tensors for the CUDA kernel...
200
+ ```
201
+
202
+ Define thread-block tiles in Python:
203
+
204
+ ```python
205
+ # Dimension 'block_i' folds dimension 'i' with stride block_x.
206
+ gen.Fold("block_i", "i", block_x)
207
+
208
+ # Dimension 'block_j' folds dimension 'j' with stride block_x.
209
+ gen.Fold("block_j", "j", block_x)
210
+ ```
211
+
212
+ In traditional CUDA code, you manually track array indices and remember that `A[k][i][k8]` corresponds to `C[i][j8]`. With Spio's operator overloading, the same dimension type automatically maps to the correct position and stride in each tensor:
213
+
214
+ ```c++
215
+ // Include generated code.
216
+ #include "parameters.h"
217
+
218
+ // Dimension 'i' and folds 'block_i' and 'block_j' generate types I, BLOCK_I, and BLOCK_J
219
+ // that you use in the CUDA kernel.
220
+
221
+ // Map thread-block coordinates to blocks of I and J.
222
+ BLOCK_I block_i(blockIdx.y);
223
+
224
+ // Map the thread index to our tensor's global coordinates X16, X, and K8.
225
+ GlobalLoadIndex global_load_idx(threadIdx.x);
226
+
227
+ // Add the block and thread coordinates to compute this thread's I-coordinate.
228
+ auto global_i = block_i.unfold() + global_load_idx.get<X>().cast<I>();
229
+
230
+ // Same 'i' dimension type works correctly across different tensors
231
+ // - In tensor A: 'i' maps to position 1 with A's stride for dimension 1
232
+ // - In tensor C: 'i' maps to position 0 with C's stride for dimension 0
233
+ auto a_element = A(a_ptr)[global_i][global_load_idx.get<K8>()];
234
+ auto c_element = C(c_ptr)[global_i];
235
+
236
+ // The user doesn't track positions, sizes, or strides - the type system handles it all
237
+ // Type safety prevents dimension misuse at compile time (e.g., using WARP_J with SmemA would fail to compile)
238
+ ```
239
+
240
+ The main computation loop demonstrates how typed dimensions provide compile-time safety by preventing incompatible dimension types from being used with tensors that don't support them. The tensor implementations use `constexpr` with known tile sizes so that tensor indexing arithmetic is greatly simplified at compile-time and loops with constant bounds are unrolled. This produces highly optimized code that runs at near full utilization on NVIDIA GeForce RTX 4090 (Ada) GPUs:
241
+
242
+ ```c++
243
+ // Main computation loop with pipelined memory operations
244
+ for (int iter = 0; iter < size.get(); iter += 2 * step_size.get())
245
+ {
246
+ // Double-buffer loads and compute.
247
+ for (auto phase : range(PING(2)))
248
+ {
249
+ // If not the last iteration, load the next tile from global
250
+ // memory to shared memory asynchronously.
251
+ if (iter + (phase.get() + 1) * step_size.get() < size.get())
252
+ {
253
+ // Load into the back-buffer.
254
+ loader_a.load(smem_a_store[(phase + 1) % 2].get(), a.get());
255
+ loader_b.load(smem_b_store[(phase + 1) % 2].get(), b.get());
256
+ }
257
+
258
+ // Advance the global memory tiles.
259
+ a.step(step_size);
260
+ b.step(step_size);
261
+
262
+ // Synchronize on the previous iteration's global memory load.
263
+ __pipeline_commit();
264
+ __pipeline_wait_prior(1);
265
+ __syncthreads();
266
+
267
+ // Load matrix tiles from shared memory.
268
+ a_tile.load(smem_a_load[phase]);
269
+ b_tile.load(smem_b_load[phase]);
270
+
271
+ // Matrix-multiply the tiles using Tensor Cores.
272
+ // Compile-time type checking ensures the compatibility of the tile dimensions.
273
+ mma(a_tile, b_tile, c_tile, c_tile);
274
+ __syncthreads();
275
+ }
276
+ }
277
+ ```
278
+
279
+ The output staging loop demonstrates how dimensions can be dynamically refolded with different strides, while the type system ensures compile-time safety by preventing incompatible fold operations:
280
+
281
+ ```c++
282
+ // Nested loops using typed dimension iterators - no manual index calculations
283
+ for (auto i16 : range(c_tile.size<I16>())) {
284
+ for (auto j16 : range(c_tile.size<J16>())) {
285
+ *smem_c_cursor[j16.fold<8>()][i16] = c_tile[i16][j16]->to_half2(f);
286
+ }
287
+ }
288
+ ```
289
+
290
+ The system automatically handles:
291
+
292
+ - **Logical dimension consistency**: Same dimension type represents the same logical dimension across all tensors
293
+ - **Automatic position mapping**: Operator overloading maps dimension types to correct array positions
294
+ - **Per-tensor size and stride**: Each tensor defines its own size and stride for shared dimensions
295
+ - **Index-position-free operations**: No need to track array positions, sizes, or strides manually
296
+ - **Type safety**: Prevents using wrong dimension types at compile time
297
+ - **Memory layout optimization**: Automatic padding and alignment