spforge 0.8.17__tar.gz → 0.8.18__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of spforge might be problematic. Click here for more details.

Files changed (119) hide show
  1. {spforge-0.8.17/spforge.egg-info → spforge-0.8.18}/PKG-INFO +1 -1
  2. {spforge-0.8.17 → spforge-0.8.18}/pyproject.toml +1 -1
  3. {spforge-0.8.17 → spforge-0.8.18}/spforge/autopipeline.py +11 -1
  4. {spforge-0.8.17 → spforge-0.8.18}/spforge/estimator/_group_by_estimator.py +11 -3
  5. {spforge-0.8.17 → spforge-0.8.18}/spforge/transformers/_other_transformer.py +38 -8
  6. {spforge-0.8.17 → spforge-0.8.18/spforge.egg-info}/PKG-INFO +1 -1
  7. {spforge-0.8.17 → spforge-0.8.18}/tests/test_autopipeline.py +143 -7
  8. {spforge-0.8.17 → spforge-0.8.18}/LICENSE +0 -0
  9. {spforge-0.8.17 → spforge-0.8.18}/MANIFEST.in +0 -0
  10. {spforge-0.8.17 → spforge-0.8.18}/README.md +0 -0
  11. {spforge-0.8.17 → spforge-0.8.18}/examples/__init__.py +0 -0
  12. {spforge-0.8.17 → spforge-0.8.18}/examples/game_level_example.py +0 -0
  13. {spforge-0.8.17 → spforge-0.8.18}/examples/lol/__init__.py +0 -0
  14. {spforge-0.8.17 → spforge-0.8.18}/examples/lol/data/__init__.py +0 -0
  15. {spforge-0.8.17 → spforge-0.8.18}/examples/lol/data/subsample_lol_data.parquet +0 -0
  16. {spforge-0.8.17 → spforge-0.8.18}/examples/lol/data/utils.py +0 -0
  17. {spforge-0.8.17 → spforge-0.8.18}/examples/lol/pipeline_transformer_example.py +0 -0
  18. {spforge-0.8.17 → spforge-0.8.18}/examples/nba/__init__.py +0 -0
  19. {spforge-0.8.17 → spforge-0.8.18}/examples/nba/cross_validation_example.py +0 -0
  20. {spforge-0.8.17 → spforge-0.8.18}/examples/nba/data/__init__.py +0 -0
  21. {spforge-0.8.17 → spforge-0.8.18}/examples/nba/data/game_player_subsample.parquet +0 -0
  22. {spforge-0.8.17 → spforge-0.8.18}/examples/nba/data/utils.py +0 -0
  23. {spforge-0.8.17 → spforge-0.8.18}/examples/nba/feature_engineering_example.py +0 -0
  24. {spforge-0.8.17 → spforge-0.8.18}/examples/nba/game_winner_example.py +0 -0
  25. {spforge-0.8.17 → spforge-0.8.18}/examples/nba/predictor_transformers_example.py +0 -0
  26. {spforge-0.8.17 → spforge-0.8.18}/setup.cfg +0 -0
  27. {spforge-0.8.17 → spforge-0.8.18}/spforge/__init__.py +0 -0
  28. {spforge-0.8.17 → spforge-0.8.18}/spforge/base_feature_generator.py +0 -0
  29. {spforge-0.8.17 → spforge-0.8.18}/spforge/cross_validator/__init__.py +0 -0
  30. {spforge-0.8.17 → spforge-0.8.18}/spforge/cross_validator/_base.py +0 -0
  31. {spforge-0.8.17 → spforge-0.8.18}/spforge/cross_validator/cross_validator.py +0 -0
  32. {spforge-0.8.17 → spforge-0.8.18}/spforge/data_structures.py +0 -0
  33. {spforge-0.8.17 → spforge-0.8.18}/spforge/distributions/__init__.py +0 -0
  34. {spforge-0.8.17 → spforge-0.8.18}/spforge/distributions/_negative_binomial_estimator.py +0 -0
  35. {spforge-0.8.17 → spforge-0.8.18}/spforge/distributions/_normal_distribution_predictor.py +0 -0
  36. {spforge-0.8.17 → spforge-0.8.18}/spforge/distributions/_student_t_distribution_estimator.py +0 -0
  37. {spforge-0.8.17 → spforge-0.8.18}/spforge/estimator/__init__.py +0 -0
  38. {spforge-0.8.17 → spforge-0.8.18}/spforge/estimator/_conditional_estimator.py +0 -0
  39. {spforge-0.8.17 → spforge-0.8.18}/spforge/estimator/_frequency_bucketing_classifier.py +0 -0
  40. {spforge-0.8.17 → spforge-0.8.18}/spforge/estimator/_granularity_estimator.py +0 -0
  41. {spforge-0.8.17 → spforge-0.8.18}/spforge/estimator/_ordinal_classifier.py +0 -0
  42. {spforge-0.8.17 → spforge-0.8.18}/spforge/estimator/_sklearn_enhancer_estimator.py +0 -0
  43. {spforge-0.8.17 → spforge-0.8.18}/spforge/feature_generator/__init__.py +0 -0
  44. {spforge-0.8.17 → spforge-0.8.18}/spforge/feature_generator/_base.py +0 -0
  45. {spforge-0.8.17 → spforge-0.8.18}/spforge/feature_generator/_lag.py +0 -0
  46. {spforge-0.8.17 → spforge-0.8.18}/spforge/feature_generator/_net_over_predicted.py +0 -0
  47. {spforge-0.8.17 → spforge-0.8.18}/spforge/feature_generator/_regressor_feature_generator.py +0 -0
  48. {spforge-0.8.17 → spforge-0.8.18}/spforge/feature_generator/_rolling_against_opponent.py +0 -0
  49. {spforge-0.8.17 → spforge-0.8.18}/spforge/feature_generator/_rolling_mean_binary.py +0 -0
  50. {spforge-0.8.17 → spforge-0.8.18}/spforge/feature_generator/_rolling_mean_days.py +0 -0
  51. {spforge-0.8.17 → spforge-0.8.18}/spforge/feature_generator/_rolling_window.py +0 -0
  52. {spforge-0.8.17 → spforge-0.8.18}/spforge/feature_generator/_utils.py +0 -0
  53. {spforge-0.8.17 → spforge-0.8.18}/spforge/features_generator_pipeline.py +0 -0
  54. {spforge-0.8.17 → spforge-0.8.18}/spforge/hyperparameter_tuning/__init__.py +0 -0
  55. {spforge-0.8.17 → spforge-0.8.18}/spforge/hyperparameter_tuning/_default_search_spaces.py +0 -0
  56. {spforge-0.8.17 → spforge-0.8.18}/spforge/hyperparameter_tuning/_tuner.py +0 -0
  57. {spforge-0.8.17 → spforge-0.8.18}/spforge/performance_transformers/__init__.py +0 -0
  58. {spforge-0.8.17 → spforge-0.8.18}/spforge/performance_transformers/_performance_manager.py +0 -0
  59. {spforge-0.8.17 → spforge-0.8.18}/spforge/performance_transformers/_performances_transformers.py +0 -0
  60. {spforge-0.8.17 → spforge-0.8.18}/spforge/ratings/__init__.py +0 -0
  61. {spforge-0.8.17 → spforge-0.8.18}/spforge/ratings/_base.py +0 -0
  62. {spforge-0.8.17 → spforge-0.8.18}/spforge/ratings/_player_rating.py +0 -0
  63. {spforge-0.8.17 → spforge-0.8.18}/spforge/ratings/_team_rating.py +0 -0
  64. {spforge-0.8.17 → spforge-0.8.18}/spforge/ratings/enums.py +0 -0
  65. {spforge-0.8.17 → spforge-0.8.18}/spforge/ratings/league_identifier.py +0 -0
  66. {spforge-0.8.17 → spforge-0.8.18}/spforge/ratings/league_start_rating_optimizer.py +0 -0
  67. {spforge-0.8.17 → spforge-0.8.18}/spforge/ratings/player_performance_predictor.py +0 -0
  68. {spforge-0.8.17 → spforge-0.8.18}/spforge/ratings/start_rating_generator.py +0 -0
  69. {spforge-0.8.17 → spforge-0.8.18}/spforge/ratings/team_performance_predictor.py +0 -0
  70. {spforge-0.8.17 → spforge-0.8.18}/spforge/ratings/team_start_rating_generator.py +0 -0
  71. {spforge-0.8.17 → spforge-0.8.18}/spforge/ratings/utils.py +0 -0
  72. {spforge-0.8.17 → spforge-0.8.18}/spforge/scorer/__init__.py +0 -0
  73. {spforge-0.8.17 → spforge-0.8.18}/spforge/scorer/_score.py +0 -0
  74. {spforge-0.8.17 → spforge-0.8.18}/spforge/transformers/__init__.py +0 -0
  75. {spforge-0.8.17 → spforge-0.8.18}/spforge/transformers/_base.py +0 -0
  76. {spforge-0.8.17 → spforge-0.8.18}/spforge/transformers/_net_over_predicted.py +0 -0
  77. {spforge-0.8.17 → spforge-0.8.18}/spforge/transformers/_operator.py +0 -0
  78. {spforge-0.8.17 → spforge-0.8.18}/spforge/transformers/_predictor.py +0 -0
  79. {spforge-0.8.17 → spforge-0.8.18}/spforge/transformers/_simple_transformer.py +0 -0
  80. {spforge-0.8.17 → spforge-0.8.18}/spforge/transformers/_team_ratio_predictor.py +0 -0
  81. {spforge-0.8.17 → spforge-0.8.18}/spforge/utils.py +0 -0
  82. {spforge-0.8.17 → spforge-0.8.18}/spforge.egg-info/SOURCES.txt +0 -0
  83. {spforge-0.8.17 → spforge-0.8.18}/spforge.egg-info/dependency_links.txt +0 -0
  84. {spforge-0.8.17 → spforge-0.8.18}/spforge.egg-info/requires.txt +0 -0
  85. {spforge-0.8.17 → spforge-0.8.18}/spforge.egg-info/top_level.txt +0 -0
  86. {spforge-0.8.17 → spforge-0.8.18}/tests/cross_validator/test_cross_validator.py +0 -0
  87. {spforge-0.8.17 → spforge-0.8.18}/tests/distributions/test_distribution.py +0 -0
  88. {spforge-0.8.17 → spforge-0.8.18}/tests/end_to_end/test_estimator_hyperparameter_tuning.py +0 -0
  89. {spforge-0.8.17 → spforge-0.8.18}/tests/end_to_end/test_league_start_rating_optimizer.py +0 -0
  90. {spforge-0.8.17 → spforge-0.8.18}/tests/end_to_end/test_lol_player_kills.py +0 -0
  91. {spforge-0.8.17 → spforge-0.8.18}/tests/end_to_end/test_nba_player_points.py +0 -0
  92. {spforge-0.8.17 → spforge-0.8.18}/tests/end_to_end/test_nba_player_ratings_hyperparameter_tuning.py +0 -0
  93. {spforge-0.8.17 → spforge-0.8.18}/tests/end_to_end/test_nba_prediction_consistency.py +0 -0
  94. {spforge-0.8.17 → spforge-0.8.18}/tests/estimator/test_sklearn_estimator.py +0 -0
  95. {spforge-0.8.17 → spforge-0.8.18}/tests/feature_generator/test_lag.py +0 -0
  96. {spforge-0.8.17 → spforge-0.8.18}/tests/feature_generator/test_regressor_feature_generator.py +0 -0
  97. {spforge-0.8.17 → spforge-0.8.18}/tests/feature_generator/test_rolling_against_opponent.py +0 -0
  98. {spforge-0.8.17 → spforge-0.8.18}/tests/feature_generator/test_rolling_mean_binary.py +0 -0
  99. {spforge-0.8.17 → spforge-0.8.18}/tests/feature_generator/test_rolling_mean_days.py +0 -0
  100. {spforge-0.8.17 → spforge-0.8.18}/tests/feature_generator/test_rolling_window.py +0 -0
  101. {spforge-0.8.17 → spforge-0.8.18}/tests/hyperparameter_tuning/test_estimator_tuner.py +0 -0
  102. {spforge-0.8.17 → spforge-0.8.18}/tests/hyperparameter_tuning/test_rating_tuner.py +0 -0
  103. {spforge-0.8.17 → spforge-0.8.18}/tests/performance_transformers/test_performance_manager.py +0 -0
  104. {spforge-0.8.17 → spforge-0.8.18}/tests/performance_transformers/test_performances_transformers.py +0 -0
  105. {spforge-0.8.17 → spforge-0.8.18}/tests/ratings/test_player_rating_generator.py +0 -0
  106. {spforge-0.8.17 → spforge-0.8.18}/tests/ratings/test_player_rating_no_mutation.py +0 -0
  107. {spforge-0.8.17 → spforge-0.8.18}/tests/ratings/test_ratings_property.py +0 -0
  108. {spforge-0.8.17 → spforge-0.8.18}/tests/ratings/test_team_rating_generator.py +0 -0
  109. {spforge-0.8.17 → spforge-0.8.18}/tests/ratings/test_utils_scaled_weights.py +0 -0
  110. {spforge-0.8.17 → spforge-0.8.18}/tests/scorer/test_score.py +0 -0
  111. {spforge-0.8.17 → spforge-0.8.18}/tests/scorer/test_score_aggregation_granularity.py +0 -0
  112. {spforge-0.8.17 → spforge-0.8.18}/tests/test_autopipeline_context.py +0 -0
  113. {spforge-0.8.17 → spforge-0.8.18}/tests/test_feature_generator_pipeline.py +0 -0
  114. {spforge-0.8.17 → spforge-0.8.18}/tests/transformers/test_estimator_transformer_context.py +0 -0
  115. {spforge-0.8.17 → spforge-0.8.18}/tests/transformers/test_net_over_predicted.py +0 -0
  116. {spforge-0.8.17 → spforge-0.8.18}/tests/transformers/test_other_transformer.py +0 -0
  117. {spforge-0.8.17 → spforge-0.8.18}/tests/transformers/test_predictor_transformer.py +0 -0
  118. {spforge-0.8.17 → spforge-0.8.18}/tests/transformers/test_simple_transformer.py +0 -0
  119. {spforge-0.8.17 → spforge-0.8.18}/tests/transformers/test_team_ratio_predictor.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: spforge
3
- Version: 0.8.17
3
+ Version: 0.8.18
4
4
  Summary: A flexible framework for generating features, ratings, and building machine learning or other models for training and inference on sports data.
5
5
  Author-email: Mathias Holmstrøm <mathiasholmstom@gmail.com>
6
6
  License: See LICENSE file
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
4
4
 
5
5
  [project]
6
6
  name = "spforge"
7
- version = "0.8.17"
7
+ version = "0.8.18"
8
8
  description = "A flexible framework for generating features, ratings, and building machine learning or other models for training and inference on sports data."
9
9
  readme = "README.md"
10
10
  requires-python = ">=3.11"
@@ -236,6 +236,7 @@ class AutoPipeline(BaseEstimator):
236
236
  estimator_features: list[str],
237
237
  predictor_transformers: list[PredictorTransformer] | None = None,
238
238
  granularity: list[str] | None = None,
239
+ aggregation_weight: str | None = None,
239
240
  filters: list[Filter] | None = None,
240
241
  scale_features: bool = False,
241
242
  categorical_handling: CategoricalHandling = "auto",
@@ -250,6 +251,7 @@ class AutoPipeline(BaseEstimator):
250
251
  self.estimator_features = estimator_features
251
252
  self.feature_names = estimator_features # Internal compat
252
253
  self.granularity = granularity or []
254
+ self.aggregation_weight = aggregation_weight
253
255
  self.predictor_transformers = predictor_transformers
254
256
  self.estimator = estimator
255
257
  self.filters = filters or []
@@ -326,6 +328,10 @@ class AutoPipeline(BaseEstimator):
326
328
  # Add granularity columns
327
329
  context.extend(self.granularity)
328
330
 
331
+ # Add aggregation weight column
332
+ if self.aggregation_weight:
333
+ context.append(self.aggregation_weight)
334
+
329
335
  # Add filter columns
330
336
  self._filter_feature_names = []
331
337
  for f in self.filters:
@@ -492,7 +498,11 @@ class AutoPipeline(BaseEstimator):
492
498
  pre = PreprocessorToDataFrame(pre_raw)
493
499
 
494
500
  est = (
495
- GroupByEstimator(self.estimator, granularity=[f"{c}" for c in self.granularity])
501
+ GroupByEstimator(
502
+ self.estimator,
503
+ granularity=[f"{c}" for c in self.granularity],
504
+ aggregation_weight=self.aggregation_weight,
505
+ )
496
506
  if do_groupby
497
507
  else self.estimator
498
508
  )
@@ -10,10 +10,16 @@ from spforge.transformers._other_transformer import GroupByReducer
10
10
 
11
11
 
12
12
  class GroupByEstimator(BaseEstimator):
13
- def __init__(self, estimator: Any, granularity: list[str] | None = None):
13
+ def __init__(
14
+ self,
15
+ estimator: Any,
16
+ granularity: list[str] | None = None,
17
+ aggregation_weight: str | None = None,
18
+ ):
14
19
  self.estimator = estimator
15
20
  self.granularity = granularity or []
16
- self._reducer = GroupByReducer(self.granularity)
21
+ self.aggregation_weight = aggregation_weight
22
+ self._reducer = GroupByReducer(self.granularity, aggregation_weight=aggregation_weight)
17
23
  self._est = None
18
24
 
19
25
  def __sklearn_is_fitted__(self):
@@ -22,7 +28,9 @@ class GroupByEstimator(BaseEstimator):
22
28
  @nw.narwhalify
23
29
  def fit(self, X: IntoFrameT, y: Any, sample_weight: np.ndarray | None = None):
24
30
  X = X.to_pandas()
25
- self._reducer = GroupByReducer(self.granularity)
31
+ # Backwards compatibility: old pickled objects may not have aggregation_weight
32
+ agg_weight = getattr(self, "aggregation_weight", None)
33
+ self._reducer = GroupByReducer(self.granularity, aggregation_weight=agg_weight)
26
34
  X_red = nw.from_native(self._reducer.fit_transform(X))
27
35
  y_red, sw_red = self._reducer.reduce_y(X, y, sample_weight=sample_weight)
28
36
 
@@ -8,8 +8,9 @@ from sklearn.base import BaseEstimator, TransformerMixin
8
8
 
9
9
 
10
10
  class GroupByReducer(BaseEstimator, TransformerMixin):
11
- def __init__(self, granularity: list[str]):
11
+ def __init__(self, granularity: list[str], aggregation_weight: str | None = None):
12
12
  self.granularity = granularity
13
+ self.aggregation_weight = aggregation_weight
13
14
 
14
15
  @nw.narwhalify
15
16
  def fit(self, X: IntoFrameT, y: Any = None):
@@ -26,18 +27,47 @@ class GroupByReducer(BaseEstimator, TransformerMixin):
26
27
  raise ValueError("Could not find granularity columns in dataframe %s", self.granularity)
27
28
 
28
29
  non_keys = [c for c in df.columns if c not in keys]
29
- num_cols = [c for c in non_keys if pd.api.types.is_numeric_dtype(df[c])]
30
+ schema = df.schema
31
+ num_cols = [c for c in non_keys if schema[c].is_numeric()]
30
32
  other_cols = [c for c in non_keys if c not in num_cols]
31
33
 
32
34
  aggs: list[nw.Expr] = []
33
35
 
36
+ # Backwards compatibility: old pickled objects may not have aggregation_weight
37
+ weight_col = getattr(self, "aggregation_weight", None)
38
+ has_weight = weight_col and weight_col in df.columns
39
+
34
40
  for c in num_cols:
35
- aggs.append(nw.col(c).mean().alias(c))
41
+ if c == weight_col:
42
+ aggs.append(nw.col(c).sum().alias(c))
43
+ elif has_weight:
44
+ aggs.append((nw.col(c) * nw.col(weight_col)).sum().alias(f"__{c}_weighted_sum"))
45
+ aggs.append(nw.col(c).mean().alias(f"__{c}_fallback"))
46
+ else:
47
+ aggs.append(nw.col(c).mean().alias(c))
36
48
 
37
49
  for c in other_cols:
38
50
  aggs.append(nw.col(c).first().alias(c))
39
51
 
52
+ if has_weight:
53
+ aggs.append(nw.col(weight_col).sum().alias("__weight_sum"))
54
+
40
55
  out = df.group_by(keys).agg(aggs)
56
+
57
+ if has_weight:
58
+ weighted_cols = [c for c in num_cols if c != weight_col]
59
+ for c in weighted_cols:
60
+ out = out.with_columns(
61
+ nw.when((~nw.col("__weight_sum").is_null()) & (nw.col("__weight_sum") != 0))
62
+ .then(nw.col(f"__{c}_weighted_sum") / nw.col("__weight_sum"))
63
+ .otherwise(nw.col(f"__{c}_fallback"))
64
+ .alias(c)
65
+ )
66
+ drop_cols = [f"__{c}_weighted_sum" for c in weighted_cols]
67
+ drop_cols += [f"__{c}_fallback" for c in weighted_cols]
68
+ drop_cols.append("__weight_sum")
69
+ out = out.drop(drop_cols)
70
+
41
71
  return out
42
72
 
43
73
  @nw.narwhalify
@@ -59,12 +89,12 @@ class GroupByReducer(BaseEstimator, TransformerMixin):
59
89
  if sample_weight is not None:
60
90
  df = df.with_columns(nw.lit(sample_weight).alias("__sw"))
61
91
 
62
- y_is_numeric = df.select(nw.col("__y")).schema["__y"].is_numeric()
92
+ y_uniques = df.group_by(keys).agg(nw.col("__y").n_unique().alias("__y_nunique"))
93
+ non_uniform = y_uniques.filter(nw.col("__y_nunique") > 1)
94
+ if len(non_uniform) > 0:
95
+ raise ValueError("Target (y) must be uniform within each granularity group")
63
96
 
64
- if y_is_numeric:
65
- agg_exprs = [nw.col("__y").mean().alias("__y")]
66
- else:
67
- agg_exprs = [nw.col("__y").first().alias("__y")]
97
+ agg_exprs = [nw.col("__y").first().alias("__y")]
68
98
 
69
99
  if sample_weight is not None:
70
100
  agg_exprs.append(nw.col("__sw").sum().alias("__sw"))
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: spforge
3
- Version: 0.8.17
3
+ Version: 0.8.18
4
4
  Summary: A flexible framework for generating features, ratings, and building machine learning or other models for training and inference on sports data.
5
5
  Author-email: Mathias Holmstrøm <mathiasholmstom@gmail.com>
6
6
  License: See LICENSE file
@@ -328,7 +328,18 @@ def test_infer_categorical_from_feature_names_when_only_numeric_features_given(d
328
328
  assert any(c.startswith("cat") for c in cap.fit_columns)
329
329
 
330
330
 
331
- def test_granularity_groups_rows_before_estimator_fit_and_predict(df_reg):
331
+ def test_granularity_groups_rows_before_estimator_fit_and_predict(frame):
332
+ df_pd = pd.DataFrame(
333
+ {
334
+ "gameid": ["g1", "g1", "g2", "g2", "g3", "g3"],
335
+ "num1": [1.0, 2.0, np.nan, 4.0, 5.0, 6.0],
336
+ "num2": [10.0, 20.0, 30.0, 40.0, np.nan, 60.0],
337
+ "cat1": ["a", "b", "a", None, "b", "c"],
338
+ "y": [1.0, 1.0, 2.0, 2.0, 3.0, 3.0],
339
+ }
340
+ )
341
+ df = df_pd if frame == "pd" else pl.from_pandas(df_pd)
342
+
332
343
  model = AutoPipeline(
333
344
  estimator=CaptureEstimator(),
334
345
  estimator_features=["gameid", "num1", "num2", "cat1"],
@@ -339,16 +350,16 @@ def test_granularity_groups_rows_before_estimator_fit_and_predict(df_reg):
339
350
  remainder="drop",
340
351
  )
341
352
 
342
- X = _select(df_reg, ["gameid", "num1", "num2", "cat1"])
343
- y = _col(df_reg, "y")
353
+ X = _select(df, ["gameid", "num1", "num2", "cat1"])
354
+ y = _col(df, "y")
344
355
  model.fit(X, y=y)
345
356
 
346
357
  inner = _inner_estimator(model)
347
358
 
348
- if isinstance(df_reg, pl.DataFrame):
349
- n_groups = df_reg.select(pl.col("gameid").n_unique()).item()
359
+ if isinstance(df, pl.DataFrame):
360
+ n_groups = df.select(pl.col("gameid").n_unique()).item()
350
361
  else:
351
- n_groups = df_reg["gameid"].nunique()
362
+ n_groups = df["gameid"].nunique()
352
363
 
353
364
  assert inner.fit_shape[0] == n_groups
354
365
 
@@ -724,9 +735,10 @@ def test_feature_importance_names__granularity_uses_deep_feature_names():
724
735
  "gameid": ["g1", "g1", "g2", "g2"],
725
736
  "num1": [1.0, 2.0, 3.0, 4.0],
726
737
  "num2": [10.0, 20.0, 30.0, 40.0],
738
+ "y": [1.0, 1.0, 2.0, 2.0],
727
739
  }
728
740
  )
729
- y = pd.Series([1.0, 2.0, 3.0, 4.0], name="y")
741
+ y = df["y"]
730
742
 
731
743
  model = AutoPipeline(
732
744
  estimator=RandomForestRegressor(n_estimators=5, random_state=42),
@@ -745,3 +757,127 @@ def test_feature_importance_names__granularity_uses_deep_feature_names():
745
757
  assert list(names.keys()) == list(inner.feature_names_in_)
746
758
  assert "gameid" not in names
747
759
  assert "const_pred" in names
760
+
761
+
762
+ @pytest.mark.parametrize("frame", ["pd", "pl"])
763
+ def test_granularity_with_aggregation_weight__features_weighted(frame):
764
+ df_pd = pd.DataFrame(
765
+ {
766
+ "gameid": ["g1", "g1", "g2", "g2"],
767
+ "num1": [10.0, 30.0, 20.0, 40.0],
768
+ "weight": [0.25, 0.75, 0.5, 0.5],
769
+ "y": [1.0, 1.0, 2.0, 2.0],
770
+ }
771
+ )
772
+ df = df_pd if frame == "pd" else pl.from_pandas(df_pd)
773
+
774
+ cap = CaptureEstimator()
775
+ model = AutoPipeline(
776
+ estimator=cap,
777
+ estimator_features=["num1"],
778
+ granularity=["gameid"],
779
+ aggregation_weight="weight",
780
+ remainder="drop",
781
+ )
782
+
783
+ X = _select(df, ["gameid", "num1", "weight"])
784
+ y = _col(df, "y")
785
+ model.fit(X, y=y)
786
+
787
+ inner = _inner_estimator(model)
788
+ assert inner.fit_shape[0] == 2
789
+
790
+ preds = model.predict(X)
791
+ assert preds.shape[0] == len(X)
792
+
793
+
794
+ @pytest.mark.parametrize("frame", ["pd", "pl"])
795
+ def test_granularity_aggregation_weight__weighted_mean_correct(frame):
796
+ df_pd = pd.DataFrame(
797
+ {
798
+ "gameid": ["g1", "g1"],
799
+ "num1": [10.0, 30.0],
800
+ "weight": [0.25, 0.75],
801
+ "y": [1.0, 1.0],
802
+ }
803
+ )
804
+ df = df_pd if frame == "pd" else pl.from_pandas(df_pd)
805
+
806
+ from spforge.transformers._other_transformer import GroupByReducer
807
+
808
+ reducer = GroupByReducer(granularity=["gameid"], aggregation_weight="weight")
809
+ transformed = reducer.fit_transform(df)
810
+
811
+ if frame == "pl":
812
+ num1_val = transformed["num1"].to_list()[0]
813
+ else:
814
+ num1_val = transformed["num1"].iloc[0]
815
+
816
+ expected = (10.0 * 0.25 + 30.0 * 0.75) / (0.25 + 0.75)
817
+ assert abs(num1_val - expected) < 1e-6
818
+
819
+
820
+ @pytest.mark.parametrize("frame", ["pd", "pl"])
821
+ def test_reduce_y_raises_when_target_not_uniform_per_group(frame):
822
+ df_pd = pd.DataFrame(
823
+ {
824
+ "gameid": ["g1", "g1"],
825
+ "num1": [10.0, 30.0],
826
+ }
827
+ )
828
+ df = df_pd if frame == "pd" else pl.from_pandas(df_pd)
829
+
830
+ from spforge.transformers._other_transformer import GroupByReducer
831
+
832
+ reducer = GroupByReducer(granularity=["gameid"])
833
+
834
+ y = np.array([1.0, 2.0])
835
+ with pytest.raises(ValueError, match="Target.*must be uniform"):
836
+ reducer.reduce_y(df, y)
837
+
838
+
839
+ @pytest.mark.parametrize("frame", ["pd", "pl"])
840
+ def test_reduce_y_works_when_target_uniform_per_group(frame):
841
+ df_pd = pd.DataFrame(
842
+ {
843
+ "gameid": ["g1", "g1", "g2", "g2"],
844
+ "num1": [10.0, 30.0, 20.0, 40.0],
845
+ }
846
+ )
847
+ df = df_pd if frame == "pd" else pl.from_pandas(df_pd)
848
+
849
+ from spforge.transformers._other_transformer import GroupByReducer
850
+
851
+ reducer = GroupByReducer(granularity=["gameid"])
852
+
853
+ y = np.array([1.0, 1.0, 2.0, 2.0])
854
+ y_out, _ = reducer.reduce_y(df, y)
855
+
856
+ assert len(y_out) == 2
857
+ assert set(y_out) == {1.0, 2.0}
858
+
859
+
860
+ @pytest.mark.parametrize("frame", ["pd", "pl"])
861
+ def test_aggregation_weight_sums_weight_column(frame):
862
+ df_pd = pd.DataFrame(
863
+ {
864
+ "gameid": ["g1", "g1"],
865
+ "num1": [10.0, 30.0],
866
+ "weight": [0.25, 0.75],
867
+ "y": [1.0, 1.0],
868
+ }
869
+ )
870
+ df = df_pd if frame == "pd" else pl.from_pandas(df_pd)
871
+
872
+ from spforge.transformers._other_transformer import GroupByReducer
873
+
874
+ reducer = GroupByReducer(granularity=["gameid"], aggregation_weight="weight")
875
+ transformed = reducer.fit_transform(df)
876
+
877
+ if frame == "pl":
878
+ weight_val = transformed["weight"].to_list()[0]
879
+ else:
880
+ weight_val = transformed["weight"].iloc[0]
881
+
882
+ expected = 0.25 + 0.75
883
+ assert abs(weight_val - expected) < 1e-6
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes