spforge 0.8.16__tar.gz → 0.8.17__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of spforge might be problematic. Click here for more details.

Files changed (119) hide show
  1. {spforge-0.8.16/spforge.egg-info → spforge-0.8.17}/PKG-INFO +1 -1
  2. {spforge-0.8.16 → spforge-0.8.17}/pyproject.toml +1 -1
  3. {spforge-0.8.16 → spforge-0.8.17}/spforge/scorer/_score.py +42 -11
  4. {spforge-0.8.16 → spforge-0.8.17/spforge.egg-info}/PKG-INFO +1 -1
  5. {spforge-0.8.16 → spforge-0.8.17}/tests/scorer/test_score.py +142 -0
  6. {spforge-0.8.16 → spforge-0.8.17}/LICENSE +0 -0
  7. {spforge-0.8.16 → spforge-0.8.17}/MANIFEST.in +0 -0
  8. {spforge-0.8.16 → spforge-0.8.17}/README.md +0 -0
  9. {spforge-0.8.16 → spforge-0.8.17}/examples/__init__.py +0 -0
  10. {spforge-0.8.16 → spforge-0.8.17}/examples/game_level_example.py +0 -0
  11. {spforge-0.8.16 → spforge-0.8.17}/examples/lol/__init__.py +0 -0
  12. {spforge-0.8.16 → spforge-0.8.17}/examples/lol/data/__init__.py +0 -0
  13. {spforge-0.8.16 → spforge-0.8.17}/examples/lol/data/subsample_lol_data.parquet +0 -0
  14. {spforge-0.8.16 → spforge-0.8.17}/examples/lol/data/utils.py +0 -0
  15. {spforge-0.8.16 → spforge-0.8.17}/examples/lol/pipeline_transformer_example.py +0 -0
  16. {spforge-0.8.16 → spforge-0.8.17}/examples/nba/__init__.py +0 -0
  17. {spforge-0.8.16 → spforge-0.8.17}/examples/nba/cross_validation_example.py +0 -0
  18. {spforge-0.8.16 → spforge-0.8.17}/examples/nba/data/__init__.py +0 -0
  19. {spforge-0.8.16 → spforge-0.8.17}/examples/nba/data/game_player_subsample.parquet +0 -0
  20. {spforge-0.8.16 → spforge-0.8.17}/examples/nba/data/utils.py +0 -0
  21. {spforge-0.8.16 → spforge-0.8.17}/examples/nba/feature_engineering_example.py +0 -0
  22. {spforge-0.8.16 → spforge-0.8.17}/examples/nba/game_winner_example.py +0 -0
  23. {spforge-0.8.16 → spforge-0.8.17}/examples/nba/predictor_transformers_example.py +0 -0
  24. {spforge-0.8.16 → spforge-0.8.17}/setup.cfg +0 -0
  25. {spforge-0.8.16 → spforge-0.8.17}/spforge/__init__.py +0 -0
  26. {spforge-0.8.16 → spforge-0.8.17}/spforge/autopipeline.py +0 -0
  27. {spforge-0.8.16 → spforge-0.8.17}/spforge/base_feature_generator.py +0 -0
  28. {spforge-0.8.16 → spforge-0.8.17}/spforge/cross_validator/__init__.py +0 -0
  29. {spforge-0.8.16 → spforge-0.8.17}/spforge/cross_validator/_base.py +0 -0
  30. {spforge-0.8.16 → spforge-0.8.17}/spforge/cross_validator/cross_validator.py +0 -0
  31. {spforge-0.8.16 → spforge-0.8.17}/spforge/data_structures.py +0 -0
  32. {spforge-0.8.16 → spforge-0.8.17}/spforge/distributions/__init__.py +0 -0
  33. {spforge-0.8.16 → spforge-0.8.17}/spforge/distributions/_negative_binomial_estimator.py +0 -0
  34. {spforge-0.8.16 → spforge-0.8.17}/spforge/distributions/_normal_distribution_predictor.py +0 -0
  35. {spforge-0.8.16 → spforge-0.8.17}/spforge/distributions/_student_t_distribution_estimator.py +0 -0
  36. {spforge-0.8.16 → spforge-0.8.17}/spforge/estimator/__init__.py +0 -0
  37. {spforge-0.8.16 → spforge-0.8.17}/spforge/estimator/_conditional_estimator.py +0 -0
  38. {spforge-0.8.16 → spforge-0.8.17}/spforge/estimator/_frequency_bucketing_classifier.py +0 -0
  39. {spforge-0.8.16 → spforge-0.8.17}/spforge/estimator/_granularity_estimator.py +0 -0
  40. {spforge-0.8.16 → spforge-0.8.17}/spforge/estimator/_group_by_estimator.py +0 -0
  41. {spforge-0.8.16 → spforge-0.8.17}/spforge/estimator/_ordinal_classifier.py +0 -0
  42. {spforge-0.8.16 → spforge-0.8.17}/spforge/estimator/_sklearn_enhancer_estimator.py +0 -0
  43. {spforge-0.8.16 → spforge-0.8.17}/spforge/feature_generator/__init__.py +0 -0
  44. {spforge-0.8.16 → spforge-0.8.17}/spforge/feature_generator/_base.py +0 -0
  45. {spforge-0.8.16 → spforge-0.8.17}/spforge/feature_generator/_lag.py +0 -0
  46. {spforge-0.8.16 → spforge-0.8.17}/spforge/feature_generator/_net_over_predicted.py +0 -0
  47. {spforge-0.8.16 → spforge-0.8.17}/spforge/feature_generator/_regressor_feature_generator.py +0 -0
  48. {spforge-0.8.16 → spforge-0.8.17}/spforge/feature_generator/_rolling_against_opponent.py +0 -0
  49. {spforge-0.8.16 → spforge-0.8.17}/spforge/feature_generator/_rolling_mean_binary.py +0 -0
  50. {spforge-0.8.16 → spforge-0.8.17}/spforge/feature_generator/_rolling_mean_days.py +0 -0
  51. {spforge-0.8.16 → spforge-0.8.17}/spforge/feature_generator/_rolling_window.py +0 -0
  52. {spforge-0.8.16 → spforge-0.8.17}/spforge/feature_generator/_utils.py +0 -0
  53. {spforge-0.8.16 → spforge-0.8.17}/spforge/features_generator_pipeline.py +0 -0
  54. {spforge-0.8.16 → spforge-0.8.17}/spforge/hyperparameter_tuning/__init__.py +0 -0
  55. {spforge-0.8.16 → spforge-0.8.17}/spforge/hyperparameter_tuning/_default_search_spaces.py +0 -0
  56. {spforge-0.8.16 → spforge-0.8.17}/spforge/hyperparameter_tuning/_tuner.py +0 -0
  57. {spforge-0.8.16 → spforge-0.8.17}/spforge/performance_transformers/__init__.py +0 -0
  58. {spforge-0.8.16 → spforge-0.8.17}/spforge/performance_transformers/_performance_manager.py +0 -0
  59. {spforge-0.8.16 → spforge-0.8.17}/spforge/performance_transformers/_performances_transformers.py +0 -0
  60. {spforge-0.8.16 → spforge-0.8.17}/spforge/ratings/__init__.py +0 -0
  61. {spforge-0.8.16 → spforge-0.8.17}/spforge/ratings/_base.py +0 -0
  62. {spforge-0.8.16 → spforge-0.8.17}/spforge/ratings/_player_rating.py +0 -0
  63. {spforge-0.8.16 → spforge-0.8.17}/spforge/ratings/_team_rating.py +0 -0
  64. {spforge-0.8.16 → spforge-0.8.17}/spforge/ratings/enums.py +0 -0
  65. {spforge-0.8.16 → spforge-0.8.17}/spforge/ratings/league_identifier.py +0 -0
  66. {spforge-0.8.16 → spforge-0.8.17}/spforge/ratings/league_start_rating_optimizer.py +0 -0
  67. {spforge-0.8.16 → spforge-0.8.17}/spforge/ratings/player_performance_predictor.py +0 -0
  68. {spforge-0.8.16 → spforge-0.8.17}/spforge/ratings/start_rating_generator.py +0 -0
  69. {spforge-0.8.16 → spforge-0.8.17}/spforge/ratings/team_performance_predictor.py +0 -0
  70. {spforge-0.8.16 → spforge-0.8.17}/spforge/ratings/team_start_rating_generator.py +0 -0
  71. {spforge-0.8.16 → spforge-0.8.17}/spforge/ratings/utils.py +0 -0
  72. {spforge-0.8.16 → spforge-0.8.17}/spforge/scorer/__init__.py +0 -0
  73. {spforge-0.8.16 → spforge-0.8.17}/spforge/transformers/__init__.py +0 -0
  74. {spforge-0.8.16 → spforge-0.8.17}/spforge/transformers/_base.py +0 -0
  75. {spforge-0.8.16 → spforge-0.8.17}/spforge/transformers/_net_over_predicted.py +0 -0
  76. {spforge-0.8.16 → spforge-0.8.17}/spforge/transformers/_operator.py +0 -0
  77. {spforge-0.8.16 → spforge-0.8.17}/spforge/transformers/_other_transformer.py +0 -0
  78. {spforge-0.8.16 → spforge-0.8.17}/spforge/transformers/_predictor.py +0 -0
  79. {spforge-0.8.16 → spforge-0.8.17}/spforge/transformers/_simple_transformer.py +0 -0
  80. {spforge-0.8.16 → spforge-0.8.17}/spforge/transformers/_team_ratio_predictor.py +0 -0
  81. {spforge-0.8.16 → spforge-0.8.17}/spforge/utils.py +0 -0
  82. {spforge-0.8.16 → spforge-0.8.17}/spforge.egg-info/SOURCES.txt +0 -0
  83. {spforge-0.8.16 → spforge-0.8.17}/spforge.egg-info/dependency_links.txt +0 -0
  84. {spforge-0.8.16 → spforge-0.8.17}/spforge.egg-info/requires.txt +0 -0
  85. {spforge-0.8.16 → spforge-0.8.17}/spforge.egg-info/top_level.txt +0 -0
  86. {spforge-0.8.16 → spforge-0.8.17}/tests/cross_validator/test_cross_validator.py +0 -0
  87. {spforge-0.8.16 → spforge-0.8.17}/tests/distributions/test_distribution.py +0 -0
  88. {spforge-0.8.16 → spforge-0.8.17}/tests/end_to_end/test_estimator_hyperparameter_tuning.py +0 -0
  89. {spforge-0.8.16 → spforge-0.8.17}/tests/end_to_end/test_league_start_rating_optimizer.py +0 -0
  90. {spforge-0.8.16 → spforge-0.8.17}/tests/end_to_end/test_lol_player_kills.py +0 -0
  91. {spforge-0.8.16 → spforge-0.8.17}/tests/end_to_end/test_nba_player_points.py +0 -0
  92. {spforge-0.8.16 → spforge-0.8.17}/tests/end_to_end/test_nba_player_ratings_hyperparameter_tuning.py +0 -0
  93. {spforge-0.8.16 → spforge-0.8.17}/tests/end_to_end/test_nba_prediction_consistency.py +0 -0
  94. {spforge-0.8.16 → spforge-0.8.17}/tests/estimator/test_sklearn_estimator.py +0 -0
  95. {spforge-0.8.16 → spforge-0.8.17}/tests/feature_generator/test_lag.py +0 -0
  96. {spforge-0.8.16 → spforge-0.8.17}/tests/feature_generator/test_regressor_feature_generator.py +0 -0
  97. {spforge-0.8.16 → spforge-0.8.17}/tests/feature_generator/test_rolling_against_opponent.py +0 -0
  98. {spforge-0.8.16 → spforge-0.8.17}/tests/feature_generator/test_rolling_mean_binary.py +0 -0
  99. {spforge-0.8.16 → spforge-0.8.17}/tests/feature_generator/test_rolling_mean_days.py +0 -0
  100. {spforge-0.8.16 → spforge-0.8.17}/tests/feature_generator/test_rolling_window.py +0 -0
  101. {spforge-0.8.16 → spforge-0.8.17}/tests/hyperparameter_tuning/test_estimator_tuner.py +0 -0
  102. {spforge-0.8.16 → spforge-0.8.17}/tests/hyperparameter_tuning/test_rating_tuner.py +0 -0
  103. {spforge-0.8.16 → spforge-0.8.17}/tests/performance_transformers/test_performance_manager.py +0 -0
  104. {spforge-0.8.16 → spforge-0.8.17}/tests/performance_transformers/test_performances_transformers.py +0 -0
  105. {spforge-0.8.16 → spforge-0.8.17}/tests/ratings/test_player_rating_generator.py +0 -0
  106. {spforge-0.8.16 → spforge-0.8.17}/tests/ratings/test_player_rating_no_mutation.py +0 -0
  107. {spforge-0.8.16 → spforge-0.8.17}/tests/ratings/test_ratings_property.py +0 -0
  108. {spforge-0.8.16 → spforge-0.8.17}/tests/ratings/test_team_rating_generator.py +0 -0
  109. {spforge-0.8.16 → spforge-0.8.17}/tests/ratings/test_utils_scaled_weights.py +0 -0
  110. {spforge-0.8.16 → spforge-0.8.17}/tests/scorer/test_score_aggregation_granularity.py +0 -0
  111. {spforge-0.8.16 → spforge-0.8.17}/tests/test_autopipeline.py +0 -0
  112. {spforge-0.8.16 → spforge-0.8.17}/tests/test_autopipeline_context.py +0 -0
  113. {spforge-0.8.16 → spforge-0.8.17}/tests/test_feature_generator_pipeline.py +0 -0
  114. {spforge-0.8.16 → spforge-0.8.17}/tests/transformers/test_estimator_transformer_context.py +0 -0
  115. {spforge-0.8.16 → spforge-0.8.17}/tests/transformers/test_net_over_predicted.py +0 -0
  116. {spforge-0.8.16 → spforge-0.8.17}/tests/transformers/test_other_transformer.py +0 -0
  117. {spforge-0.8.16 → spforge-0.8.17}/tests/transformers/test_predictor_transformer.py +0 -0
  118. {spforge-0.8.16 → spforge-0.8.17}/tests/transformers/test_simple_transformer.py +0 -0
  119. {spforge-0.8.16 → spforge-0.8.17}/tests/transformers/test_team_ratio_predictor.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: spforge
3
- Version: 0.8.16
3
+ Version: 0.8.17
4
4
  Summary: A flexible framework for generating features, ratings, and building machine learning or other models for training and inference on sports data.
5
5
  Author-email: Mathias Holmstrøm <mathiasholmstom@gmail.com>
6
6
  License: See LICENSE file
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
4
4
 
5
5
  [project]
6
6
  name = "spforge"
7
- version = "0.8.16"
7
+ version = "0.8.17"
8
8
  description = "A flexible framework for generating features, ratings, and building machine learning or other models for training and inference on sports data."
9
9
  readme = "README.md"
10
10
  requires-python = ">=3.11"
@@ -366,18 +366,49 @@ class PWMSE(BaseScorer):
366
366
  self.labels = labels
367
367
  self.evaluation_labels = evaluation_labels
368
368
 
369
+ self._needs_extension = False
370
+ self._needs_slicing = False
369
371
  self._eval_indices: list[int] | None = None
372
+ self._extension_mapping: dict[int, int] | None = None
373
+
370
374
  if self.evaluation_labels is not None and self.labels is not None:
371
- label_to_idx = {lbl: i for i, lbl in enumerate(self.labels)}
372
- self._eval_indices = [label_to_idx[lbl] for lbl in self.evaluation_labels]
375
+ training_set = set(self.labels)
376
+ eval_set = set(self.evaluation_labels)
377
+
378
+ if eval_set <= training_set:
379
+ self._needs_slicing = True
380
+ label_to_idx = {lbl: i for i, lbl in enumerate(self.labels)}
381
+ self._eval_indices = [label_to_idx[lbl] for lbl in self.evaluation_labels]
382
+ elif training_set <= eval_set:
383
+ self._needs_extension = True
384
+ eval_label_to_idx = {lbl: i for i, lbl in enumerate(self.evaluation_labels)}
385
+ self._extension_mapping = {
386
+ train_idx: eval_label_to_idx[lbl]
387
+ for train_idx, lbl in enumerate(self.labels)
388
+ }
389
+ else:
390
+ raise ValueError(
391
+ f"evaluation_labels must be a subset or superset of labels. "
392
+ f"labels={self.labels}, evaluation_labels={self.evaluation_labels}"
393
+ )
394
+
395
+ def _align_predictions(self, preds: np.ndarray) -> np.ndarray:
396
+ if self._needs_slicing and self._eval_indices is not None:
397
+ sliced = preds[:, self._eval_indices]
398
+ row_sums = sliced.sum(axis=1, keepdims=True)
399
+ row_sums = np.where(row_sums == 0, 1.0, row_sums)
400
+ return sliced / row_sums
401
+
402
+ if self._needs_extension and self._extension_mapping is not None:
403
+ n_samples = preds.shape[0]
404
+ n_eval_labels = len(self.evaluation_labels)
405
+ extended = np.full((n_samples, n_eval_labels), 1e-5, dtype=np.float64)
406
+ for train_idx, eval_idx in self._extension_mapping.items():
407
+ extended[:, eval_idx] = preds[:, train_idx]
408
+ row_sums = extended.sum(axis=1, keepdims=True)
409
+ return extended / row_sums
373
410
 
374
- def _slice_and_renormalize(self, preds: np.ndarray) -> np.ndarray:
375
- if self._eval_indices is None:
376
- return preds
377
- sliced = preds[:, self._eval_indices]
378
- row_sums = sliced.sum(axis=1, keepdims=True)
379
- row_sums = np.where(row_sums == 0, 1.0, row_sums)
380
- return sliced / row_sums
411
+ return preds
381
412
 
382
413
  def _get_scoring_labels(self) -> list[int]:
383
414
  if self.evaluation_labels is not None:
@@ -446,7 +477,7 @@ class PWMSE(BaseScorer):
446
477
 
447
478
  targets = gran_df[self.target].to_numpy().astype(np.float64)
448
479
  preds = np.asarray(gran_df[self.pred_column].to_list(), dtype=np.float64)
449
- preds = self._slice_and_renormalize(preds)
480
+ preds = self._align_predictions(preds)
450
481
  score = self._pwmse_score(targets, preds)
451
482
  if self.compare_to_naive:
452
483
  naive_probs_list = _naive_probability_predictions_for_df(
@@ -464,7 +495,7 @@ class PWMSE(BaseScorer):
464
495
 
465
496
  targets = df[self.target].to_numpy().astype(np.float64)
466
497
  preds = np.asarray(df[self.pred_column].to_list(), dtype=np.float64)
467
- preds = self._slice_and_renormalize(preds)
498
+ preds = self._align_predictions(preds)
468
499
  score = self._pwmse_score(targets, preds)
469
500
  if self.compare_to_naive:
470
501
  naive_probs_list = _naive_probability_predictions_for_df(
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: spforge
3
- Version: 0.8.16
3
+ Version: 0.8.17
4
4
  Summary: A flexible framework for generating features, ratings, and building machine learning or other models for training and inference on sports data.
5
5
  Author-email: Mathias Holmstrøm <mathiasholmstom@gmail.com>
6
6
  License: See LICENSE file
@@ -2138,3 +2138,145 @@ def test_scorers_respect_validation_column(scorer_factory, df_factory):
2138
2138
  score_all = scorer_factory().score(df)
2139
2139
  score_valid = scorer_factory().score(df_valid)
2140
2140
  assert score_all == score_valid
2141
+
2142
+
2143
+ # ============================================================================
2144
+ # PWMSE evaluation_labels Extension Tests
2145
+ # ============================================================================
2146
+
2147
+
2148
+ @pytest.mark.parametrize("df_type", [pl.DataFrame, pd.DataFrame])
2149
+ def test_pwmse__evaluation_labels_extends_predictions(df_type):
2150
+ """PWMSE with evaluation_labels as superset extends predictions with small probs."""
2151
+ df = create_dataframe(
2152
+ df_type,
2153
+ {
2154
+ "pred": [
2155
+ [0.3, 0.5, 0.2],
2156
+ [0.2, 0.6, 0.2],
2157
+ ],
2158
+ "target": [0, 1],
2159
+ },
2160
+ )
2161
+
2162
+ scorer = PWMSE(
2163
+ pred_column="pred",
2164
+ target="target",
2165
+ labels=[0, 1, 2],
2166
+ evaluation_labels=[-1, 0, 1, 2, 3],
2167
+ )
2168
+ score = scorer.score(df)
2169
+
2170
+ n_eval_labels = 5
2171
+ eps = 1e-5
2172
+ preds_original = np.array([[0.3, 0.5, 0.2], [0.2, 0.6, 0.2]])
2173
+ extended = np.full((2, n_eval_labels), eps, dtype=np.float64)
2174
+ extended[:, 1] = preds_original[:, 0]
2175
+ extended[:, 2] = preds_original[:, 1]
2176
+ extended[:, 3] = preds_original[:, 2]
2177
+ row_sums = extended.sum(axis=1, keepdims=True)
2178
+ preds_renorm = extended / row_sums
2179
+
2180
+ eval_labels = np.array([-1, 0, 1, 2, 3], dtype=np.float64)
2181
+ targets = np.array([0, 1], dtype=np.float64)
2182
+ diffs_sqd = (eval_labels[None, :] - targets[:, None]) ** 2
2183
+ expected = float((diffs_sqd * preds_renorm).sum(axis=1).mean())
2184
+
2185
+ assert abs(score - expected) < 1e-10
2186
+
2187
+
2188
+ @pytest.mark.parametrize("df_type", [pl.DataFrame, pd.DataFrame])
2189
+ def test_pwmse__evaluation_labels_exact_match(df_type):
2190
+ """PWMSE with evaluation_labels identical to labels (no-op)."""
2191
+ df = create_dataframe(
2192
+ df_type,
2193
+ {
2194
+ "pred": [
2195
+ [0.3, 0.5, 0.2],
2196
+ [0.2, 0.6, 0.2],
2197
+ ],
2198
+ "target": [0, 1],
2199
+ },
2200
+ )
2201
+
2202
+ scorer_with_eval = PWMSE(
2203
+ pred_column="pred",
2204
+ target="target",
2205
+ labels=[0, 1, 2],
2206
+ evaluation_labels=[0, 1, 2],
2207
+ )
2208
+ scorer_without_eval = PWMSE(
2209
+ pred_column="pred",
2210
+ target="target",
2211
+ labels=[0, 1, 2],
2212
+ )
2213
+
2214
+ score_with = scorer_with_eval.score(df)
2215
+ score_without = scorer_without_eval.score(df)
2216
+
2217
+ assert abs(score_with - score_without) < 1e-10
2218
+
2219
+
2220
+ @pytest.mark.parametrize("df_type", [pl.DataFrame, pd.DataFrame])
2221
+ def test_pwmse__evaluation_labels_partial_overlap_raises(df_type):
2222
+ """PWMSE with partial overlap between labels and evaluation_labels raises."""
2223
+ with pytest.raises(ValueError, match="evaluation_labels must be a subset or superset"):
2224
+ PWMSE(
2225
+ pred_column="pred",
2226
+ target="target",
2227
+ labels=[0, 1, 2],
2228
+ evaluation_labels=[1, 2, 3],
2229
+ )
2230
+
2231
+
2232
+ @pytest.mark.parametrize("df_type", [pl.DataFrame, pd.DataFrame])
2233
+ def test_pwmse__evaluation_labels_extends_with_compare_to_naive(df_type):
2234
+ """PWMSE extension mode works correctly with compare_to_naive."""
2235
+ df = create_dataframe(
2236
+ df_type,
2237
+ {
2238
+ "pred": [
2239
+ [0.8, 0.15, 0.05],
2240
+ [0.1, 0.7, 0.2],
2241
+ [0.05, 0.15, 0.8],
2242
+ [0.3, 0.4, 0.3],
2243
+ ],
2244
+ "target": [0, 1, 2, 1],
2245
+ },
2246
+ )
2247
+
2248
+ scorer = PWMSE(
2249
+ pred_column="pred",
2250
+ target="target",
2251
+ labels=[0, 1, 2],
2252
+ evaluation_labels=[-1, 0, 1, 2, 3],
2253
+ compare_to_naive=True,
2254
+ )
2255
+ score = scorer.score(df)
2256
+
2257
+ n_eval_labels = 5
2258
+ eps = 1e-5
2259
+ preds_original = np.array([
2260
+ [0.8, 0.15, 0.05],
2261
+ [0.1, 0.7, 0.2],
2262
+ [0.05, 0.15, 0.8],
2263
+ [0.3, 0.4, 0.3],
2264
+ ])
2265
+ extended = np.full((4, n_eval_labels), eps, dtype=np.float64)
2266
+ extended[:, 1] = preds_original[:, 0]
2267
+ extended[:, 2] = preds_original[:, 1]
2268
+ extended[:, 3] = preds_original[:, 2]
2269
+ row_sums = extended.sum(axis=1, keepdims=True)
2270
+ preds_renorm = extended / row_sums
2271
+
2272
+ eval_labels = np.array([-1, 0, 1, 2, 3], dtype=np.float64)
2273
+ targets = np.array([0, 1, 2, 1], dtype=np.float64)
2274
+ diffs_sqd = (eval_labels[None, :] - targets[:, None]) ** 2
2275
+ model_score = float((diffs_sqd * preds_renorm).sum(axis=1).mean())
2276
+
2277
+ naive_probs = np.array([0.0, 0.25, 0.5, 0.25, 0.0])
2278
+ naive_preds = np.tile(naive_probs, (4, 1))
2279
+ naive_score = float((diffs_sqd * naive_preds).sum(axis=1).mean())
2280
+
2281
+ expected = naive_score - model_score
2282
+ assert abs(score - expected) < 1e-10
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes