spforge 0.8.10__tar.gz → 0.8.11__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {spforge-0.8.10/spforge.egg-info → spforge-0.8.11}/PKG-INFO +1 -1
- {spforge-0.8.10 → spforge-0.8.11}/pyproject.toml +1 -1
- {spforge-0.8.10 → spforge-0.8.11}/spforge/ratings/_player_rating.py +68 -20
- {spforge-0.8.10 → spforge-0.8.11}/spforge/ratings/utils.py +16 -6
- {spforge-0.8.10 → spforge-0.8.11/spforge.egg-info}/PKG-INFO +1 -1
- {spforge-0.8.10 → spforge-0.8.11}/spforge.egg-info/SOURCES.txt +2 -0
- spforge-0.8.11/tests/ratings/test_player_rating_no_mutation.py +214 -0
- spforge-0.8.11/tests/ratings/test_utils_scaled_weights.py +136 -0
- {spforge-0.8.10 → spforge-0.8.11}/LICENSE +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/MANIFEST.in +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/README.md +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/examples/__init__.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/examples/game_level_example.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/examples/lol/__init__.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/examples/lol/data/__init__.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/examples/lol/data/subsample_lol_data.parquet +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/examples/lol/data/utils.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/examples/lol/pipeline_transformer_example.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/examples/nba/__init__.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/examples/nba/cross_validation_example.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/examples/nba/data/__init__.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/examples/nba/data/game_player_subsample.parquet +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/examples/nba/data/utils.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/examples/nba/feature_engineering_example.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/examples/nba/game_winner_example.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/examples/nba/predictor_transformers_example.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/setup.cfg +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/spforge/__init__.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/spforge/autopipeline.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/spforge/base_feature_generator.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/spforge/cross_validator/__init__.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/spforge/cross_validator/_base.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/spforge/cross_validator/cross_validator.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/spforge/data_structures.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/spforge/distributions/__init__.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/spforge/distributions/_negative_binomial_estimator.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/spforge/distributions/_normal_distribution_predictor.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/spforge/distributions/_student_t_distribution_estimator.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/spforge/estimator/__init__.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/spforge/estimator/_conditional_estimator.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/spforge/estimator/_frequency_bucketing_classifier.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/spforge/estimator/_granularity_estimator.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/spforge/estimator/_group_by_estimator.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/spforge/estimator/_ordinal_classifier.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/spforge/estimator/_sklearn_enhancer_estimator.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/spforge/feature_generator/__init__.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/spforge/feature_generator/_base.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/spforge/feature_generator/_lag.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/spforge/feature_generator/_net_over_predicted.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/spforge/feature_generator/_regressor_feature_generator.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/spforge/feature_generator/_rolling_against_opponent.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/spforge/feature_generator/_rolling_mean_binary.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/spforge/feature_generator/_rolling_mean_days.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/spforge/feature_generator/_rolling_window.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/spforge/feature_generator/_utils.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/spforge/features_generator_pipeline.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/spforge/hyperparameter_tuning/__init__.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/spforge/hyperparameter_tuning/_default_search_spaces.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/spforge/hyperparameter_tuning/_tuner.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/spforge/performance_transformers/__init__.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/spforge/performance_transformers/_performance_manager.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/spforge/performance_transformers/_performances_transformers.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/spforge/ratings/__init__.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/spforge/ratings/_base.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/spforge/ratings/_team_rating.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/spforge/ratings/enums.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/spforge/ratings/league_identifier.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/spforge/ratings/league_start_rating_optimizer.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/spforge/ratings/player_performance_predictor.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/spforge/ratings/start_rating_generator.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/spforge/ratings/team_performance_predictor.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/spforge/ratings/team_start_rating_generator.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/spforge/scorer/__init__.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/spforge/scorer/_score.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/spforge/transformers/__init__.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/spforge/transformers/_base.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/spforge/transformers/_net_over_predicted.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/spforge/transformers/_operator.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/spforge/transformers/_other_transformer.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/spforge/transformers/_predictor.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/spforge/transformers/_simple_transformer.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/spforge/transformers/_team_ratio_predictor.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/spforge/utils.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/spforge.egg-info/dependency_links.txt +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/spforge.egg-info/requires.txt +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/spforge.egg-info/top_level.txt +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/tests/cross_validator/test_cross_validator.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/tests/distributions/test_distribution.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/tests/end_to_end/test_estimator_hyperparameter_tuning.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/tests/end_to_end/test_league_start_rating_optimizer.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/tests/end_to_end/test_lol_player_kills.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/tests/end_to_end/test_nba_player_points.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/tests/end_to_end/test_nba_player_ratings_hyperparameter_tuning.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/tests/end_to_end/test_nba_prediction_consistency.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/tests/estimator/test_sklearn_estimator.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/tests/feature_generator/test_lag.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/tests/feature_generator/test_regressor_feature_generator.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/tests/feature_generator/test_rolling_against_opponent.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/tests/feature_generator/test_rolling_mean_binary.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/tests/feature_generator/test_rolling_mean_days.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/tests/feature_generator/test_rolling_window.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/tests/hyperparameter_tuning/test_estimator_tuner.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/tests/hyperparameter_tuning/test_rating_tuner.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/tests/performance_transformers/test_performance_manager.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/tests/performance_transformers/test_performances_transformers.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/tests/ratings/test_player_rating_generator.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/tests/ratings/test_ratings_property.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/tests/ratings/test_team_rating_generator.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/tests/scorer/test_score.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/tests/scorer/test_score_aggregation_granularity.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/tests/test_autopipeline.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/tests/test_autopipeline_context.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/tests/test_feature_generator_pipeline.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/tests/transformers/test_estimator_transformer_context.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/tests/transformers/test_net_over_predicted.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/tests/transformers/test_other_transformer.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/tests/transformers/test_predictor_transformer.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/tests/transformers/test_simple_transformer.py +0 -0
- {spforge-0.8.10 → spforge-0.8.11}/tests/transformers/test_team_ratio_predictor.py +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: spforge
|
|
3
|
-
Version: 0.8.
|
|
3
|
+
Version: 0.8.11
|
|
4
4
|
Summary: A flexible framework for generating features, ratings, and building machine learning or other models for training and inference on sports data.
|
|
5
5
|
Author-email: Mathias Holmstrøm <mathiasholmstom@gmail.com>
|
|
6
6
|
License: See LICENSE file
|
|
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
|
|
|
4
4
|
|
|
5
5
|
[project]
|
|
6
6
|
name = "spforge"
|
|
7
|
-
version = "0.8.
|
|
7
|
+
version = "0.8.11"
|
|
8
8
|
description = "A flexible framework for generating features, ratings, and building machine learning or other models for training and inference on sports data."
|
|
9
9
|
readme = "README.md"
|
|
10
10
|
requires-python = ">=3.11"
|
|
@@ -34,6 +34,8 @@ from spforge.ratings.utils import (
|
|
|
34
34
|
from spforge.feature_generator._utils import to_polars
|
|
35
35
|
|
|
36
36
|
PLAYER_STATS = "__PLAYER_STATS"
|
|
37
|
+
_SCALED_PW = "__scaled_participation_weight__"
|
|
38
|
+
_SCALED_PPW = "__scaled_projected_participation_weight__"
|
|
37
39
|
|
|
38
40
|
|
|
39
41
|
class PlayerRatingGenerator(RatingGenerator):
|
|
@@ -273,6 +275,7 @@ class PlayerRatingGenerator(RatingGenerator):
|
|
|
273
275
|
self._projected_participation_weight_max = self._participation_weight_max
|
|
274
276
|
|
|
275
277
|
def _scale_participation_weight_columns(self, df: pl.DataFrame) -> pl.DataFrame:
|
|
278
|
+
"""Create internal scaled participation weight columns without mutating originals."""
|
|
276
279
|
if not self.scale_participation_weights:
|
|
277
280
|
return df
|
|
278
281
|
if self._participation_weight_max is None or self._participation_weight_max <= 0:
|
|
@@ -287,7 +290,7 @@ class PlayerRatingGenerator(RatingGenerator):
|
|
|
287
290
|
df = df.with_columns(
|
|
288
291
|
(pl.col(cn.participation_weight) / denom)
|
|
289
292
|
.clip(0.0, 1.0)
|
|
290
|
-
.alias(
|
|
293
|
+
.alias(_SCALED_PW)
|
|
291
294
|
)
|
|
292
295
|
|
|
293
296
|
if (
|
|
@@ -300,16 +303,38 @@ class PlayerRatingGenerator(RatingGenerator):
|
|
|
300
303
|
df = df.with_columns(
|
|
301
304
|
(pl.col(cn.projected_participation_weight) / denom)
|
|
302
305
|
.clip(0.0, 1.0)
|
|
303
|
-
.alias(
|
|
306
|
+
.alias(_SCALED_PPW)
|
|
304
307
|
)
|
|
305
308
|
|
|
306
309
|
return df
|
|
307
310
|
|
|
311
|
+
def _get_participation_weight_col(self) -> str:
|
|
312
|
+
"""Get the column name to use for participation weight (scaled if available)."""
|
|
313
|
+
cn = self.column_names
|
|
314
|
+
if self.scale_participation_weights and cn and cn.participation_weight:
|
|
315
|
+
return _SCALED_PW
|
|
316
|
+
return cn.participation_weight if cn else ""
|
|
317
|
+
|
|
318
|
+
def _get_projected_participation_weight_col(self) -> str:
|
|
319
|
+
"""Get the column name to use for projected participation weight (scaled if available)."""
|
|
320
|
+
cn = self.column_names
|
|
321
|
+
if self.scale_participation_weights and cn and cn.projected_participation_weight:
|
|
322
|
+
return _SCALED_PPW
|
|
323
|
+
return cn.projected_participation_weight if cn else ""
|
|
324
|
+
|
|
325
|
+
def _remove_internal_scaled_columns(self, df: pl.DataFrame) -> pl.DataFrame:
|
|
326
|
+
"""Remove internal scaled columns before returning."""
|
|
327
|
+
cols_to_drop = [c for c in [_SCALED_PW, _SCALED_PPW] if c in df.columns]
|
|
328
|
+
if cols_to_drop:
|
|
329
|
+
df = df.drop(cols_to_drop)
|
|
330
|
+
return df
|
|
331
|
+
|
|
308
332
|
def _historical_transform(self, df: pl.DataFrame) -> pl.DataFrame:
|
|
309
333
|
df = self._scale_participation_weight_columns(df)
|
|
310
334
|
match_df = self._create_match_df(df)
|
|
311
335
|
ratings = self._calculate_ratings(match_df)
|
|
312
336
|
|
|
337
|
+
# Keep scaled columns for now - they're needed by _add_rating_features
|
|
313
338
|
cols = [
|
|
314
339
|
c
|
|
315
340
|
for c in df.columns
|
|
@@ -329,13 +354,15 @@ class PlayerRatingGenerator(RatingGenerator):
|
|
|
329
354
|
on=[self.column_names.player_id, self.column_names.match_id, self.column_names.team_id],
|
|
330
355
|
)
|
|
331
356
|
|
|
332
|
-
|
|
357
|
+
result = self._add_rating_features(df)
|
|
358
|
+
return self._remove_internal_scaled_columns(result)
|
|
333
359
|
|
|
334
360
|
def _future_transform(self, df: pl.DataFrame) -> pl.DataFrame:
|
|
335
361
|
df = self._scale_participation_weight_columns(df)
|
|
336
362
|
match_df = self._create_match_df(df)
|
|
337
363
|
ratings = self._calculate_future_ratings(match_df)
|
|
338
364
|
|
|
365
|
+
# Keep scaled columns for now - they're needed by _add_rating_features
|
|
339
366
|
cols = [
|
|
340
367
|
c
|
|
341
368
|
for c in df.columns
|
|
@@ -360,7 +387,8 @@ class PlayerRatingGenerator(RatingGenerator):
|
|
|
360
387
|
how="left",
|
|
361
388
|
)
|
|
362
389
|
|
|
363
|
-
|
|
390
|
+
result = self._add_rating_features(df_with_ratings)
|
|
391
|
+
return self._remove_internal_scaled_columns(result)
|
|
364
392
|
|
|
365
393
|
def _calculate_ratings(self, match_df: pl.DataFrame) -> pl.DataFrame:
|
|
366
394
|
cn = self.column_names
|
|
@@ -796,9 +824,13 @@ class PlayerRatingGenerator(RatingGenerator):
|
|
|
796
824
|
|
|
797
825
|
if cn.participation_weight and cn.participation_weight in df.columns:
|
|
798
826
|
player_stat_cols.append(cn.participation_weight)
|
|
827
|
+
if _SCALED_PW in df.columns:
|
|
828
|
+
player_stat_cols.append(_SCALED_PW)
|
|
799
829
|
|
|
800
830
|
if cn.projected_participation_weight and cn.projected_participation_weight in df.columns:
|
|
801
831
|
player_stat_cols.append(cn.projected_participation_weight)
|
|
832
|
+
if _SCALED_PPW in df.columns:
|
|
833
|
+
player_stat_cols.append(_SCALED_PPW)
|
|
802
834
|
|
|
803
835
|
if cn.position and cn.position in df.columns:
|
|
804
836
|
player_stat_cols.append(cn.position)
|
|
@@ -854,14 +886,23 @@ class PlayerRatingGenerator(RatingGenerator):
|
|
|
854
886
|
position = team_player.get(cn.position)
|
|
855
887
|
player_league = team_player.get(cn.league, None)
|
|
856
888
|
|
|
857
|
-
|
|
858
|
-
|
|
859
|
-
|
|
860
|
-
|
|
861
|
-
team_player.get(cn.
|
|
862
|
-
|
|
863
|
-
|
|
864
|
-
|
|
889
|
+
# Use scaled participation weight if available, otherwise use original
|
|
890
|
+
if _SCALED_PW in team_player:
|
|
891
|
+
participation_weight = team_player.get(_SCALED_PW, 1.0)
|
|
892
|
+
elif cn.participation_weight:
|
|
893
|
+
participation_weight = team_player.get(cn.participation_weight, 1.0)
|
|
894
|
+
else:
|
|
895
|
+
participation_weight = 1.0
|
|
896
|
+
|
|
897
|
+
# Use scaled projected participation weight if available, otherwise use original
|
|
898
|
+
if _SCALED_PPW in team_player:
|
|
899
|
+
projected_participation_weight = team_player.get(_SCALED_PPW, participation_weight)
|
|
900
|
+
elif cn.projected_participation_weight:
|
|
901
|
+
projected_participation_weight = team_player.get(
|
|
902
|
+
cn.projected_participation_weight, participation_weight
|
|
903
|
+
)
|
|
904
|
+
else:
|
|
905
|
+
projected_participation_weight = participation_weight
|
|
865
906
|
projected_participation_weights.append(projected_participation_weight)
|
|
866
907
|
|
|
867
908
|
perf_val = (
|
|
@@ -1087,14 +1128,21 @@ class PlayerRatingGenerator(RatingGenerator):
|
|
|
1087
1128
|
position = tp.get(cn.position)
|
|
1088
1129
|
league = tp.get(cn.league, None)
|
|
1089
1130
|
|
|
1090
|
-
|
|
1091
|
-
|
|
1092
|
-
|
|
1093
|
-
|
|
1094
|
-
tp.get(cn.
|
|
1095
|
-
|
|
1096
|
-
|
|
1097
|
-
|
|
1131
|
+
# Use scaled participation weight if available, otherwise use original
|
|
1132
|
+
if _SCALED_PW in tp:
|
|
1133
|
+
pw = tp.get(_SCALED_PW, 1.0)
|
|
1134
|
+
elif cn.participation_weight:
|
|
1135
|
+
pw = tp.get(cn.participation_weight, 1.0)
|
|
1136
|
+
else:
|
|
1137
|
+
pw = 1.0
|
|
1138
|
+
|
|
1139
|
+
# Use scaled projected participation weight if available, otherwise use original
|
|
1140
|
+
if _SCALED_PPW in tp:
|
|
1141
|
+
ppw = tp.get(_SCALED_PPW, pw)
|
|
1142
|
+
elif cn.projected_participation_weight:
|
|
1143
|
+
ppw = tp.get(cn.projected_participation_weight, pw)
|
|
1144
|
+
else:
|
|
1145
|
+
ppw = pw
|
|
1098
1146
|
proj_w.append(float(ppw))
|
|
1099
1147
|
|
|
1100
1148
|
mp = MatchPerformance(
|
|
@@ -2,6 +2,10 @@ import polars as pl
|
|
|
2
2
|
|
|
3
3
|
from spforge.data_structures import ColumnNames
|
|
4
4
|
|
|
5
|
+
# Internal column names for scaled participation weights
|
|
6
|
+
_SCALED_PW = "__scaled_participation_weight__"
|
|
7
|
+
_SCALED_PPW = "__scaled_projected_participation_weight__"
|
|
8
|
+
|
|
5
9
|
|
|
6
10
|
def add_team_rating(
|
|
7
11
|
df: pl.DataFrame,
|
|
@@ -46,11 +50,14 @@ def add_team_rating_projected(
|
|
|
46
50
|
tid = column_names.team_id
|
|
47
51
|
ppw = column_names.projected_participation_weight
|
|
48
52
|
|
|
49
|
-
if
|
|
53
|
+
# Use scaled column if available (clipped to [0, 1]), otherwise raw column
|
|
54
|
+
weight_col = _SCALED_PPW if _SCALED_PPW in df.columns else ppw
|
|
55
|
+
|
|
56
|
+
if weight_col and weight_col in df.columns:
|
|
50
57
|
return df.with_columns(
|
|
51
58
|
(
|
|
52
|
-
(pl.col(
|
|
53
|
-
/ pl.col(
|
|
59
|
+
(pl.col(weight_col) * pl.col(player_rating_col)).sum().over([mid, tid])
|
|
60
|
+
/ pl.col(weight_col).sum().over([mid, tid])
|
|
54
61
|
).alias(team_rating_out)
|
|
55
62
|
)
|
|
56
63
|
|
|
@@ -118,11 +125,14 @@ def add_rating_mean_projected(
|
|
|
118
125
|
mid = column_names.match_id
|
|
119
126
|
ppw = column_names.projected_participation_weight
|
|
120
127
|
|
|
121
|
-
if
|
|
128
|
+
# Use scaled column if available (clipped to [0, 1]), otherwise raw column
|
|
129
|
+
weight_col = _SCALED_PPW if _SCALED_PPW in df.columns else ppw
|
|
130
|
+
|
|
131
|
+
if weight_col and weight_col in df.columns:
|
|
122
132
|
return df.with_columns(
|
|
123
133
|
(
|
|
124
|
-
(pl.col(
|
|
125
|
-
/ pl.col(
|
|
134
|
+
(pl.col(weight_col) * pl.col(player_rating_col)).sum().over(mid)
|
|
135
|
+
/ pl.col(weight_col).sum().over(mid)
|
|
126
136
|
).alias(rating_mean_out)
|
|
127
137
|
)
|
|
128
138
|
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: spforge
|
|
3
|
-
Version: 0.8.
|
|
3
|
+
Version: 0.8.11
|
|
4
4
|
Summary: A flexible framework for generating features, ratings, and building machine learning or other models for training and inference on sports data.
|
|
5
5
|
Author-email: Mathias Holmstrøm <mathiasholmstom@gmail.com>
|
|
6
6
|
License: See LICENSE file
|
|
@@ -103,8 +103,10 @@ tests/hyperparameter_tuning/test_rating_tuner.py
|
|
|
103
103
|
tests/performance_transformers/test_performance_manager.py
|
|
104
104
|
tests/performance_transformers/test_performances_transformers.py
|
|
105
105
|
tests/ratings/test_player_rating_generator.py
|
|
106
|
+
tests/ratings/test_player_rating_no_mutation.py
|
|
106
107
|
tests/ratings/test_ratings_property.py
|
|
107
108
|
tests/ratings/test_team_rating_generator.py
|
|
109
|
+
tests/ratings/test_utils_scaled_weights.py
|
|
108
110
|
tests/scorer/test_score.py
|
|
109
111
|
tests/scorer/test_score_aggregation_granularity.py
|
|
110
112
|
tests/transformers/test_estimator_transformer_context.py
|
|
@@ -0,0 +1,214 @@
|
|
|
1
|
+
"""Tests to ensure PlayerRatingGenerator does not mutate input columns."""
|
|
2
|
+
|
|
3
|
+
import polars as pl
|
|
4
|
+
import pytest
|
|
5
|
+
|
|
6
|
+
from spforge import ColumnNames
|
|
7
|
+
from spforge.ratings import PlayerRatingGenerator, RatingKnownFeatures
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
@pytest.fixture
|
|
11
|
+
def cn_with_projected():
|
|
12
|
+
"""ColumnNames with both participation_weight and projected_participation_weight."""
|
|
13
|
+
return ColumnNames(
|
|
14
|
+
player_id="pid",
|
|
15
|
+
team_id="tid",
|
|
16
|
+
match_id="mid",
|
|
17
|
+
start_date="dt",
|
|
18
|
+
update_match_id="mid",
|
|
19
|
+
participation_weight="minutes",
|
|
20
|
+
projected_participation_weight="minutes_prediction",
|
|
21
|
+
)
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
@pytest.fixture
|
|
25
|
+
def fit_df():
|
|
26
|
+
"""Training data with minutes > 1 (will trigger auto-scaling)."""
|
|
27
|
+
return pl.DataFrame(
|
|
28
|
+
{
|
|
29
|
+
"pid": ["P1", "P2", "P3", "P4"],
|
|
30
|
+
"tid": ["T1", "T1", "T2", "T2"],
|
|
31
|
+
"mid": ["M1", "M1", "M1", "M1"],
|
|
32
|
+
"dt": ["2024-01-01"] * 4,
|
|
33
|
+
"perf": [0.6, 0.4, 0.7, 0.3],
|
|
34
|
+
"minutes": [30.0, 25.0, 32.0, 28.0],
|
|
35
|
+
"minutes_prediction": [28.0, 24.0, 30.0, 26.0],
|
|
36
|
+
}
|
|
37
|
+
)
|
|
38
|
+
|
|
39
|
+
|
|
40
|
+
@pytest.fixture
|
|
41
|
+
def future_df():
|
|
42
|
+
"""Future prediction data with minutes > 1 (will trigger auto-scaling)."""
|
|
43
|
+
return pl.DataFrame(
|
|
44
|
+
{
|
|
45
|
+
"pid": ["P1", "P2", "P3", "P4"],
|
|
46
|
+
"tid": ["T1", "T1", "T2", "T2"],
|
|
47
|
+
"mid": ["M2", "M2", "M2", "M2"],
|
|
48
|
+
"dt": ["2024-01-02"] * 4,
|
|
49
|
+
"minutes": [30.0, 25.0, 32.0, 28.0],
|
|
50
|
+
"minutes_prediction": [28.0, 24.0, 30.0, 26.0],
|
|
51
|
+
}
|
|
52
|
+
)
|
|
53
|
+
|
|
54
|
+
|
|
55
|
+
def test_fit_transform_does_not_mutate_participation_weight(cn_with_projected, fit_df):
|
|
56
|
+
"""fit_transform should not modify the participation_weight column values."""
|
|
57
|
+
# Join result with original to compare values by player_id
|
|
58
|
+
gen = PlayerRatingGenerator(
|
|
59
|
+
performance_column="perf",
|
|
60
|
+
column_names=cn_with_projected,
|
|
61
|
+
auto_scale_performance=True,
|
|
62
|
+
features_out=[RatingKnownFeatures.PLAYER_OFF_RATING],
|
|
63
|
+
)
|
|
64
|
+
result = gen.fit_transform(fit_df)
|
|
65
|
+
|
|
66
|
+
# Check that each player's minutes value is preserved
|
|
67
|
+
original_by_player = dict(zip(fit_df["pid"].to_list(), fit_df["minutes"].to_list()))
|
|
68
|
+
result_by_player = dict(zip(result["pid"].to_list(), result["minutes"].to_list()))
|
|
69
|
+
|
|
70
|
+
for pid, original_val in original_by_player.items():
|
|
71
|
+
result_val = result_by_player[pid]
|
|
72
|
+
assert result_val == original_val, (
|
|
73
|
+
f"participation_weight for player {pid} was mutated. "
|
|
74
|
+
f"Expected {original_val}, got {result_val}"
|
|
75
|
+
)
|
|
76
|
+
|
|
77
|
+
|
|
78
|
+
def test_fit_transform_does_not_mutate_projected_participation_weight(cn_with_projected, fit_df):
|
|
79
|
+
"""fit_transform should not modify the projected_participation_weight column values."""
|
|
80
|
+
gen = PlayerRatingGenerator(
|
|
81
|
+
performance_column="perf",
|
|
82
|
+
column_names=cn_with_projected,
|
|
83
|
+
auto_scale_performance=True,
|
|
84
|
+
features_out=[RatingKnownFeatures.PLAYER_OFF_RATING],
|
|
85
|
+
)
|
|
86
|
+
result = gen.fit_transform(fit_df)
|
|
87
|
+
|
|
88
|
+
# Check that each player's minutes_prediction value is preserved
|
|
89
|
+
original_by_player = dict(zip(fit_df["pid"].to_list(), fit_df["minutes_prediction"].to_list()))
|
|
90
|
+
result_by_player = dict(zip(result["pid"].to_list(), result["minutes_prediction"].to_list()))
|
|
91
|
+
|
|
92
|
+
for pid, original_val in original_by_player.items():
|
|
93
|
+
result_val = result_by_player[pid]
|
|
94
|
+
assert result_val == original_val, (
|
|
95
|
+
f"projected_participation_weight for player {pid} was mutated. "
|
|
96
|
+
f"Expected {original_val}, got {result_val}"
|
|
97
|
+
)
|
|
98
|
+
|
|
99
|
+
|
|
100
|
+
def test_transform_does_not_mutate_participation_weight(cn_with_projected, fit_df, future_df):
|
|
101
|
+
"""transform should not modify the participation_weight column values."""
|
|
102
|
+
gen = PlayerRatingGenerator(
|
|
103
|
+
performance_column="perf",
|
|
104
|
+
column_names=cn_with_projected,
|
|
105
|
+
auto_scale_performance=True,
|
|
106
|
+
features_out=[RatingKnownFeatures.PLAYER_OFF_RATING],
|
|
107
|
+
)
|
|
108
|
+
gen.fit_transform(fit_df)
|
|
109
|
+
|
|
110
|
+
result = gen.transform(future_df)
|
|
111
|
+
|
|
112
|
+
# Check that each player's minutes value is preserved
|
|
113
|
+
original_by_player = dict(zip(future_df["pid"].to_list(), future_df["minutes"].to_list()))
|
|
114
|
+
result_by_player = dict(zip(result["pid"].to_list(), result["minutes"].to_list()))
|
|
115
|
+
|
|
116
|
+
for pid, original_val in original_by_player.items():
|
|
117
|
+
result_val = result_by_player[pid]
|
|
118
|
+
assert result_val == original_val, (
|
|
119
|
+
f"participation_weight for player {pid} was mutated during transform. "
|
|
120
|
+
f"Expected {original_val}, got {result_val}"
|
|
121
|
+
)
|
|
122
|
+
|
|
123
|
+
|
|
124
|
+
def test_transform_does_not_mutate_projected_participation_weight(cn_with_projected, fit_df, future_df):
|
|
125
|
+
"""transform should not modify the projected_participation_weight column values."""
|
|
126
|
+
gen = PlayerRatingGenerator(
|
|
127
|
+
performance_column="perf",
|
|
128
|
+
column_names=cn_with_projected,
|
|
129
|
+
auto_scale_performance=True,
|
|
130
|
+
features_out=[RatingKnownFeatures.PLAYER_OFF_RATING],
|
|
131
|
+
)
|
|
132
|
+
gen.fit_transform(fit_df)
|
|
133
|
+
|
|
134
|
+
result = gen.transform(future_df)
|
|
135
|
+
|
|
136
|
+
# Check that each player's minutes_prediction value is preserved
|
|
137
|
+
original_by_player = dict(zip(future_df["pid"].to_list(), future_df["minutes_prediction"].to_list()))
|
|
138
|
+
result_by_player = dict(zip(result["pid"].to_list(), result["minutes_prediction"].to_list()))
|
|
139
|
+
|
|
140
|
+
for pid, original_val in original_by_player.items():
|
|
141
|
+
result_val = result_by_player[pid]
|
|
142
|
+
assert result_val == original_val, (
|
|
143
|
+
f"projected_participation_weight for player {pid} was mutated during transform. "
|
|
144
|
+
f"Expected {original_val}, got {result_val}"
|
|
145
|
+
)
|
|
146
|
+
|
|
147
|
+
|
|
148
|
+
def test_future_transform_does_not_mutate_participation_weight(cn_with_projected, fit_df, future_df):
|
|
149
|
+
"""future_transform should not modify the participation_weight column values."""
|
|
150
|
+
gen = PlayerRatingGenerator(
|
|
151
|
+
performance_column="perf",
|
|
152
|
+
column_names=cn_with_projected,
|
|
153
|
+
auto_scale_performance=True,
|
|
154
|
+
features_out=[RatingKnownFeatures.PLAYER_OFF_RATING],
|
|
155
|
+
)
|
|
156
|
+
gen.fit_transform(fit_df)
|
|
157
|
+
|
|
158
|
+
original_minutes = future_df["minutes"].to_list()
|
|
159
|
+
result = gen.future_transform(future_df)
|
|
160
|
+
|
|
161
|
+
# The minutes column should have the same values as before
|
|
162
|
+
result_minutes = result["minutes"].to_list()
|
|
163
|
+
assert result_minutes == original_minutes, (
|
|
164
|
+
f"participation_weight column was mutated during future_transform. "
|
|
165
|
+
f"Expected {original_minutes}, got {result_minutes}"
|
|
166
|
+
)
|
|
167
|
+
|
|
168
|
+
|
|
169
|
+
def test_future_transform_does_not_mutate_projected_participation_weight(cn_with_projected, fit_df, future_df):
|
|
170
|
+
"""future_transform should not modify the projected_participation_weight column values."""
|
|
171
|
+
gen = PlayerRatingGenerator(
|
|
172
|
+
performance_column="perf",
|
|
173
|
+
column_names=cn_with_projected,
|
|
174
|
+
auto_scale_performance=True,
|
|
175
|
+
features_out=[RatingKnownFeatures.PLAYER_OFF_RATING],
|
|
176
|
+
)
|
|
177
|
+
gen.fit_transform(fit_df)
|
|
178
|
+
|
|
179
|
+
original_minutes_pred = future_df["minutes_prediction"].to_list()
|
|
180
|
+
result = gen.future_transform(future_df)
|
|
181
|
+
|
|
182
|
+
# The minutes_prediction column should have the same values as before
|
|
183
|
+
result_minutes_pred = result["minutes_prediction"].to_list()
|
|
184
|
+
assert result_minutes_pred == original_minutes_pred, (
|
|
185
|
+
f"projected_participation_weight column was mutated during future_transform. "
|
|
186
|
+
f"Expected {original_minutes_pred}, got {result_minutes_pred}"
|
|
187
|
+
)
|
|
188
|
+
|
|
189
|
+
|
|
190
|
+
def test_multiple_transforms_do_not_compound_scaling(cn_with_projected, fit_df, future_df):
|
|
191
|
+
"""Multiple transform calls should not compound the scaling effect."""
|
|
192
|
+
gen = PlayerRatingGenerator(
|
|
193
|
+
performance_column="perf",
|
|
194
|
+
column_names=cn_with_projected,
|
|
195
|
+
auto_scale_performance=True,
|
|
196
|
+
features_out=[RatingKnownFeatures.PLAYER_OFF_RATING],
|
|
197
|
+
)
|
|
198
|
+
gen.fit_transform(fit_df)
|
|
199
|
+
|
|
200
|
+
# Call transform multiple times
|
|
201
|
+
result1 = gen.transform(future_df)
|
|
202
|
+
result2 = gen.transform(result1)
|
|
203
|
+
result3 = gen.transform(result2)
|
|
204
|
+
|
|
205
|
+
# After 3 transforms, each player's values should still be the same as original
|
|
206
|
+
original_by_player = dict(zip(future_df["pid"].to_list(), future_df["minutes_prediction"].to_list()))
|
|
207
|
+
final_by_player = dict(zip(result3["pid"].to_list(), result3["minutes_prediction"].to_list()))
|
|
208
|
+
|
|
209
|
+
for pid, original_val in original_by_player.items():
|
|
210
|
+
final_val = final_by_player[pid]
|
|
211
|
+
assert final_val == original_val, (
|
|
212
|
+
f"Multiple transforms compounded the scaling for player {pid}. "
|
|
213
|
+
f"Expected {original_val}, got {final_val}"
|
|
214
|
+
)
|
|
@@ -0,0 +1,136 @@
|
|
|
1
|
+
"""Tests to ensure utility functions use scaled participation weights when available."""
|
|
2
|
+
|
|
3
|
+
import polars as pl
|
|
4
|
+
import pytest
|
|
5
|
+
|
|
6
|
+
from spforge import ColumnNames
|
|
7
|
+
from spforge.ratings.utils import (
|
|
8
|
+
_SCALED_PPW,
|
|
9
|
+
add_team_rating_projected,
|
|
10
|
+
add_rating_mean_projected,
|
|
11
|
+
)
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
@pytest.fixture
|
|
15
|
+
def column_names():
|
|
16
|
+
return ColumnNames(
|
|
17
|
+
player_id="pid",
|
|
18
|
+
team_id="tid",
|
|
19
|
+
match_id="mid",
|
|
20
|
+
start_date="dt",
|
|
21
|
+
projected_participation_weight="ppw",
|
|
22
|
+
)
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
@pytest.fixture
|
|
26
|
+
def df_with_scaled():
|
|
27
|
+
"""DataFrame with both raw and scaled projected participation weights."""
|
|
28
|
+
return pl.DataFrame({
|
|
29
|
+
"pid": ["A", "B", "C", "D"],
|
|
30
|
+
"tid": ["T1", "T1", "T2", "T2"],
|
|
31
|
+
"mid": ["M1", "M1", "M1", "M1"],
|
|
32
|
+
"dt": ["2024-01-01"] * 4,
|
|
33
|
+
"rating": [1100.0, 900.0, 1050.0, 950.0],
|
|
34
|
+
"ppw": [20.0, 5.0, 10.0, 10.0], # Raw weights (would give wrong answer)
|
|
35
|
+
_SCALED_PPW: [1.0, 0.5, 1.0, 1.0], # Scaled/clipped weights
|
|
36
|
+
})
|
|
37
|
+
|
|
38
|
+
|
|
39
|
+
@pytest.fixture
|
|
40
|
+
def df_without_scaled():
|
|
41
|
+
"""DataFrame with only raw projected participation weights (no scaled column)."""
|
|
42
|
+
return pl.DataFrame({
|
|
43
|
+
"pid": ["A", "B", "C", "D"],
|
|
44
|
+
"tid": ["T1", "T1", "T2", "T2"],
|
|
45
|
+
"mid": ["M1", "M1", "M1", "M1"],
|
|
46
|
+
"dt": ["2024-01-01"] * 4,
|
|
47
|
+
"rating": [1100.0, 900.0, 1050.0, 950.0],
|
|
48
|
+
"ppw": [0.8, 0.4, 1.0, 1.0], # Already scaled weights
|
|
49
|
+
})
|
|
50
|
+
|
|
51
|
+
|
|
52
|
+
def test_add_team_rating_projected_uses_scaled_column(column_names, df_with_scaled):
|
|
53
|
+
"""add_team_rating_projected should use _SCALED_PPW when available."""
|
|
54
|
+
result = add_team_rating_projected(
|
|
55
|
+
df=df_with_scaled,
|
|
56
|
+
column_names=column_names,
|
|
57
|
+
player_rating_col="rating",
|
|
58
|
+
team_rating_out="team_rating",
|
|
59
|
+
)
|
|
60
|
+
|
|
61
|
+
# With scaled weights (1.0, 0.5), T1 team rating = (1100*1.0 + 900*0.5) / (1.0+0.5) = 1450/1.5 = 966.67
|
|
62
|
+
# If it used raw weights (20.0, 5.0), it would be (1100*20 + 900*5) / 25 = 26500/25 = 1060
|
|
63
|
+
t1_rating = result.filter(pl.col("tid") == "T1")["team_rating"][0]
|
|
64
|
+
|
|
65
|
+
expected_with_scaled = (1100.0 * 1.0 + 900.0 * 0.5) / (1.0 + 0.5)
|
|
66
|
+
wrong_with_raw = (1100.0 * 20.0 + 900.0 * 5.0) / (20.0 + 5.0)
|
|
67
|
+
|
|
68
|
+
assert t1_rating == pytest.approx(expected_with_scaled, rel=1e-6)
|
|
69
|
+
assert t1_rating != pytest.approx(wrong_with_raw, rel=1e-6)
|
|
70
|
+
|
|
71
|
+
|
|
72
|
+
def test_add_team_rating_projected_falls_back_to_raw(column_names, df_without_scaled):
|
|
73
|
+
"""add_team_rating_projected should use raw ppw when _SCALED_PPW is not available."""
|
|
74
|
+
result = add_team_rating_projected(
|
|
75
|
+
df=df_without_scaled,
|
|
76
|
+
column_names=column_names,
|
|
77
|
+
player_rating_col="rating",
|
|
78
|
+
team_rating_out="team_rating",
|
|
79
|
+
)
|
|
80
|
+
|
|
81
|
+
# With raw weights (0.8, 0.4), T1 team rating = (1100*0.8 + 900*0.4) / (0.8+0.4) = 1240/1.2 = 1033.33
|
|
82
|
+
t1_rating = result.filter(pl.col("tid") == "T1")["team_rating"][0]
|
|
83
|
+
|
|
84
|
+
expected = (1100.0 * 0.8 + 900.0 * 0.4) / (0.8 + 0.4)
|
|
85
|
+
assert t1_rating == pytest.approx(expected, rel=1e-6)
|
|
86
|
+
|
|
87
|
+
|
|
88
|
+
def test_add_rating_mean_projected_uses_scaled_column(column_names, df_with_scaled):
|
|
89
|
+
"""add_rating_mean_projected should use _SCALED_PPW when available."""
|
|
90
|
+
result = add_rating_mean_projected(
|
|
91
|
+
df=df_with_scaled,
|
|
92
|
+
column_names=column_names,
|
|
93
|
+
player_rating_col="rating",
|
|
94
|
+
rating_mean_out="mean_rating",
|
|
95
|
+
)
|
|
96
|
+
|
|
97
|
+
# With scaled weights, mean = (1100*1.0 + 900*0.5 + 1050*1.0 + 950*1.0) / (1.0+0.5+1.0+1.0)
|
|
98
|
+
# = (1100 + 450 + 1050 + 950) / 3.5 = 3550/3.5 = 1014.29
|
|
99
|
+
mean_rating = result["mean_rating"][0]
|
|
100
|
+
|
|
101
|
+
expected_with_scaled = (1100.0*1.0 + 900.0*0.5 + 1050.0*1.0 + 950.0*1.0) / (1.0+0.5+1.0+1.0)
|
|
102
|
+
wrong_with_raw = (1100.0*20.0 + 900.0*5.0 + 1050.0*10.0 + 950.0*10.0) / (20.0+5.0+10.0+10.0)
|
|
103
|
+
|
|
104
|
+
assert mean_rating == pytest.approx(expected_with_scaled, rel=1e-6)
|
|
105
|
+
assert mean_rating != pytest.approx(wrong_with_raw, rel=1e-6)
|
|
106
|
+
|
|
107
|
+
|
|
108
|
+
def test_add_rating_mean_projected_falls_back_to_raw(column_names, df_without_scaled):
|
|
109
|
+
"""add_rating_mean_projected should use raw ppw when _SCALED_PPW is not available."""
|
|
110
|
+
result = add_rating_mean_projected(
|
|
111
|
+
df=df_without_scaled,
|
|
112
|
+
column_names=column_names,
|
|
113
|
+
player_rating_col="rating",
|
|
114
|
+
rating_mean_out="mean_rating",
|
|
115
|
+
)
|
|
116
|
+
|
|
117
|
+
# With raw weights (0.8, 0.4, 1.0, 1.0)
|
|
118
|
+
mean_rating = result["mean_rating"][0]
|
|
119
|
+
|
|
120
|
+
expected = (1100.0*0.8 + 900.0*0.4 + 1050.0*1.0 + 950.0*1.0) / (0.8+0.4+1.0+1.0)
|
|
121
|
+
assert mean_rating == pytest.approx(expected, rel=1e-6)
|
|
122
|
+
|
|
123
|
+
|
|
124
|
+
def test_scaled_weights_not_in_output(column_names, df_with_scaled):
|
|
125
|
+
"""Verify utility functions don't add scaled columns to output unnecessarily."""
|
|
126
|
+
result = add_team_rating_projected(
|
|
127
|
+
df=df_with_scaled,
|
|
128
|
+
column_names=column_names,
|
|
129
|
+
player_rating_col="rating",
|
|
130
|
+
team_rating_out="team_rating",
|
|
131
|
+
)
|
|
132
|
+
|
|
133
|
+
# The scaled column should still be present (it was in input)
|
|
134
|
+
# but no new internal columns should be added
|
|
135
|
+
assert _SCALED_PPW in result.columns
|
|
136
|
+
assert "team_rating" in result.columns
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
{spforge-0.8.10 → spforge-0.8.11}/spforge/distributions/_student_t_distribution_estimator.py
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
{spforge-0.8.10 → spforge-0.8.11}/spforge/performance_transformers/_performances_transformers.py
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
{spforge-0.8.10 → spforge-0.8.11}/tests/end_to_end/test_nba_player_ratings_hyperparameter_tuning.py
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
{spforge-0.8.10 → spforge-0.8.11}/tests/feature_generator/test_regressor_feature_generator.py
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
{spforge-0.8.10 → spforge-0.8.11}/tests/performance_transformers/test_performance_manager.py
RENAMED
|
File without changes
|
{spforge-0.8.10 → spforge-0.8.11}/tests/performance_transformers/test_performances_transformers.py
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|