sparrow-parse 0.4.6__tar.gz → 0.4.8__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (25) hide show
  1. {sparrow-parse-0.4.6 → sparrow-parse-0.4.8}/PKG-INFO +1 -1
  2. {sparrow-parse-0.4.6 → sparrow-parse-0.4.8}/setup.py +1 -1
  3. sparrow-parse-0.4.8/sparrow_parse/__init__.py +1 -0
  4. {sparrow-parse-0.4.6 → sparrow-parse-0.4.8}/sparrow_parse/extractors/vllm_extractor.py +31 -31
  5. {sparrow-parse-0.4.6 → sparrow-parse-0.4.8}/sparrow_parse/vllm/inference_factory.py +0 -6
  6. {sparrow-parse-0.4.6 → sparrow-parse-0.4.8}/sparrow_parse/vllm/mlx_inference.py +43 -70
  7. {sparrow-parse-0.4.6 → sparrow-parse-0.4.8}/sparrow_parse.egg-info/PKG-INFO +1 -1
  8. sparrow-parse-0.4.6/sparrow_parse/__init__.py +0 -1
  9. {sparrow-parse-0.4.6 → sparrow-parse-0.4.8}/README.md +0 -0
  10. {sparrow-parse-0.4.6 → sparrow-parse-0.4.8}/setup.cfg +0 -0
  11. {sparrow-parse-0.4.6 → sparrow-parse-0.4.8}/sparrow_parse/__main__.py +0 -0
  12. {sparrow-parse-0.4.6 → sparrow-parse-0.4.8}/sparrow_parse/extractors/__init__.py +0 -0
  13. {sparrow-parse-0.4.6 → sparrow-parse-0.4.8}/sparrow_parse/helpers/__init__.py +0 -0
  14. {sparrow-parse-0.4.6 → sparrow-parse-0.4.8}/sparrow_parse/helpers/pdf_optimizer.py +0 -0
  15. {sparrow-parse-0.4.6 → sparrow-parse-0.4.8}/sparrow_parse/processors/__init__.py +0 -0
  16. {sparrow-parse-0.4.6 → sparrow-parse-0.4.8}/sparrow_parse/processors/table_structure_processor.py +0 -0
  17. {sparrow-parse-0.4.6 → sparrow-parse-0.4.8}/sparrow_parse/vllm/__init__.py +0 -0
  18. {sparrow-parse-0.4.6 → sparrow-parse-0.4.8}/sparrow_parse/vllm/huggingface_inference.py +0 -0
  19. {sparrow-parse-0.4.6 → sparrow-parse-0.4.8}/sparrow_parse/vllm/inference_base.py +0 -0
  20. {sparrow-parse-0.4.6 → sparrow-parse-0.4.8}/sparrow_parse/vllm/local_gpu_inference.py +0 -0
  21. {sparrow-parse-0.4.6 → sparrow-parse-0.4.8}/sparrow_parse.egg-info/SOURCES.txt +0 -0
  22. {sparrow-parse-0.4.6 → sparrow-parse-0.4.8}/sparrow_parse.egg-info/dependency_links.txt +0 -0
  23. {sparrow-parse-0.4.6 → sparrow-parse-0.4.8}/sparrow_parse.egg-info/entry_points.txt +0 -0
  24. {sparrow-parse-0.4.6 → sparrow-parse-0.4.8}/sparrow_parse.egg-info/requires.txt +0 -0
  25. {sparrow-parse-0.4.6 → sparrow-parse-0.4.8}/sparrow_parse.egg-info/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: sparrow-parse
3
- Version: 0.4.6
3
+ Version: 0.4.8
4
4
  Summary: Sparrow Parse is a Python package (part of Sparrow) for parsing and extracting information from documents.
5
5
  Home-page: https://github.com/katanaml/sparrow/tree/main/sparrow-data/parse
6
6
  Author: Andrej Baranovskij
@@ -8,7 +8,7 @@ with open("requirements.txt", "r", encoding="utf-8") as fh:
8
8
 
9
9
  setup(
10
10
  name="sparrow-parse",
11
- version="0.4.6",
11
+ version="0.4.8",
12
12
  author="Andrej Baranovskij",
13
13
  author_email="andrejus.baranovskis@gmail.com",
14
14
  description="Sparrow Parse is a Python package (part of Sparrow) for parsing and extracting information from documents.",
@@ -0,0 +1 @@
1
+ __version__ = '0.4.8'
@@ -152,34 +152,34 @@ if __name__ == "__main__":
152
152
 
153
153
  extractor = VLLMExtractor()
154
154
 
155
- # export HF_TOKEN="hf_"
156
- config = {
157
- "method": "mlx", # Could be 'huggingface', 'mlx' or 'local_gpu'
158
- "model_name": "mlx-community/Qwen2-VL-7B-Instruct-8bit",
159
- # "hf_space": "katanaml/sparrow-qwen2-vl-7b",
160
- # "hf_token": os.getenv('HF_TOKEN'),
161
- # Additional fields for local GPU inference
162
- # "device": "cuda", "model_path": "model.pth"
163
- }
164
-
165
- # Use the factory to get the correct instance
166
- factory = InferenceFactory(config)
167
- model_inference_instance = factory.get_inference_instance()
168
-
169
- input_data = [
170
- {
171
- "file_path": "/Users/andrejb/Work/katana-git/sparrow/sparrow-ml/llm/data/invoice_1.jpg",
172
- "text_input": "retrieve document data. return response in JSON format"
173
- }
174
- ]
175
-
176
- # Now you can run inference without knowing which implementation is used
177
- results_array, num_pages = extractor.run_inference(model_inference_instance, input_data, tables_only=True,
178
- generic_query=False,
179
- debug_dir="/Users/andrejb/Work/katana-git/sparrow/sparrow-ml/llm/data/",
180
- debug=True,
181
- mode=None)
182
-
183
- for i, result in enumerate(results_array):
184
- print(f"Result for page {i + 1}:", result)
185
- print(f"Number of pages: {num_pages}")
155
+ # # export HF_TOKEN="hf_"
156
+ # config = {
157
+ # "method": "mlx", # Could be 'huggingface', 'mlx' or 'local_gpu'
158
+ # "model_name": "mlx-community/Qwen2-VL-7B-Instruct-8bit",
159
+ # # "hf_space": "katanaml/sparrow-qwen2-vl-7b",
160
+ # # "hf_token": os.getenv('HF_TOKEN'),
161
+ # # Additional fields for local GPU inference
162
+ # # "device": "cuda", "model_path": "model.pth"
163
+ # }
164
+ #
165
+ # # Use the factory to get the correct instance
166
+ # factory = InferenceFactory(config)
167
+ # model_inference_instance = factory.get_inference_instance()
168
+ #
169
+ # input_data = [
170
+ # {
171
+ # "file_path": "/Users/andrejb/Work/katana-git/sparrow/sparrow-ml/llm/data/invoice_1.jpg",
172
+ # "text_input": "retrieve document data. return response in JSON format"
173
+ # }
174
+ # ]
175
+ #
176
+ # # Now you can run inference without knowing which implementation is used
177
+ # results_array, num_pages = extractor.run_inference(model_inference_instance, input_data, tables_only=True,
178
+ # generic_query=False,
179
+ # debug_dir="/Users/andrejb/Work/katana-git/sparrow/sparrow-ml/llm/data/",
180
+ # debug=True,
181
+ # mode=None)
182
+ #
183
+ # for i, result in enumerate(results_array):
184
+ # print(f"Result for page {i + 1}:", result)
185
+ # print(f"Number of pages: {num_pages}")
@@ -23,9 +23,3 @@ class InferenceFactory:
23
23
  # model = torch.load('model.pth')
24
24
  # return model
25
25
  raise NotImplementedError("Model loading logic not implemented")
26
-
27
-
28
- def unload_inference_instance(self, instance):
29
- if instance and hasattr(instance, "unload_model"):
30
- instance.unload_model()
31
- print(f"Inference instance of type {type(instance).__name__} has been unloaded.")
@@ -4,7 +4,7 @@ from mlx_vlm.utils import load_image
4
4
  from sparrow_parse.vllm.inference_base import ModelInference
5
5
  import os
6
6
  import json
7
- import gc
7
+ from rich import print
8
8
 
9
9
 
10
10
  class MLXInference(ModelInference):
@@ -20,40 +20,19 @@ class MLXInference(ModelInference):
20
20
  :param model_name: Name of the model to load.
21
21
  """
22
22
  self.model_name = model_name
23
- self.model = None
24
- self.processor = None
25
- print(f"MLXInference initialized with model: {model_name}")
23
+ print(f"MLXInference initialized for model: {model_name}")
26
24
 
27
25
 
28
- def unload_model(self):
29
- """
30
- Unload the model and release resources.
31
- """
32
- if self.model:
33
- print(f"Unloading model: {self.model_name}")
34
- del self.model
35
- self.model = None
36
- if self.processor:
37
- print(f"Unloading processor for model: {self.model_name}")
38
- del self.processor
39
- self.processor = None
40
-
41
- # Force garbage collection to release memory
42
- gc.collect()
43
- print(f"Model {self.model_name} and its resources have been unloaded, memory cleared.")
44
-
45
-
46
- def _load_model_and_processor(self, model_name):
26
+ @staticmethod
27
+ def _load_model_and_processor(model_name):
47
28
  """
48
29
  Load the model and processor for inference.
30
+
49
31
  :param model_name: Name of the model to load.
50
32
  :return: Tuple containing the loaded model and processor.
51
33
  """
52
- print(f"Loading model and processor for: {model_name}...")
53
34
  model, processor = load(model_name)
54
- self.model = model # Store model instance
55
- self.processor = processor # Store processor instance
56
- print(f"Model and processor for '{model_name}' loaded successfully.")
35
+ print(f"Loaded model: {model_name}")
57
36
  return model, processor
58
37
 
59
38
 
@@ -103,54 +82,48 @@ class MLXInference(ModelInference):
103
82
  def inference(self, input_data, mode=None):
104
83
  """
105
84
  Perform inference on input data using the specified model.
85
+
106
86
  :param input_data: A list of dictionaries containing image file paths and text inputs.
107
87
  :param mode: Optional mode for inference ("static" for simple JSON output).
108
88
  :return: List of processed model responses.
109
89
  """
110
- try:
111
- if mode == "static":
112
- return [self.get_simple_json()]
113
-
114
- # Load the model and processor
115
- model, processor = self._load_model_and_processor(self.model_name)
116
- config = model.config
117
-
118
- # Prepare absolute file paths
119
- file_paths = self._extract_file_paths(input_data)
120
-
121
- results = []
122
- for file_path in file_paths:
123
- image, width, height = self.load_image_data(file_path)
124
-
125
- # Prepare messages for the chat model
126
- messages = [
127
- {"role": "system",
128
- "content": "You are an expert at extracting structured text from image documents."},
129
- {"role": "user", "content": input_data[0]["text_input"]},
130
- ]
131
-
132
- # Generate and process response
133
- prompt = apply_chat_template(processor, config, messages)
134
- response = generate(
135
- model,
136
- processor,
137
- image,
138
- prompt,
139
- resize_shape=(width, height),
140
- max_tokens=4000,
141
- temperature=0.0,
142
- verbose=False
143
- )
144
- results.append(self.process_response(response))
145
-
146
- print("Inference completed successfully for: ", file_path)
147
-
148
- return results
149
-
150
- finally:
151
- # Always unload the model after inference
152
- self.unload_model()
90
+ if mode == "static":
91
+ return [self.get_simple_json()]
92
+
93
+ # Load the model and processor
94
+ model, processor = self._load_model_and_processor(self.model_name)
95
+ config = model.config
96
+
97
+ # Prepare absolute file paths
98
+ file_paths = self._extract_file_paths(input_data)
99
+
100
+ results = []
101
+ for file_path in file_paths:
102
+ image, width, height = self.load_image_data(file_path)
103
+
104
+ # Prepare messages for the chat model
105
+ messages = [
106
+ {"role": "system", "content": "You are an expert at extracting structured text from image documents."},
107
+ {"role": "user", "content": input_data[0]["text_input"]},
108
+ ]
109
+
110
+ # Generate and process response
111
+ prompt = apply_chat_template(processor, config, messages) # Assuming defined
112
+ response = generate(
113
+ model,
114
+ processor,
115
+ image,
116
+ prompt,
117
+ resize_shape=(width, height),
118
+ max_tokens=4000,
119
+ temperature=0.0,
120
+ verbose=False
121
+ )
122
+ results.append(self.process_response(response))
123
+
124
+ print("Inference completed successfully for: ", file_path)
153
125
 
126
+ return results
154
127
 
155
128
  @staticmethod
156
129
  def _extract_file_paths(input_data):
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: sparrow-parse
3
- Version: 0.4.6
3
+ Version: 0.4.8
4
4
  Summary: Sparrow Parse is a Python package (part of Sparrow) for parsing and extracting information from documents.
5
5
  Home-page: https://github.com/katanaml/sparrow/tree/main/sparrow-data/parse
6
6
  Author: Andrej Baranovskij
@@ -1 +0,0 @@
1
- __version__ = '0.4.6'
File without changes
File without changes