span-aligner 0.1.0__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- span_aligner-0.1.0/LICENSE +21 -0
- span_aligner-0.1.0/PKG-INFO +122 -0
- span_aligner-0.1.0/README.md +109 -0
- span_aligner-0.1.0/pyproject.toml +23 -0
- span_aligner-0.1.0/setup.cfg +4 -0
- span_aligner-0.1.0/span_aligner/__init__.py +3 -0
- span_aligner-0.1.0/span_aligner/aligner.py +1126 -0
- span_aligner-0.1.0/span_aligner.egg-info/PKG-INFO +122 -0
- span_aligner-0.1.0/span_aligner.egg-info/SOURCES.txt +11 -0
- span_aligner-0.1.0/span_aligner.egg-info/dependency_links.txt +1 -0
- span_aligner-0.1.0/span_aligner.egg-info/requires.txt +4 -0
- span_aligner-0.1.0/span_aligner.egg-info/top_level.txt +1 -0
- span_aligner-0.1.0/tests/test_span_aligner.py +140 -0
|
@@ -0,0 +1,21 @@
|
|
|
1
|
+
MIT License
|
|
2
|
+
|
|
3
|
+
Copyright (c) 2026 Stefaan Vercoutere
|
|
4
|
+
|
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
6
|
+
of this software and associated documentation files (the "Software"), to deal
|
|
7
|
+
in the Software without restriction, including without limitation the rights
|
|
8
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
9
|
+
copies of the Software, and to permit persons to whom the Software is
|
|
10
|
+
furnished to do so, subject to the following conditions:
|
|
11
|
+
|
|
12
|
+
The above copyright notice and this permission notice shall be included in all
|
|
13
|
+
copies or substantial portions of the Software.
|
|
14
|
+
|
|
15
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
16
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
17
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
18
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
19
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
20
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
21
|
+
SOFTWARE.
|
|
@@ -0,0 +1,122 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: span-aligner
|
|
3
|
+
Version: 0.1.0
|
|
4
|
+
Summary: A utility for aligning and mapping text spans between different text representations.
|
|
5
|
+
License: MIT
|
|
6
|
+
Requires-Python: >=3.8
|
|
7
|
+
Description-Content-Type: text/markdown
|
|
8
|
+
License-File: LICENSE
|
|
9
|
+
Requires-Dist: rapidfuzz>=3.0.0
|
|
10
|
+
Provides-Extra: dev
|
|
11
|
+
Requires-Dist: pytest>=7.0.0; extra == "dev"
|
|
12
|
+
Dynamic: license-file
|
|
13
|
+
|
|
14
|
+
# Span Aligner
|
|
15
|
+
|
|
16
|
+
A utility for aligning and mapping text spans between different text representations, particularly useful for Label Studio annotation compatibility.
|
|
17
|
+
|
|
18
|
+
## Features
|
|
19
|
+
|
|
20
|
+
- Sanitize span boundaries to avoid special characters.
|
|
21
|
+
- Find exact and fuzzy matches of text segments in original documents.
|
|
22
|
+
- Map spans from one text representation to another.
|
|
23
|
+
- Rebuild tagged text with nested annotations.
|
|
24
|
+
- Merge result objects containing span annotations.
|
|
25
|
+
|
|
26
|
+
## Installation
|
|
27
|
+
|
|
28
|
+
Install from source:
|
|
29
|
+
|
|
30
|
+
```bash
|
|
31
|
+
pip install .
|
|
32
|
+
```
|
|
33
|
+
|
|
34
|
+
For development:
|
|
35
|
+
|
|
36
|
+
```bash
|
|
37
|
+
pip install -e ".[dev]"
|
|
38
|
+
```
|
|
39
|
+
|
|
40
|
+
## Usage
|
|
41
|
+
|
|
42
|
+
```python
|
|
43
|
+
from span_aligner import SpanAligner
|
|
44
|
+
|
|
45
|
+
original = "Hello, World!"
|
|
46
|
+
result_obj = {
|
|
47
|
+
"spans": [{"start": 0, "end": 5, "text": "Hello", "labels": ["greeting"]}],
|
|
48
|
+
"entities": [],
|
|
49
|
+
"task": {"data": {"text": ""}}
|
|
50
|
+
}
|
|
51
|
+
|
|
52
|
+
success, mapped = SpanAligner.map_spans_to_original(original, result_obj)
|
|
53
|
+
print(mapped)
|
|
54
|
+
```
|
|
55
|
+
|
|
56
|
+
### Map Tags to Original
|
|
57
|
+
|
|
58
|
+
Align annotated spans from a tagged string back to their positions in the original text, keeping the mistakes and original text as written in the original.
|
|
59
|
+
|
|
60
|
+
```python
|
|
61
|
+
original_text = "The quick brown fox jumps\n\n over the dog."
|
|
62
|
+
# Imagine the text was slightly modified or translated, but tags are present
|
|
63
|
+
tagged_text = "The <adj>quick</adj> brown fox jumps over the <animal>dog</animal>."
|
|
64
|
+
|
|
65
|
+
mapped_tagged_text = SpanAligner.map_tags_to_original(
|
|
66
|
+
original_text=original_text,
|
|
67
|
+
tagged_text=tagged_text,
|
|
68
|
+
min_ratio=0.8
|
|
69
|
+
)
|
|
70
|
+
print(mapped_tagged_text)
|
|
71
|
+
# Output might look like: "The <adj>quick</adj> brown fox jumps\n\n over the <animal>dog</animal>."
|
|
72
|
+
# (If original text differed slightly, tags would be placed on best matching spans)
|
|
73
|
+
```
|
|
74
|
+
|
|
75
|
+
### Rebuild Tagged Text
|
|
76
|
+
|
|
77
|
+
Reconstruct a string with XML-like tags from raw text and span/entity lists.
|
|
78
|
+
|
|
79
|
+
```python
|
|
80
|
+
text = "Hello World"
|
|
81
|
+
spans = [{"start": 0, "end": 11, "labels": ["sentence"]}]
|
|
82
|
+
entities = [{"start": 6, "end": 11, "labels": ["location"]}]
|
|
83
|
+
|
|
84
|
+
tagged, stats = SpanAligner.rebuild_tagged_text(text, spans, entities)
|
|
85
|
+
print(tagged)
|
|
86
|
+
# Output: <sentence>Hello <location>World</location></sentence>
|
|
87
|
+
```
|
|
88
|
+
|
|
89
|
+
### Rebuild Tagged Text from Task
|
|
90
|
+
|
|
91
|
+
Generate tagged text directly from a Label Studio task object.
|
|
92
|
+
|
|
93
|
+
```python
|
|
94
|
+
# Assuming 'task' is a Label Studio task object (or similar structure)
|
|
95
|
+
# with .data['text'] and .annotations attributes
|
|
96
|
+
mapping = {"Location": "loc", "Person": "per"}
|
|
97
|
+
|
|
98
|
+
tagged_output = SpanAligner.rebuild_tagged_text_from_task(task, mapping)
|
|
99
|
+
print(tagged_output)
|
|
100
|
+
```
|
|
101
|
+
|
|
102
|
+
### Get Annotations from Tagged Text
|
|
103
|
+
|
|
104
|
+
Extract structured spans and entities from a string with inline tags.
|
|
105
|
+
|
|
106
|
+
```python
|
|
107
|
+
tagged_input = "Visit <loc>Paris</loc> and see the <landmark>Eiffel Tower</landmark>."
|
|
108
|
+
|
|
109
|
+
annotations = SpanAligner.get_annotations_from_tagged_text(
|
|
110
|
+
tagged_input,
|
|
111
|
+
ner_map={"loc": "Location", "landmark": "Location"}
|
|
112
|
+
)
|
|
113
|
+
|
|
114
|
+
print(annotations["entities"])
|
|
115
|
+
# Output:
|
|
116
|
+
# [
|
|
117
|
+
# {"start": 6, "end": 11, "text": "Paris", "labels": ["Location"]},
|
|
118
|
+
# {"start": 24, "end": 36, "text": "Eiffel Tower", "labels": ["Location"]}
|
|
119
|
+
# ]
|
|
120
|
+
print(annotations["plain_text"])
|
|
121
|
+
# Output: "Visit Paris and see the Eiffel Tower."
|
|
122
|
+
```
|
|
@@ -0,0 +1,109 @@
|
|
|
1
|
+
# Span Aligner
|
|
2
|
+
|
|
3
|
+
A utility for aligning and mapping text spans between different text representations, particularly useful for Label Studio annotation compatibility.
|
|
4
|
+
|
|
5
|
+
## Features
|
|
6
|
+
|
|
7
|
+
- Sanitize span boundaries to avoid special characters.
|
|
8
|
+
- Find exact and fuzzy matches of text segments in original documents.
|
|
9
|
+
- Map spans from one text representation to another.
|
|
10
|
+
- Rebuild tagged text with nested annotations.
|
|
11
|
+
- Merge result objects containing span annotations.
|
|
12
|
+
|
|
13
|
+
## Installation
|
|
14
|
+
|
|
15
|
+
Install from source:
|
|
16
|
+
|
|
17
|
+
```bash
|
|
18
|
+
pip install .
|
|
19
|
+
```
|
|
20
|
+
|
|
21
|
+
For development:
|
|
22
|
+
|
|
23
|
+
```bash
|
|
24
|
+
pip install -e ".[dev]"
|
|
25
|
+
```
|
|
26
|
+
|
|
27
|
+
## Usage
|
|
28
|
+
|
|
29
|
+
```python
|
|
30
|
+
from span_aligner import SpanAligner
|
|
31
|
+
|
|
32
|
+
original = "Hello, World!"
|
|
33
|
+
result_obj = {
|
|
34
|
+
"spans": [{"start": 0, "end": 5, "text": "Hello", "labels": ["greeting"]}],
|
|
35
|
+
"entities": [],
|
|
36
|
+
"task": {"data": {"text": ""}}
|
|
37
|
+
}
|
|
38
|
+
|
|
39
|
+
success, mapped = SpanAligner.map_spans_to_original(original, result_obj)
|
|
40
|
+
print(mapped)
|
|
41
|
+
```
|
|
42
|
+
|
|
43
|
+
### Map Tags to Original
|
|
44
|
+
|
|
45
|
+
Align annotated spans from a tagged string back to their positions in the original text, keeping the mistakes and original text as written in the original.
|
|
46
|
+
|
|
47
|
+
```python
|
|
48
|
+
original_text = "The quick brown fox jumps\n\n over the dog."
|
|
49
|
+
# Imagine the text was slightly modified or translated, but tags are present
|
|
50
|
+
tagged_text = "The <adj>quick</adj> brown fox jumps over the <animal>dog</animal>."
|
|
51
|
+
|
|
52
|
+
mapped_tagged_text = SpanAligner.map_tags_to_original(
|
|
53
|
+
original_text=original_text,
|
|
54
|
+
tagged_text=tagged_text,
|
|
55
|
+
min_ratio=0.8
|
|
56
|
+
)
|
|
57
|
+
print(mapped_tagged_text)
|
|
58
|
+
# Output might look like: "The <adj>quick</adj> brown fox jumps\n\n over the <animal>dog</animal>."
|
|
59
|
+
# (If original text differed slightly, tags would be placed on best matching spans)
|
|
60
|
+
```
|
|
61
|
+
|
|
62
|
+
### Rebuild Tagged Text
|
|
63
|
+
|
|
64
|
+
Reconstruct a string with XML-like tags from raw text and span/entity lists.
|
|
65
|
+
|
|
66
|
+
```python
|
|
67
|
+
text = "Hello World"
|
|
68
|
+
spans = [{"start": 0, "end": 11, "labels": ["sentence"]}]
|
|
69
|
+
entities = [{"start": 6, "end": 11, "labels": ["location"]}]
|
|
70
|
+
|
|
71
|
+
tagged, stats = SpanAligner.rebuild_tagged_text(text, spans, entities)
|
|
72
|
+
print(tagged)
|
|
73
|
+
# Output: <sentence>Hello <location>World</location></sentence>
|
|
74
|
+
```
|
|
75
|
+
|
|
76
|
+
### Rebuild Tagged Text from Task
|
|
77
|
+
|
|
78
|
+
Generate tagged text directly from a Label Studio task object.
|
|
79
|
+
|
|
80
|
+
```python
|
|
81
|
+
# Assuming 'task' is a Label Studio task object (or similar structure)
|
|
82
|
+
# with .data['text'] and .annotations attributes
|
|
83
|
+
mapping = {"Location": "loc", "Person": "per"}
|
|
84
|
+
|
|
85
|
+
tagged_output = SpanAligner.rebuild_tagged_text_from_task(task, mapping)
|
|
86
|
+
print(tagged_output)
|
|
87
|
+
```
|
|
88
|
+
|
|
89
|
+
### Get Annotations from Tagged Text
|
|
90
|
+
|
|
91
|
+
Extract structured spans and entities from a string with inline tags.
|
|
92
|
+
|
|
93
|
+
```python
|
|
94
|
+
tagged_input = "Visit <loc>Paris</loc> and see the <landmark>Eiffel Tower</landmark>."
|
|
95
|
+
|
|
96
|
+
annotations = SpanAligner.get_annotations_from_tagged_text(
|
|
97
|
+
tagged_input,
|
|
98
|
+
ner_map={"loc": "Location", "landmark": "Location"}
|
|
99
|
+
)
|
|
100
|
+
|
|
101
|
+
print(annotations["entities"])
|
|
102
|
+
# Output:
|
|
103
|
+
# [
|
|
104
|
+
# {"start": 6, "end": 11, "text": "Paris", "labels": ["Location"]},
|
|
105
|
+
# {"start": 24, "end": 36, "text": "Eiffel Tower", "labels": ["Location"]}
|
|
106
|
+
# ]
|
|
107
|
+
print(annotations["plain_text"])
|
|
108
|
+
# Output: "Visit Paris and see the Eiffel Tower."
|
|
109
|
+
```
|
|
@@ -0,0 +1,23 @@
|
|
|
1
|
+
[build-system]
|
|
2
|
+
requires = ["setuptools>=61.0"]
|
|
3
|
+
build-backend = "setuptools.build_meta"
|
|
4
|
+
|
|
5
|
+
[project]
|
|
6
|
+
name = "span-aligner"
|
|
7
|
+
version = "0.1.0"
|
|
8
|
+
description = "A utility for aligning and mapping text spans between different text representations."
|
|
9
|
+
readme = "README.md"
|
|
10
|
+
requires-python = ">=3.8"
|
|
11
|
+
license = {text = "MIT"}
|
|
12
|
+
dependencies = [
|
|
13
|
+
"rapidfuzz>=3.0.0",
|
|
14
|
+
]
|
|
15
|
+
|
|
16
|
+
[project.optional-dependencies]
|
|
17
|
+
dev = [
|
|
18
|
+
"pytest>=7.0.0",
|
|
19
|
+
]
|
|
20
|
+
|
|
21
|
+
[tool.setuptools.packages.find]
|
|
22
|
+
where = ["."]
|
|
23
|
+
include = ["span_aligner*"]
|