spacr 0.3.22__tar.gz → 0.3.30__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {spacr-0.3.22/spacr.egg-info → spacr-0.3.30}/PKG-INFO +1 -1
- {spacr-0.3.22 → spacr-0.3.30}/setup.py +1 -1
- {spacr-0.3.22 → spacr-0.3.30}/spacr/deep_spacr.py +131 -227
- {spacr-0.3.22 → spacr-0.3.30}/spacr/gui.py +1 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/gui_core.py +13 -4
- {spacr-0.3.22 → spacr-0.3.30}/spacr/gui_utils.py +29 -1
- {spacr-0.3.22 → spacr-0.3.30}/spacr/io.py +4 -4
- {spacr-0.3.22 → spacr-0.3.30}/spacr/measure.py +1 -38
- {spacr-0.3.22 → spacr-0.3.30}/spacr/settings.py +49 -5
- {spacr-0.3.22 → spacr-0.3.30}/spacr/utils.py +383 -28
- {spacr-0.3.22 → spacr-0.3.30/spacr.egg-info}/PKG-INFO +1 -1
- {spacr-0.3.22 → spacr-0.3.30}/.readthedocs.yaml +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/LICENSE +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/MANIFEST.in +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/README.rst +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/deploy_docs.sh +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/docs/requirements.txt +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/docs/source/Makefile +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/docs/source/_build/doctrees/environment.pickle +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/docs/source/_build/html/_modules/index.html +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/docs/source/_build/html/_modules/spacr/app_annotate.html +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/docs/source/_build/html/_modules/spacr/app_classify.html +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/docs/source/_build/html/_modules/spacr/app_make_masks.html +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/docs/source/_build/html/_modules/spacr/app_mask.html +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/docs/source/_build/html/_modules/spacr/app_measure.html +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/docs/source/_build/html/_modules/spacr/app_sequencing.html +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/docs/source/_build/html/_modules/spacr/app_umap.html +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/docs/source/_build/html/_modules/spacr/core.html +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/docs/source/_build/html/_modules/spacr/deep_spacr.html +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/docs/source/_build/html/_modules/spacr/graph_learning.html +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/docs/source/_build/html/_modules/spacr/gui.html +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/docs/source/_build/html/_modules/spacr/gui_core.html +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/docs/source/_build/html/_modules/spacr/gui_elements.html +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/docs/source/_build/html/_modules/spacr/gui_utils.html +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/docs/source/_build/html/_modules/spacr/io.html +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/docs/source/_build/html/_modules/spacr/logger.html +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/docs/source/_build/html/_modules/spacr/measure.html +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/docs/source/_build/html/_modules/spacr/plot.html +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/docs/source/_build/html/_modules/spacr/sequencing.html +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/docs/source/_build/html/_modules/spacr/settings.html +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/docs/source/_build/html/_modules/spacr/sim.html +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/docs/source/_build/html/_modules/spacr/timelapse.html +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/docs/source/_build/html/_modules/spacr/utils.html +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/docs/source/_build/html/_sources/index.rst.txt +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/docs/source/_build/html/_sources/modules.rst.txt +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/docs/source/_build/html/_sources/spacr.rst.txt +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/docs/source/_build/html/_static/_sphinx_javascript_frameworks_compat.js +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/docs/source/_build/html/_static/basic.css +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/docs/source/_build/html/_static/css/badge_only.css +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/docs/source/_build/html/_static/css/fonts/Roboto-Slab-Bold.woff +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/docs/source/_build/html/_static/css/fonts/Roboto-Slab-Bold.woff2 +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/docs/source/_build/html/_static/css/fonts/Roboto-Slab-Regular.woff +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/docs/source/_build/html/_static/css/fonts/Roboto-Slab-Regular.woff2 +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/docs/source/_build/html/_static/css/fonts/fontawesome-webfont.eot +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/docs/source/_build/html/_static/css/fonts/fontawesome-webfont.svg +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/docs/source/_build/html/_static/css/fonts/fontawesome-webfont.ttf +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/docs/source/_build/html/_static/css/fonts/fontawesome-webfont.woff +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/docs/source/_build/html/_static/css/fonts/fontawesome-webfont.woff2 +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/docs/source/_build/html/_static/css/fonts/lato-bold-italic.woff +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/docs/source/_build/html/_static/css/fonts/lato-bold-italic.woff2 +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/docs/source/_build/html/_static/css/fonts/lato-bold.woff +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/docs/source/_build/html/_static/css/fonts/lato-bold.woff2 +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/docs/source/_build/html/_static/css/fonts/lato-normal-italic.woff +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/docs/source/_build/html/_static/css/fonts/lato-normal-italic.woff2 +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/docs/source/_build/html/_static/css/fonts/lato-normal.woff +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/docs/source/_build/html/_static/css/fonts/lato-normal.woff2 +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/docs/source/_build/html/_static/css/theme.css +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/docs/source/_build/html/_static/doctools.js +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/docs/source/_build/html/_static/documentation_options.js +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/docs/source/_build/html/_static/file.png +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/docs/source/_build/html/_static/jquery.js +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/docs/source/_build/html/_static/js/badge_only.js +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/docs/source/_build/html/_static/js/html5shiv-printshiv.min.js +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/docs/source/_build/html/_static/js/html5shiv.min.js +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/docs/source/_build/html/_static/js/theme.js +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/docs/source/_build/html/_static/language_data.js +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/docs/source/_build/html/_static/minus.png +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/docs/source/_build/html/_static/plus.png +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/docs/source/_build/html/_static/pygments.css +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/docs/source/_build/html/_static/searchtools.js +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/docs/source/_build/html/_static/sphinx_highlight.js +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/docs/source/_build/html/genindex.html +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/docs/source/_build/html/index.html +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/docs/source/_build/html/modules.html +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/docs/source/_build/html/objects.inv +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/docs/source/_build/html/py-modindex.html +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/docs/source/_build/html/search.html +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/docs/source/_build/html/searchindex.js +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/docs/source/_build/html/spacr.html +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/docs/source/conf.py +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/docs/source/index.rst +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/docs/source/make.bat +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/docs/source/modules.rst +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/docs/source/spacr.rst +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/environment.yaml +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/fonts/OpenSans-Regular.ttf +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/notebooks/cv_scoring_nb.ipynb +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/notebooks/deep_learning_spacr.ipynb +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/notebooks/machine_learning_spacr_nb.ipynb +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/notebooks/spacr_0.1_all_settings_git.ipynb +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/notebooks/spacr_0.1_minimal.ipynb +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/path/home/carruthers/datasets/plate1/measurements/measurements.db +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/path/home/carruthers/datasets/plate1/settings/measure_crop_settings.csv +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/path/settings/preprocess_generate_masks_settings.csv +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/requirements.txt +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/settings/measure_crop_settings.csv +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/setup.cfg +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/setup_docs.sh +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/source/conf.py +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/source/index.rst +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/source/modules.rst +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/source/setup.rst +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/source/spacr.rst +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/__init__.py +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/__main__.py +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/app_annotate.py +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/app_classify.py +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/app_make_masks.py +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/app_mask.py +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/app_measure.py +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/app_sequencing.py +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/app_umap.py +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/cellpose.py +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/core.py +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/gui_elements.py +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/logger.py +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/mediar.py +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/ml.py +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/openai.py +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/plot.py +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/MEDIAR/.gitignore +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/MEDIAR/LICENSE +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/MEDIAR/README.md +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/MEDIAR/SetupDict.py +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/MEDIAR/config/baseline.json +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/MEDIAR/config/mediar_example.json +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/MEDIAR/config/pred/pred_mediar.json +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/MEDIAR/config/step1_pretraining/phase1.json +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/MEDIAR/config/step1_pretraining/phase2.json +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/MEDIAR/config/step2_finetuning/finetuning1.json +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/MEDIAR/config/step2_finetuning/finetuning2.json +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/MEDIAR/config/step3_prediction/base_prediction.json +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/MEDIAR/config/step3_prediction/ensemble_tta.json +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/MEDIAR/core/BasePredictor.py +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/MEDIAR/core/BaseTrainer.py +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/MEDIAR/core/Baseline/Predictor.py +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/MEDIAR/core/Baseline/Trainer.py +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/MEDIAR/core/Baseline/__init__.py +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/MEDIAR/core/Baseline/utils.py +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/MEDIAR/core/MEDIAR/EnsemblePredictor.py +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/MEDIAR/core/MEDIAR/Predictor.py +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/MEDIAR/core/MEDIAR/Trainer.py +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/MEDIAR/core/MEDIAR/__init__.py +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/MEDIAR/core/MEDIAR/utils.py +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/MEDIAR/core/__init__.py +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/MEDIAR/core/utils.py +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/MEDIAR/evaluate.py +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/MEDIAR/generate_mapping.py +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/MEDIAR/image/examples/img1.tiff +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/MEDIAR/image/examples/img2.tif +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/MEDIAR/image/failure_cases.png +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/MEDIAR/image/mediar_framework.png +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/MEDIAR/image/mediar_model.PNG +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/MEDIAR/image/mediar_results.png +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/MEDIAR/main.py +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/MEDIAR/predict.py +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/MEDIAR/requirements.txt +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/MEDIAR/train_tools/__init__.py +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/MEDIAR/train_tools/data_utils/__init__.py +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/MEDIAR/train_tools/data_utils/custom/CellAware.py +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/MEDIAR/train_tools/data_utils/custom/LoadImage.py +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/MEDIAR/train_tools/data_utils/custom/NormalizeImage.py +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/MEDIAR/train_tools/data_utils/custom/__init__.py +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/MEDIAR/train_tools/data_utils/custom/modalities.pkl +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/MEDIAR/train_tools/data_utils/datasetter.py +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/MEDIAR/train_tools/data_utils/transforms.py +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/MEDIAR/train_tools/data_utils/utils.py +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/MEDIAR/train_tools/measures.py +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/MEDIAR/train_tools/models/MEDIARFormer.py +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/MEDIAR/train_tools/models/__init__.py +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/MEDIAR/train_tools/utils.py +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/data/lopit.csv +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/data/toxoplasma_metadata.csv +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/font/open_sans/OFL.txt +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/font/open_sans/OpenSans-Italic-VariableFont_wdth,wght.ttf +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/font/open_sans/OpenSans-VariableFont_wdth,wght.ttf +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/font/open_sans/README.txt +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/font/open_sans/static/OpenSans-Bold.ttf +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/font/open_sans/static/OpenSans-BoldItalic.ttf +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/font/open_sans/static/OpenSans-ExtraBold.ttf +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/font/open_sans/static/OpenSans-ExtraBoldItalic.ttf +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/font/open_sans/static/OpenSans-Italic.ttf +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/font/open_sans/static/OpenSans-Light.ttf +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/font/open_sans/static/OpenSans-LightItalic.ttf +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/font/open_sans/static/OpenSans-Medium.ttf +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/font/open_sans/static/OpenSans-MediumItalic.ttf +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/font/open_sans/static/OpenSans-Regular.ttf +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/font/open_sans/static/OpenSans-SemiBold.ttf +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/font/open_sans/static/OpenSans-SemiBoldItalic.ttf +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/font/open_sans/static/OpenSans_Condensed-Bold.ttf +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/font/open_sans/static/OpenSans_Condensed-BoldItalic.ttf +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/font/open_sans/static/OpenSans_Condensed-ExtraBold.ttf +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/font/open_sans/static/OpenSans_Condensed-ExtraBoldItalic.ttf +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/font/open_sans/static/OpenSans_Condensed-Italic.ttf +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/font/open_sans/static/OpenSans_Condensed-Light.ttf +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/font/open_sans/static/OpenSans_Condensed-LightItalic.ttf +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/font/open_sans/static/OpenSans_Condensed-Medium.ttf +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/font/open_sans/static/OpenSans_Condensed-MediumItalic.ttf +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/font/open_sans/static/OpenSans_Condensed-Regular.ttf +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/font/open_sans/static/OpenSans_Condensed-SemiBold.ttf +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/font/open_sans/static/OpenSans_Condensed-SemiBoldItalic.ttf +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/font/open_sans/static/OpenSans_SemiCondensed-Bold.ttf +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/font/open_sans/static/OpenSans_SemiCondensed-BoldItalic.ttf +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/font/open_sans/static/OpenSans_SemiCondensed-ExtraBold.ttf +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/font/open_sans/static/OpenSans_SemiCondensed-ExtraBoldItalic.ttf +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/font/open_sans/static/OpenSans_SemiCondensed-Italic.ttf +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/font/open_sans/static/OpenSans_SemiCondensed-Light.ttf +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/font/open_sans/static/OpenSans_SemiCondensed-LightItalic.ttf +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/font/open_sans/static/OpenSans_SemiCondensed-Medium.ttf +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/font/open_sans/static/OpenSans_SemiCondensed-MediumItalic.ttf +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/font/open_sans/static/OpenSans_SemiCondensed-Regular.ttf +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/font/open_sans/static/OpenSans_SemiCondensed-SemiBold.ttf +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/font/open_sans/static/OpenSans_SemiCondensed-SemiBoldItalic.ttf +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/icons/abort.png +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/icons/annotate.png +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/icons/cellpose_all.png +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/icons/cellpose_masks.png +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/icons/classify.png +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/icons/convert.png +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/icons/default.png +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/icons/dna_matrix.mp4 +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/icons/download.png +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/icons/logo.pdf +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/icons/logo_spacr.png +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/icons/logo_spacr_1.png +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/icons/make_masks.png +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/icons/map_barcodes.png +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/icons/mask.png +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/icons/measure.png +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/icons/ml_analyze.png +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/icons/plaque.png +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/icons/recruitment.png +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/icons/regression.png +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/icons/run.png +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/icons/sequencing.png +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/icons/settings.png +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/icons/train_cellpose.png +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/icons/umap.png +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/images/plate1_E01_T0001F001L01A01Z01C02.tif +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/images/plate1_E01_T0001F001L01A02Z01C01.tif +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/resources/images/plate1_E01_T0001F001L01A03Z01C03.tif +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/sequencing.py +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/sim.py +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/submodules.py +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/timelapse.py +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/toxo.py +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr/version.py +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr.egg-info/SOURCES.txt +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr.egg-info/dependency_links.txt +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr.egg-info/entry_points.txt +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr.egg-info/requires.txt +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/spacr.egg-info/top_level.txt +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/tests/test_annotate_app.py +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/tests/test_core.py +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/tests/test_gui_classify_app.py +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/tests/test_gui_mask_app.py +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/tests/test_gui_measure_app.py +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/tests/test_gui_sim_app.py +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/tests/test_gui_utils.py +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/tests/test_io.py +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/tests/test_mask_app.py +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/tests/test_measure.py +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/tests/test_plot.py +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/tests/test_sim.py +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/tests/test_timelapse.py +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/tests/test_train.py +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/tests/test_umap.py +0 -0
- {spacr-0.3.22 → spacr-0.3.30}/tests/test_utils.py +0 -0
@@ -610,264 +610,168 @@ def train_model(dst, model_type, train_loaders, epochs=100, learning_rate=0.0001
|
|
610
610
|
|
611
611
|
return model, model_path
|
612
612
|
|
613
|
-
def
|
614
|
-
|
615
|
-
from
|
616
|
-
from
|
617
|
-
|
613
|
+
def generate_activation_map(settings):
|
614
|
+
|
615
|
+
from .utils import SaliencyMapGenerator, GradCAMGenerator, SelectChannels, activation_maps_to_database, activation_correlations_to_database
|
616
|
+
from .utils import print_progress, save_settings, calculate_activation_correlations
|
617
|
+
from .io import TarImageDataset
|
618
|
+
from .settings import get_default_generate_activation_map_settings
|
619
|
+
|
620
|
+
torch.cuda.empty_cache()
|
621
|
+
gc.collect()
|
622
|
+
|
623
|
+
plt.clf()
|
618
624
|
use_cuda = torch.cuda.is_available()
|
619
625
|
device = torch.device("cuda" if use_cuda else "cpu")
|
620
|
-
|
626
|
+
|
627
|
+
source_folder = os.path.dirname(os.path.dirname(settings['dataset']))
|
628
|
+
settings['src'] = source_folder
|
629
|
+
settings = get_default_generate_activation_map_settings(settings)
|
630
|
+
save_settings(settings, name=f"{settings['cam_type']}_settings", show=False)
|
631
|
+
|
632
|
+
if settings['model_type'] == 'maxvit' and settings['target_layer'] == None:
|
633
|
+
settings['target_layer'] = 'base_model.blocks.3.layers.1.layers.MBconv.layers.conv_b'
|
634
|
+
if settings['cam_type'] in ['saliency_image', 'saliency_channel']:
|
635
|
+
settings['target_layer'] = None
|
636
|
+
|
621
637
|
# Set number of jobs for loading
|
622
|
-
|
638
|
+
n_jobs = settings['n_jobs']
|
639
|
+
if n_jobs is None:
|
623
640
|
n_jobs = max(1, cpu_count() - 4)
|
624
|
-
else:
|
625
|
-
n_jobs = settings['n_jobs']
|
626
641
|
|
627
642
|
# Set transforms for images
|
628
|
-
|
629
|
-
|
630
|
-
|
631
|
-
|
632
|
-
|
633
|
-
|
634
|
-
transform = transforms.Compose([
|
635
|
-
transforms.ToTensor(),
|
636
|
-
transforms.CenterCrop(size=(settings['image_size'], settings['image_size']))])
|
643
|
+
transform = transforms.Compose([
|
644
|
+
transforms.ToTensor(),
|
645
|
+
transforms.CenterCrop(size=(settings['image_size'], settings['image_size'])),
|
646
|
+
transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)) if settings['normalize_input'] else None,
|
647
|
+
SelectChannels(settings['channels'])
|
648
|
+
])
|
637
649
|
|
638
650
|
# Handle dataset path
|
639
|
-
if os.path.exists(settings['dataset']):
|
640
|
-
tar_path = settings['dataset']
|
641
|
-
else:
|
651
|
+
if not os.path.exists(settings['dataset']):
|
642
652
|
print(f"Dataset not found at {settings['dataset']}")
|
643
653
|
return
|
644
|
-
|
645
|
-
if settings.get('save', False):
|
646
|
-
if settings['dtype'] not in ['uint8', 'uint16']:
|
647
|
-
print("Invalid dtype in settings. Please use 'uint8' or 'uint16'.")
|
648
|
-
return
|
649
654
|
|
650
655
|
# Load the model
|
651
656
|
model = torch.load(settings['model_path'])
|
652
657
|
model.to(device)
|
653
|
-
model.eval()
|
658
|
+
model.eval()
|
654
659
|
|
655
|
-
# Create directory for saving
|
656
|
-
|
657
|
-
|
658
|
-
|
659
|
-
|
660
|
+
# Create directory for saving activation maps if it does not exist
|
661
|
+
dataset_dir = os.path.dirname(settings['dataset'])
|
662
|
+
dataset_name = os.path.splitext(os.path.basename(settings['dataset']))[0]
|
663
|
+
save_dir = os.path.join(dataset_dir, dataset_name, settings['cam_type'])
|
664
|
+
batch_grid_fldr = os.path.join(save_dir, 'batch_grids')
|
665
|
+
|
666
|
+
if settings['save']:
|
660
667
|
os.makedirs(save_dir, exist_ok=True)
|
661
|
-
print(f"
|
662
|
-
|
668
|
+
print(f"Activation maps will be saved in: {save_dir}")
|
669
|
+
|
670
|
+
if settings['plot']:
|
671
|
+
os.makedirs(batch_grid_fldr, exist_ok=True)
|
672
|
+
print(f"Batch grid maps will be saved in: {batch_grid_fldr}")
|
673
|
+
|
663
674
|
# Load dataset
|
664
|
-
dataset = TarImageDataset(
|
665
|
-
data_loader = DataLoader(dataset, batch_size=settings['batch_size'], shuffle=
|
666
|
-
|
667
|
-
# Initialize
|
668
|
-
|
675
|
+
dataset = TarImageDataset(settings['dataset'], transform=transform)
|
676
|
+
data_loader = DataLoader(dataset, batch_size=settings['batch_size'], shuffle=settings['shuffle'], num_workers=n_jobs, pin_memory=True)
|
677
|
+
|
678
|
+
# Initialize generator based on cam_type
|
679
|
+
if settings['cam_type'] in ['gradcam', 'gradcam_pp']:
|
680
|
+
cam_generator = GradCAMGenerator(model, target_layer=settings['target_layer'], cam_type=settings['cam_type'])
|
681
|
+
elif settings['cam_type'] in ['saliency_image', 'saliency_channel']:
|
682
|
+
cam_generator = SaliencyMapGenerator(model)
|
683
|
+
|
669
684
|
time_ls = []
|
670
|
-
|
671
685
|
for batch_idx, (inputs, filenames) in enumerate(data_loader):
|
672
686
|
start = time.time()
|
687
|
+
img_paths = []
|
673
688
|
inputs = inputs.to(device)
|
674
|
-
|
675
|
-
saliency_maps, predicted_classes = cam_generator.compute_saliency_and_predictions(inputs)
|
676
|
-
|
677
|
-
if settings['saliency_mode'] not in ['mean', 'sum']:
|
678
|
-
print("To generate channel average or sum saliency maps set saliency_mode to 'mean' or 'sum', respectively.")
|
679
|
-
|
680
|
-
if settings['saliency_mode'] == 'mean':
|
681
|
-
saliency_maps = saliency_maps.mean(dim=1, keepdim=True)
|
682
|
-
|
683
|
-
elif settings['saliency_mode'] == 'sum':
|
684
|
-
saliency_maps = saliency_maps.sum(dim=1, keepdim=True)
|
685
|
-
|
686
|
-
# Example usage with the class
|
687
|
-
if settings.get('plot', False):
|
688
|
-
if settings['plot_mode'] not in ['mean', 'channel', '3-channel']:
|
689
|
-
print("Invalid plot_mode in settings. Please use 'mean', 'channel', or '3-channel'.")
|
690
|
-
return
|
691
|
-
else:
|
692
|
-
cam_generator.plot_saliency_grid(inputs, saliency_maps, predicted_classes, mode=settings['plot_mode'])
|
693
|
-
|
694
|
-
if settings.get('save', False):
|
695
|
-
for i in range(inputs.size(0)):
|
696
|
-
saliency_map = saliency_maps[i].detach().cpu().numpy()
|
697
|
-
|
698
|
-
# Check dtype in settings and normalize accordingly
|
699
|
-
if settings['dtype'] == 'uint16':
|
700
|
-
saliency_map = np.clip(saliency_map, 0, 1) * 65535
|
701
|
-
saliency_map = saliency_map.astype(np.uint16)
|
702
|
-
mode = 'I;16'
|
703
|
-
elif settings['dtype'] == 'uint8':
|
704
|
-
saliency_map = np.clip(saliency_map, 0, 1) * 255
|
705
|
-
saliency_map = saliency_map.astype(np.uint8)
|
706
|
-
mode = 'L' # Grayscale mode for uint8
|
707
|
-
|
708
|
-
# Get the class prediction (0 or 1)
|
709
|
-
class_pred = predicted_classes[i].item()
|
710
|
-
|
711
|
-
save_class_dir = os.path.join(save_dir, f'class_{class_pred}')
|
712
|
-
os.makedirs(save_class_dir, exist_ok=True)
|
713
|
-
save_path = os.path.join(save_class_dir, filenames[i])
|
714
|
-
|
715
|
-
# Handle different cases based on saliency_map dimensions
|
716
|
-
if saliency_map.ndim == 3: # Multi-channel case (C, H, W)
|
717
|
-
if saliency_map.shape[0] == 3: # RGB-like saliency map
|
718
|
-
saliency_image = Image.fromarray(np.moveaxis(saliency_map, 0, -1), mode="RGB") # Convert (C, H, W) to (H, W, C)
|
719
|
-
elif saliency_map.shape[0] == 1: # Single-channel case (1, H, W)
|
720
|
-
saliency_map = np.squeeze(saliency_map) # Remove the extra channel dimension
|
721
|
-
saliency_image = Image.fromarray(saliency_map, mode=mode) # Use grayscale mode for single-channel
|
722
|
-
else:
|
723
|
-
raise ValueError(f"Unexpected number of channels: {saliency_map.shape[0]}")
|
724
|
-
|
725
|
-
elif saliency_map.ndim == 2: # Single-channel case (H, W)
|
726
|
-
saliency_image = Image.fromarray(saliency_map, mode=mode) # Keep single channel (H, W)
|
727
|
-
|
728
|
-
else:
|
729
|
-
raise ValueError(f"Unexpected number of dimensions: {saliency_map.ndim}")
|
730
|
-
|
731
|
-
# Save the image
|
732
|
-
saliency_image.save(save_path)
|
733
689
|
|
690
|
+
# Compute activation maps and predictions
|
691
|
+
if settings['cam_type'] in ['gradcam', 'gradcam_pp']:
|
692
|
+
activation_maps, predicted_classes = cam_generator.compute_gradcam_and_predictions(inputs)
|
693
|
+
elif settings['cam_type'] in ['saliency_image', 'saliency_channel']:
|
694
|
+
activation_maps, predicted_classes = cam_generator.compute_saliency_and_predictions(inputs)
|
695
|
+
|
696
|
+
# Move activation maps to CPU
|
697
|
+
activation_maps = activation_maps.cpu()
|
698
|
+
|
699
|
+
# Sum saliency maps for 'saliency_image' type
|
700
|
+
if settings['cam_type'] == 'saliency_image':
|
701
|
+
summed_activation_maps = []
|
702
|
+
for i in range(activation_maps.size(0)):
|
703
|
+
activation_map = activation_maps[i]
|
704
|
+
#print(f"1: {activation_map.shape}")
|
705
|
+
activation_map_sum = activation_map.sum(dim=0, keepdim=False)
|
706
|
+
#print(f"2: {activation_map.shape}")
|
707
|
+
activation_map_sum = np.squeeze(activation_map_sum, axis=0)
|
708
|
+
#print(f"3: {activation_map_sum.shape}")
|
709
|
+
summed_activation_maps.append(activation_map_sum)
|
710
|
+
activation_maps = torch.stack(summed_activation_maps)
|
711
|
+
|
712
|
+
# For plotting
|
713
|
+
if settings['plot']:
|
714
|
+
fig = cam_generator.plot_activation_grid(inputs, activation_maps, predicted_classes, overlay=settings['overlay'], normalize=settings['normalize'])
|
715
|
+
pdf_save_path = os.path.join(batch_grid_fldr,f"batch_{batch_idx}_grid.pdf")
|
716
|
+
fig.savefig(pdf_save_path, format='pdf')
|
717
|
+
print(f"Saved batch grid to {pdf_save_path}")
|
718
|
+
#plt.show()
|
719
|
+
display(fig)
|
720
|
+
|
721
|
+
for i in range(inputs.size(0)):
|
722
|
+
activation_map = activation_maps[i].detach().numpy()
|
723
|
+
|
724
|
+
if settings['cam_type'] in ['saliency_image', 'gradcam', 'gradcam_pp']:
|
725
|
+
#activation_map = activation_map.sum(axis=0)
|
726
|
+
activation_map = (activation_map - activation_map.min()) / (activation_map.max() - activation_map.min())
|
727
|
+
activation_map = (activation_map * 255).astype(np.uint8)
|
728
|
+
activation_image = Image.fromarray(activation_map, mode='L')
|
729
|
+
|
730
|
+
elif settings['cam_type'] == 'saliency_channel':
|
731
|
+
# Handle each channel separately and save as RGB
|
732
|
+
rgb_activation_map = np.zeros((activation_map.shape[1], activation_map.shape[2], 3), dtype=np.uint8)
|
733
|
+
for c in range(min(activation_map.shape[0], 3)): # Limit to 3 channels for RGB
|
734
|
+
channel_map = activation_map[c]
|
735
|
+
channel_map = (channel_map - channel_map.min()) / (channel_map.max() - channel_map.min())
|
736
|
+
rgb_activation_map[:, :, c] = (channel_map * 255).astype(np.uint8)
|
737
|
+
activation_image = Image.fromarray(rgb_activation_map, mode='RGB')
|
738
|
+
|
739
|
+
# Save activation maps
|
740
|
+
class_pred = predicted_classes[i].item()
|
741
|
+
parts = filenames[i].split('_')
|
742
|
+
plate = parts[0]
|
743
|
+
well = parts[1]
|
744
|
+
save_class_dir = os.path.join(save_dir, f'class_{class_pred}', str(plate), str(well))
|
745
|
+
os.makedirs(save_class_dir, exist_ok=True)
|
746
|
+
save_path = os.path.join(save_class_dir, f'{filenames[i]}')
|
747
|
+
if settings['save']:
|
748
|
+
activation_image.save(save_path)
|
749
|
+
img_paths.append(save_path)
|
750
|
+
|
751
|
+
if settings['save']:
|
752
|
+
activation_maps_to_database(img_paths, source_folder, settings)
|
753
|
+
|
754
|
+
if settings['correlation']:
|
755
|
+
df = calculate_activation_correlations(inputs, activation_maps, filenames, manders_thresholds=settings['manders_thresholds'])
|
756
|
+
if settings['plot']:
|
757
|
+
display(df)
|
758
|
+
if settings['save']:
|
759
|
+
activation_correlations_to_database(df, img_paths, source_folder, settings)
|
734
760
|
|
735
761
|
stop = time.time()
|
736
762
|
duration = stop - start
|
737
763
|
time_ls.append(duration)
|
738
764
|
files_processed = batch_idx * settings['batch_size']
|
739
|
-
files_to_process = len(data_loader)
|
740
|
-
print_progress(files_processed, files_to_process, n_jobs=n_jobs, time_ls=time_ls, batch_size=settings['batch_size'], operation_type="Generating
|
741
|
-
|
742
|
-
print("Saliency map generation complete.")
|
743
|
-
|
744
|
-
def visualize_saliency_map_v1(src, model_type='maxvit', model_path='', image_size=224, channels=[1,2,3], normalize=True, class_names=None, save_saliency=False, save_dir='saliency_maps'):
|
765
|
+
files_to_process = len(data_loader) * settings['batch_size']
|
766
|
+
print_progress(files_processed, files_to_process, n_jobs=n_jobs, time_ls=time_ls, batch_size=settings['batch_size'], operation_type="Generating Activation Maps")
|
745
767
|
|
746
|
-
|
747
|
-
|
748
|
-
|
749
|
-
device = torch.device("cuda" if use_cuda else "cpu")
|
750
|
-
|
751
|
-
# Load the entire model object
|
752
|
-
model = torch.load(model_path)
|
753
|
-
model.to(device)
|
754
|
-
|
755
|
-
# Create directory for saving saliency maps if it does not exist
|
756
|
-
if save_saliency and not os.path.exists(save_dir):
|
757
|
-
os.makedirs(save_dir)
|
758
|
-
|
759
|
-
# Collect all images and their tensors
|
760
|
-
images = []
|
761
|
-
input_tensors = []
|
762
|
-
filenames = []
|
763
|
-
for file in os.listdir(src):
|
764
|
-
if not file.endswith('.png'):
|
765
|
-
continue
|
766
|
-
image_path = os.path.join(src, file)
|
767
|
-
image, input_tensor = preprocess_image(image_path, normalize=normalize, image_size=image_size, channels=channels)
|
768
|
-
images.append(image)
|
769
|
-
input_tensors.append(input_tensor)
|
770
|
-
filenames.append(file)
|
771
|
-
|
772
|
-
input_tensors = torch.cat(input_tensors).to(device)
|
773
|
-
class_labels = torch.zeros(input_tensors.size(0), dtype=torch.long).to(device) # Replace with actual class labels if available
|
774
|
-
|
775
|
-
# Generate saliency maps
|
776
|
-
cam_generator = SaliencyMapGenerator(model)
|
777
|
-
saliency_maps = cam_generator.compute_saliency_maps(input_tensors, class_labels)
|
778
|
-
|
779
|
-
# Convert saliency maps to numpy arrays
|
780
|
-
saliency_maps = saliency_maps.cpu().numpy()
|
781
|
-
|
782
|
-
N = len(images)
|
783
|
-
|
784
|
-
dst = os.path.join(src, 'saliency_maps')
|
785
|
-
|
786
|
-
for i in range(N):
|
787
|
-
fig, axes = plt.subplots(1, 3, figsize=(20, 5))
|
788
|
-
|
789
|
-
# Original image
|
790
|
-
axes[0].imshow(images[i])
|
791
|
-
axes[0].axis('off')
|
792
|
-
if class_names:
|
793
|
-
axes[0].set_title(f"Class: {class_names[class_labels[i].item()]}")
|
794
|
-
|
795
|
-
# Saliency Map
|
796
|
-
axes[1].imshow(saliency_maps[i, 0], cmap='hot')
|
797
|
-
axes[1].axis('off')
|
798
|
-
axes[1].set_title("Saliency Map")
|
799
|
-
|
800
|
-
# Overlay
|
801
|
-
overlay = np.array(images[i])
|
802
|
-
overlay = overlay / overlay.max()
|
803
|
-
saliency_map_rgb = np.stack([saliency_maps[i, 0]] * 3, axis=-1) # Convert saliency map to RGB
|
804
|
-
overlay = (overlay * 0.5 + saliency_map_rgb * 0.5).clip(0, 1)
|
805
|
-
axes[2].imshow(overlay)
|
806
|
-
axes[2].axis('off')
|
807
|
-
axes[2].set_title("Overlay")
|
808
|
-
|
809
|
-
plt.tight_layout()
|
810
|
-
plt.show()
|
811
|
-
|
812
|
-
# Save the saliency map if required
|
813
|
-
if save_saliency:
|
814
|
-
os.makedirs(dst, exist_ok=True)
|
815
|
-
saliency_image = Image.fromarray((saliency_maps[i, 0] * 255).astype(np.uint8))
|
816
|
-
saliency_image.save(os.path.join(dst, f'saliency_{filenames[i]}'))
|
817
|
-
|
818
|
-
def visualize_grad_cam(src, model_path, target_layers=None, image_size=224, channels=[1, 2, 3], normalize=True, class_names=None, save_cam=False, save_dir='grad_cam'):
|
819
|
-
|
820
|
-
from spacr.utils import GradCAM, preprocess_image, show_cam_on_image, recommend_target_layers
|
821
|
-
|
822
|
-
use_cuda = torch.cuda.is_available()
|
823
|
-
device = torch.device("cuda" if use_cuda else "cpu")
|
824
|
-
|
825
|
-
model = torch.load(model_path)
|
826
|
-
model.to(device)
|
827
|
-
|
828
|
-
# If no target layers provided, recommend a target layer
|
829
|
-
if target_layers is None:
|
830
|
-
target_layers, all_layers = recommend_target_layers(model)
|
831
|
-
print(f"No target layer provided. Using recommended layer: {target_layers[0]}")
|
832
|
-
print("All possible target layers:")
|
833
|
-
for layer in all_layers:
|
834
|
-
print(layer)
|
835
|
-
|
836
|
-
grad_cam = GradCAM(model=model, target_layers=target_layers, use_cuda=use_cuda)
|
837
|
-
|
838
|
-
if save_cam and not os.path.exists(save_dir):
|
839
|
-
os.makedirs(save_dir)
|
840
|
-
|
841
|
-
images = []
|
842
|
-
filenames = []
|
843
|
-
for file in os.listdir(src):
|
844
|
-
if not file.endswith('.png'):
|
845
|
-
continue
|
846
|
-
image_path = os.path.join(src, file)
|
847
|
-
image, input_tensor = preprocess_image(image_path, normalize=normalize, image_size=image_size, channels=channels)
|
848
|
-
images.append(image)
|
849
|
-
filenames.append(file)
|
850
|
-
|
851
|
-
input_tensor = input_tensor.to(device)
|
852
|
-
cam = grad_cam(input_tensor)
|
853
|
-
cam_image = show_cam_on_image(np.array(image) / 255.0, cam)
|
854
|
-
|
855
|
-
fig, ax = plt.subplots(1, 2, figsize=(10, 5))
|
856
|
-
ax[0].imshow(image)
|
857
|
-
ax[0].axis('off')
|
858
|
-
ax[0].set_title("Original Image")
|
859
|
-
ax[1].imshow(cam_image)
|
860
|
-
ax[1].axis('off')
|
861
|
-
ax[1].set_title("Grad-CAM")
|
862
|
-
plt.show()
|
863
|
-
|
864
|
-
if save_cam:
|
865
|
-
cam_pil = Image.fromarray(cam_image)
|
866
|
-
cam_pil.save(os.path.join(save_dir, f'grad_cam_{file}'))
|
768
|
+
torch.cuda.empty_cache()
|
769
|
+
gc.collect()
|
770
|
+
print("Activation map generation complete.")
|
867
771
|
|
868
772
|
def visualize_classes(model, dtype, class_names, **kwargs):
|
869
773
|
|
870
|
-
from
|
774
|
+
from .utils import class_visualization
|
871
775
|
|
872
776
|
for target_y in range(2): # Assuming binary classification
|
873
777
|
print(f"Visualizing class: {class_names[target_y]}")
|
@@ -57,6 +57,7 @@ class MainApp(tk.Tk):
|
|
57
57
|
"Map Barcodes": (lambda frame: initiate_root(self, 'map_barcodes'), "Map barcodes to data."),
|
58
58
|
"Regression": (lambda frame: initiate_root(self, 'regression'), "Perform regression analysis."),
|
59
59
|
"Recruitment": (lambda frame: initiate_root(self, 'recruitment'), "Analyze recruitment data."),
|
60
|
+
"Activation": (lambda frame: initiate_root(self, 'activation'), "Generate activation maps of computer vision models and measure channel-activation correlation."),
|
60
61
|
"Plaque": (lambda frame: initiate_root(self, 'analyze_plaques'), "Analyze plaque data.")
|
61
62
|
}
|
62
63
|
|
@@ -379,10 +379,13 @@ def set_globals(thread_control_var, q_var, console_output_var, parent_frame_var,
|
|
379
379
|
index_control = index_control_var
|
380
380
|
|
381
381
|
def import_settings(settings_type='mask'):
|
382
|
-
from .gui_utils import convert_settings_dict_for_gui, hide_all_settings
|
383
382
|
global vars_dict, scrollable_frame, button_scrollable_frame
|
384
|
-
from .settings import generate_fields, set_default_settings_preprocess_generate_masks, get_measure_crop_settings, set_default_train_test_model, set_default_generate_barecode_mapping, set_default_umap_image_settings, get_analyze_recruitment_default_settings
|
385
383
|
|
384
|
+
from .gui_utils import convert_settings_dict_for_gui, hide_all_settings
|
385
|
+
from .settings import generate_fields, set_default_settings_preprocess_generate_masks, get_measure_crop_settings, set_default_train_test_model
|
386
|
+
from .settings import set_default_generate_barecode_mapping, set_default_umap_image_settings, get_analyze_recruitment_default_settings
|
387
|
+
from .settings import get_default_generate_activation_map_settings
|
388
|
+
#activation
|
386
389
|
def read_settings_from_csv(csv_file_path):
|
387
390
|
settings = {}
|
388
391
|
with open(csv_file_path, newline='') as csvfile:
|
@@ -422,6 +425,8 @@ def import_settings(settings_type='mask'):
|
|
422
425
|
settings = set_default_umap_image_settings(settings={})
|
423
426
|
elif settings_type == 'recruitment':
|
424
427
|
settings = get_analyze_recruitment_default_settings(settings={})
|
428
|
+
elif settings_type == 'activation':
|
429
|
+
settings = get_default_generate_activation_map_settings(settings={})
|
425
430
|
elif settings_type == 'analyze_plaques':
|
426
431
|
settings = {}
|
427
432
|
elif settings_type == 'convert':
|
@@ -436,8 +441,10 @@ def import_settings(settings_type='mask'):
|
|
436
441
|
|
437
442
|
def setup_settings_panel(vertical_container, settings_type='mask'):
|
438
443
|
global vars_dict, scrollable_frame
|
439
|
-
from .settings import get_identify_masks_finetune_default_settings, set_default_analyze_screen, set_default_settings_preprocess_generate_masks
|
440
|
-
from .settings import
|
444
|
+
from .settings import get_identify_masks_finetune_default_settings, set_default_analyze_screen, set_default_settings_preprocess_generate_masks
|
445
|
+
from .settings import get_measure_crop_settings, deep_spacr_defaults, set_default_generate_barecode_mapping, set_default_umap_image_settings
|
446
|
+
from .settings import get_map_barcodes_default_settings, get_analyze_recruitment_default_settings, get_check_cellpose_models_default_settings
|
447
|
+
from .settings import generate_fields, get_perform_regression_default_settings, get_train_cellpose_default_settings, get_default_generate_activation_map_settings
|
441
448
|
from .gui_utils import convert_settings_dict_for_gui
|
442
449
|
from .gui_elements import set_element_size
|
443
450
|
|
@@ -480,6 +487,8 @@ def setup_settings_panel(vertical_container, settings_type='mask'):
|
|
480
487
|
settings = get_perform_regression_default_settings(settings={})
|
481
488
|
elif settings_type == 'recruitment':
|
482
489
|
settings = get_analyze_recruitment_default_settings(settings={})
|
490
|
+
elif settings_type == 'activation':
|
491
|
+
settings = get_default_generate_activation_map_settings(settings={})
|
483
492
|
elif settings_type == 'analyze_plaques':
|
484
493
|
settings = {'src':'path to images'}
|
485
494
|
elif settings_type == 'convert':
|
@@ -77,7 +77,7 @@ def load_app(root, app_name, app_func):
|
|
77
77
|
else:
|
78
78
|
proceed_with_app(root, app_name, app_func)
|
79
79
|
|
80
|
-
def
|
80
|
+
def parse_list_v1(value):
|
81
81
|
"""
|
82
82
|
Parses a string representation of a list and returns the parsed list.
|
83
83
|
|
@@ -98,6 +98,34 @@ def parse_list(value):
|
|
98
98
|
return parsed_value
|
99
99
|
elif all(isinstance(item, str) for item in parsed_value):
|
100
100
|
return parsed_value
|
101
|
+
elif all(isinstance(item, float) for item in parsed_value):
|
102
|
+
return parsed_value
|
103
|
+
else:
|
104
|
+
raise ValueError("List contains mixed types or unsupported types")
|
105
|
+
else:
|
106
|
+
raise ValueError(f"Expected a list but got {type(parsed_value).__name__}")
|
107
|
+
except (ValueError, SyntaxError) as e:
|
108
|
+
raise ValueError(f"Invalid format for list: {value}. Error: {e}")
|
109
|
+
|
110
|
+
def parse_list(value):
|
111
|
+
"""
|
112
|
+
Parses a string representation of a list and returns the parsed list.
|
113
|
+
|
114
|
+
Args:
|
115
|
+
value (str): The string representation of the list.
|
116
|
+
|
117
|
+
Returns:
|
118
|
+
list: The parsed list, which can contain integers, floats, or strings.
|
119
|
+
|
120
|
+
Raises:
|
121
|
+
ValueError: If the input value is not a valid list format or contains mixed types or unsupported types.
|
122
|
+
"""
|
123
|
+
try:
|
124
|
+
parsed_value = ast.literal_eval(value)
|
125
|
+
if isinstance(parsed_value, list):
|
126
|
+
# Check if all elements are homogeneous (either all int, float, or str)
|
127
|
+
if all(isinstance(item, (int, float, str)) for item in parsed_value):
|
128
|
+
return parsed_value
|
101
129
|
else:
|
102
130
|
raise ValueError("List contains mixed types or unsupported types")
|
103
131
|
else:
|
@@ -2861,10 +2861,10 @@ def generate_dataset(settings={}):
|
|
2861
2861
|
date_name = datetime.date.today().strftime('%y%m%d')
|
2862
2862
|
if len(settings['src']) > 1:
|
2863
2863
|
date_name = f"{date_name}_combined"
|
2864
|
-
if not settings['file_metadata'] is None:
|
2865
|
-
|
2866
|
-
else:
|
2867
|
-
|
2864
|
+
#if not settings['file_metadata'] is None:
|
2865
|
+
# tar_name = f"{date_name}_{settings['experiment']}_{settings['file_metadata']}.tar"
|
2866
|
+
#else:
|
2867
|
+
tar_name = f"{date_name}_{settings['experiment']}.tar"
|
2868
2868
|
tar_name = os.path.join(dst, tar_name)
|
2869
2869
|
if os.path.exists(tar_name):
|
2870
2870
|
number = random.randint(1, 100)
|
@@ -652,43 +652,6 @@ def img_list_to_grid(grid, titles=None):
|
|
652
652
|
plt.tight_layout(pad=0.1)
|
653
653
|
return fig
|
654
654
|
|
655
|
-
def filepaths_to_database(img_paths, settings, source_folder, crop_mode):
|
656
|
-
from. utils import _map_wells_png
|
657
|
-
png_df = pd.DataFrame(img_paths, columns=['png_path'])
|
658
|
-
|
659
|
-
png_df['file_name'] = png_df['png_path'].apply(lambda x: os.path.basename(x))
|
660
|
-
|
661
|
-
parts = png_df['file_name'].apply(lambda x: pd.Series(_map_wells_png(x, timelapse=settings['timelapse'])))
|
662
|
-
|
663
|
-
columns = ['plate', 'row', 'col', 'field']
|
664
|
-
|
665
|
-
if settings['timelapse']:
|
666
|
-
columns = columns + ['time_id']
|
667
|
-
|
668
|
-
columns = columns + ['prcfo']
|
669
|
-
|
670
|
-
if crop_mode == 'cell':
|
671
|
-
columns = columns + ['cell_id']
|
672
|
-
|
673
|
-
if crop_mode == 'nucleus':
|
674
|
-
columns = columns + ['nucleus_id']
|
675
|
-
|
676
|
-
if crop_mode == 'pathogen':
|
677
|
-
columns = columns + ['pathogen_id']
|
678
|
-
|
679
|
-
if crop_mode == 'cytoplasm':
|
680
|
-
columns = columns + ['cytoplasm_id']
|
681
|
-
|
682
|
-
png_df[columns] = parts
|
683
|
-
|
684
|
-
try:
|
685
|
-
conn = sqlite3.connect(f'{source_folder}/measurements/measurements.db', timeout=5)
|
686
|
-
png_df.to_sql('png_list', conn, if_exists='append', index=False)
|
687
|
-
conn.commit()
|
688
|
-
except sqlite3.OperationalError as e:
|
689
|
-
print(f"SQLite error: {e}", flush=True)
|
690
|
-
traceback.print_exc()
|
691
|
-
|
692
655
|
#@log_function_call
|
693
656
|
def _measure_crop_core(index, time_ls, file, settings):
|
694
657
|
|
@@ -711,7 +674,7 @@ def _measure_crop_core(index, time_ls, file, settings):
|
|
711
674
|
"""
|
712
675
|
|
713
676
|
from .plot import _plot_cropped_arrays
|
714
|
-
from .utils import _merge_overlapping_objects, _filter_object, _relabel_parent_with_child_labels, _exclude_objects, normalize_to_dtype
|
677
|
+
from .utils import _merge_overlapping_objects, _filter_object, _relabel_parent_with_child_labels, _exclude_objects, normalize_to_dtype, filepaths_to_database
|
715
678
|
from .utils import _merge_and_save_to_database, _crop_center, _find_bounding_box, _generate_names, _get_percentiles
|
716
679
|
|
717
680
|
figs = {}
|