spacr 0.1.76__tar.gz → 0.1.81__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (61) hide show
  1. {spacr-0.1.76/spacr.egg-info → spacr-0.1.81}/PKG-INFO +1 -1
  2. {spacr-0.1.76 → spacr-0.1.81}/setup.py +1 -1
  3. {spacr-0.1.76 → spacr-0.1.81}/spacr/core.py +8 -8
  4. {spacr-0.1.76 → spacr-0.1.81}/spacr/gui.py +36 -8
  5. {spacr-0.1.76 → spacr-0.1.81}/spacr/gui_core.py +147 -42
  6. {spacr-0.1.76 → spacr-0.1.81}/spacr/gui_elements.py +9 -1
  7. {spacr-0.1.76 → spacr-0.1.81}/spacr/io.py +1 -1
  8. {spacr-0.1.76 → spacr-0.1.81}/spacr/measure.py +14 -14
  9. {spacr-0.1.76 → spacr-0.1.81}/spacr/settings.py +258 -97
  10. {spacr-0.1.76 → spacr-0.1.81/spacr.egg-info}/PKG-INFO +1 -1
  11. {spacr-0.1.76 → spacr-0.1.81}/spacr.egg-info/SOURCES.txt +0 -2
  12. spacr-0.1.76/spacr/gui_run.py +0 -58
  13. spacr-0.1.76/spacr/gui_wrappers.py +0 -149
  14. {spacr-0.1.76 → spacr-0.1.81}/LICENSE +0 -0
  15. {spacr-0.1.76 → spacr-0.1.81}/MANIFEST.in +0 -0
  16. {spacr-0.1.76 → spacr-0.1.81}/README.rst +0 -0
  17. {spacr-0.1.76 → spacr-0.1.81}/setup.cfg +0 -0
  18. {spacr-0.1.76 → spacr-0.1.81}/spacr/__init__.py +0 -0
  19. {spacr-0.1.76 → spacr-0.1.81}/spacr/__main__.py +0 -0
  20. {spacr-0.1.76 → spacr-0.1.81}/spacr/app_annotate.py +0 -0
  21. {spacr-0.1.76 → spacr-0.1.81}/spacr/app_classify.py +0 -0
  22. {spacr-0.1.76 → spacr-0.1.81}/spacr/app_make_masks.py +0 -0
  23. {spacr-0.1.76 → spacr-0.1.81}/spacr/app_mask.py +0 -0
  24. {spacr-0.1.76 → spacr-0.1.81}/spacr/app_measure.py +0 -0
  25. {spacr-0.1.76 → spacr-0.1.81}/spacr/app_sequencing.py +0 -0
  26. {spacr-0.1.76 → spacr-0.1.81}/spacr/app_umap.py +0 -0
  27. {spacr-0.1.76 → spacr-0.1.81}/spacr/chris.py +0 -0
  28. {spacr-0.1.76 → spacr-0.1.81}/spacr/deep_spacr.py +0 -0
  29. {spacr-0.1.76 → spacr-0.1.81}/spacr/graph_learning.py +0 -0
  30. {spacr-0.1.76 → spacr-0.1.81}/spacr/gui_utils.py +0 -0
  31. {spacr-0.1.76 → spacr-0.1.81}/spacr/logger.py +0 -0
  32. {spacr-0.1.76 → spacr-0.1.81}/spacr/models/cp/toxo_plaque_cyto_e25000_X1120_Y1120.CP_model +0 -0
  33. {spacr-0.1.76 → spacr-0.1.81}/spacr/models/cp/toxo_plaque_cyto_e25000_X1120_Y1120.CP_model_settings.csv +0 -0
  34. {spacr-0.1.76 → spacr-0.1.81}/spacr/models/cp/toxo_pv_lumen.CP_model +0 -0
  35. {spacr-0.1.76 → spacr-0.1.81}/spacr/plot.py +0 -0
  36. {spacr-0.1.76 → spacr-0.1.81}/spacr/sequencing.py +0 -0
  37. {spacr-0.1.76 → spacr-0.1.81}/spacr/sim.py +0 -0
  38. {spacr-0.1.76 → spacr-0.1.81}/spacr/sim_app.py +0 -0
  39. {spacr-0.1.76 → spacr-0.1.81}/spacr/timelapse.py +0 -0
  40. {spacr-0.1.76 → spacr-0.1.81}/spacr/utils.py +0 -0
  41. {spacr-0.1.76 → spacr-0.1.81}/spacr/version.py +0 -0
  42. {spacr-0.1.76 → spacr-0.1.81}/spacr.egg-info/dependency_links.txt +0 -0
  43. {spacr-0.1.76 → spacr-0.1.81}/spacr.egg-info/entry_points.txt +0 -0
  44. {spacr-0.1.76 → spacr-0.1.81}/spacr.egg-info/requires.txt +0 -0
  45. {spacr-0.1.76 → spacr-0.1.81}/spacr.egg-info/top_level.txt +0 -0
  46. {spacr-0.1.76 → spacr-0.1.81}/tests/test_annotate_app.py +0 -0
  47. {spacr-0.1.76 → spacr-0.1.81}/tests/test_core.py +0 -0
  48. {spacr-0.1.76 → spacr-0.1.81}/tests/test_gui_classify_app.py +0 -0
  49. {spacr-0.1.76 → spacr-0.1.81}/tests/test_gui_mask_app.py +0 -0
  50. {spacr-0.1.76 → spacr-0.1.81}/tests/test_gui_measure_app.py +0 -0
  51. {spacr-0.1.76 → spacr-0.1.81}/tests/test_gui_sim_app.py +0 -0
  52. {spacr-0.1.76 → spacr-0.1.81}/tests/test_gui_utils.py +0 -0
  53. {spacr-0.1.76 → spacr-0.1.81}/tests/test_io.py +0 -0
  54. {spacr-0.1.76 → spacr-0.1.81}/tests/test_mask_app.py +0 -0
  55. {spacr-0.1.76 → spacr-0.1.81}/tests/test_measure.py +0 -0
  56. {spacr-0.1.76 → spacr-0.1.81}/tests/test_plot.py +0 -0
  57. {spacr-0.1.76 → spacr-0.1.81}/tests/test_sim.py +0 -0
  58. {spacr-0.1.76 → spacr-0.1.81}/tests/test_timelapse.py +0 -0
  59. {spacr-0.1.76 → spacr-0.1.81}/tests/test_train.py +0 -0
  60. {spacr-0.1.76 → spacr-0.1.81}/tests/test_umap.py +0 -0
  61. {spacr-0.1.76 → spacr-0.1.81}/tests/test_utils.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: spacr
3
- Version: 0.1.76
3
+ Version: 0.1.81
4
4
  Summary: Spatial phenotype analysis of crisp screens (SpaCr)
5
5
  Home-page: https://github.com/EinarOlafsson/spacr
6
6
  Author: Einar Birnir Olafsson
@@ -50,7 +50,7 @@ dependencies = [
50
50
 
51
51
  setup(
52
52
  name="spacr",
53
- version="0.1.76",
53
+ version="0.1.81",
54
54
  author="Einar Birnir Olafsson",
55
55
  author_email="olafsson@med.umich.com",
56
56
  description="Spatial phenotype analysis of crisp screens (SpaCr)",
@@ -994,7 +994,7 @@ def apply_model_to_tar(tar_path, model_path, file_type='cell_png', image_size=22
994
994
  model = torch.load(model_path)
995
995
 
996
996
  dataset = TarImageDataset(tar_path, transform=transform)
997
- data_loader = DataLoader(dataset, batch_size=batch_size, shuffle=True, n_jobs=n_jobs, pin_memory=True)
997
+ data_loader = DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=n_jobs, pin_memory=True)
998
998
 
999
999
  model_name = os.path.splitext(os.path.basename(model_path))[0]
1000
1000
  dataset_name = os.path.splitext(os.path.basename(tar_path))[0]
@@ -1055,7 +1055,7 @@ def apply_model(src, model_path, image_size=224, batch_size=64, normalize=True,
1055
1055
 
1056
1056
  print(f'Loading dataset in {src} with {len(src)} images')
1057
1057
  dataset = NoClassDataset(data_dir=src, transform=transform, shuffle=True, load_to_memory=False)
1058
- data_loader = DataLoader(dataset, batch_size=batch_size, shuffle=True, n_jobs=n_jobs)
1058
+ data_loader = DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=n_jobs)
1059
1059
  print(f'Loaded {len(src)} images')
1060
1060
 
1061
1061
  result_loc = os.path.splitext(model_path)[0]+datetime.date.today().strftime('%y%m%d')+'_'+os.path.splitext(model_path)[1]+'_test_result.csv'
@@ -1404,10 +1404,10 @@ def generate_loaders(src, train_mode='erm', mode='train', image_size=224, batch_
1404
1404
  #val_dataset = augment_dataset(val_dataset, is_grayscale=(len(channels) == 1))
1405
1405
  print(f'Data after augmentation: Train: {len(train_dataset)}')#, Validataion:{len(val_dataset)}')
1406
1406
 
1407
- train_loaders = DataLoader(train_dataset, batch_size=batch_size, shuffle=shuffle, n_jobs=n_jobs if n_jobs is not None else 0, pin_memory=pin_memory)
1408
- val_loaders = DataLoader(val_dataset, batch_size=batch_size, shuffle=shuffle, n_jobs=n_jobs if n_jobs is not None else 0, pin_memory=pin_memory)
1407
+ train_loaders = DataLoader(train_dataset, batch_size=batch_size, shuffle=shuffle, num_workers=n_jobs if n_jobs is not None else 0, pin_memory=pin_memory)
1408
+ val_loaders = DataLoader(val_dataset, batch_size=batch_size, shuffle=shuffle, num_workers=n_jobs if n_jobs is not None else 0, pin_memory=pin_memory)
1409
1409
  else:
1410
- train_loaders = DataLoader(data, batch_size=batch_size, shuffle=shuffle, n_jobs=n_jobs if n_jobs is not None else 0, pin_memory=pin_memory)
1410
+ train_loaders = DataLoader(data, batch_size=batch_size, shuffle=shuffle, num_workers=n_jobs if n_jobs is not None else 0, pin_memory=pin_memory)
1411
1411
 
1412
1412
  elif train_mode == 'irm':
1413
1413
  data = MyDataset(data_dir, classes, transform=transform, shuffle=shuffle, pin_memory=pin_memory)
@@ -1436,13 +1436,13 @@ def generate_loaders(src, train_mode='erm', mode='train', image_size=224, batch_
1436
1436
  #val_dataset = augment_dataset(val_dataset, is_grayscale=(len(channels) == 1))
1437
1437
  print(f'Data after augmentation: Train: {len(train_dataset)}')#, Validataion:{len(val_dataset)}')
1438
1438
 
1439
- train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=shuffle, n_jobs=n_jobs if n_jobs is not None else 0, pin_memory=pin_memory)
1440
- val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=shuffle, n_jobs=n_jobs if n_jobs is not None else 0, pin_memory=pin_memory)
1439
+ train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=shuffle, num_workers=n_jobs if n_jobs is not None else 0, pin_memory=pin_memory)
1440
+ val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=shuffle, num_workers=n_jobs if n_jobs is not None else 0, pin_memory=pin_memory)
1441
1441
 
1442
1442
  train_loaders.append(train_loader)
1443
1443
  val_loaders.append(val_loader)
1444
1444
  else:
1445
- train_loader = DataLoader(plate_data, batch_size=batch_size, shuffle=shuffle, n_jobs=n_jobs if n_jobs is not None else 0, pin_memory=pin_memory)
1445
+ train_loader = DataLoader(plate_data, batch_size=batch_size, shuffle=shuffle, num_workers=n_jobs if n_jobs is not None else 0, pin_memory=pin_memory)
1446
1446
  train_loaders.append(train_loader)
1447
1447
  val_loaders.append(None)
1448
1448
 
@@ -17,21 +17,33 @@ class MainApp(tk.Tk):
17
17
  style = ttk.Style()
18
18
  set_dark_style(style)
19
19
 
20
- self.gui_apps = {
20
+ self.main_gui_apps = {
21
21
  "Mask": (lambda frame: initiate_root(frame, 'mask'), "Generate cellpose masks for cells, nuclei and pathogen images."),
22
22
  "Measure": (lambda frame: initiate_root(frame, 'measure'), "Measure single object intensity and morphological feature. Crop and save single object image"),
23
23
  "Annotate": (lambda frame: initiate_root(frame, 'annotate'), "Annotation single object images on a grid. Annotations are saved to database."),
24
- "Make Masks": (lambda frame: initiate_root(frame, 'make_masks'),"Adjust pre-existing Cellpose models to your specific dataset for improved performance"),
24
+ "Make Masks": (lambda frame: initiate_root(frame, 'make_masks'), "Adjust pre-existing Cellpose models to your specific dataset for improved performance"),
25
25
  "Classify": (lambda frame: initiate_root(frame, 'classify'), "Train Torch Convolutional Neural Networks (CNNs) or Transformers to classify single object images."),
26
- "Sequencing": (lambda frame: initiate_root(frame, 'sequencing'), "Analyze sequensing data."),
27
- "Umap": (lambda frame: initiate_root(frame, 'umap'), "Generate UMAP embedings with datapoints represented as images.")
26
+ }
27
+
28
+ self.additional_gui_apps = {
29
+ "Sequencing": (lambda frame: initiate_root(frame, 'sequencing'), "Analyze sequencing data."),
30
+ "Umap": (lambda frame: initiate_root(frame, 'umap'), "Generate UMAP embeddings with datapoints represented as images."),
31
+ "Train Cellpose": (lambda frame: initiate_root(frame, 'train_cellpose'), "Train custom Cellpose models."),
32
+ "ML Analyze": (lambda frame: initiate_root(frame, 'ml_analyze'), "Machine learning analysis of data."),
33
+ "Cellpose Masks": (lambda frame: initiate_root(frame, 'cellpose_masks'), "Generate Cellpose masks."),
34
+ "Cellpose All": (lambda frame: initiate_root(frame, 'cellpose_all'), "Run Cellpose on all images."),
35
+ "Map Barcodes": (lambda frame: initiate_root(frame, 'map_barcodes'), "Map barcodes to data."),
36
+ "Regression": (lambda frame: initiate_root(frame, 'regression'), "Perform regression analysis."),
37
+ "Recruitment": (lambda frame: initiate_root(frame, 'recruitment'), "Analyze recruitment data.")
28
38
  }
29
39
 
30
40
  self.selected_app = tk.StringVar()
31
41
  self.create_widgets()
32
42
 
33
- if default_app in self.gui_apps:
34
- self.load_app(default_app, self.gui_apps[default_app][0])
43
+ if default_app in self.main_gui_apps:
44
+ self.load_app(default_app, self.main_gui_apps[default_app][0])
45
+ elif default_app in self.additional_gui_apps:
46
+ self.load_app(default_app, self.additional_gui_apps[default_app][0])
35
47
 
36
48
  def create_widgets(self):
37
49
  # Create the menu bar
@@ -47,7 +59,7 @@ class MainApp(tk.Tk):
47
59
  self.content_frame = tk.Frame(self.canvas, bg="black")
48
60
  self.content_frame.pack(fill=tk.BOTH, expand=True)
49
61
 
50
- # Create startup screen with buttons for each GUI app
62
+ # Create startup screen with buttons for each main GUI app and drop-down for additional apps
51
63
  self.create_startup_screen()
52
64
 
53
65
  def create_startup_screen(self):
@@ -68,7 +80,7 @@ class MainApp(tk.Tk):
68
80
  buttons_frame = tk.Frame(self.content_frame, bg="black")
69
81
  buttons_frame.pack(pady=10, expand=True, padx=10)
70
82
 
71
- for i, (app_name, app_data) in enumerate(self.gui_apps.items()):
83
+ for i, (app_name, app_data) in enumerate(self.main_gui_apps.items()):
72
84
  app_func, app_desc = app_data
73
85
 
74
86
  # Create custom button with text
@@ -78,6 +90,17 @@ class MainApp(tk.Tk):
78
90
  description_label = tk.Label(buttons_frame, text=app_desc, bg="black", fg="white", wraplength=800, justify="left", font=('Helvetica', 12))
79
91
  description_label.grid(row=i, column=1, pady=10, padx=10, sticky="w")
80
92
 
93
+ # Add drop-down menu for additional apps
94
+ dropdown_frame = tk.Frame(buttons_frame, bg="black")
95
+ dropdown_frame.grid(row=len(self.main_gui_apps), column=0, columnspan=2, pady=20)
96
+
97
+ tk.Label(dropdown_frame, text="Additional Apps", bg="black", fg="white", font=('Helvetica', 12)).pack(side=tk.LEFT, padx=5)
98
+ self.additional_apps_var = tk.StringVar(value="Select an app")
99
+ dropdown = ttk.Combobox(dropdown_frame, textvariable=self.additional_apps_var, values=list(self.additional_gui_apps.keys()))
100
+ dropdown.pack(side=tk.LEFT, padx=5)
101
+ load_button = spacrButton(dropdown_frame, text="Load", command=self.load_additional_app, font=('Helvetica', 12))
102
+ load_button.pack(side=tk.LEFT, padx=5)
103
+
81
104
  # Ensure buttons have a fixed width
82
105
  buttons_frame.grid_columnconfigure(0, minsize=150)
83
106
  # Ensure descriptions expand as needed
@@ -135,6 +158,11 @@ class MainApp(tk.Tk):
135
158
  app_frame.pack(fill=tk.BOTH, expand=True)
136
159
  app_func(app_frame)
137
160
 
161
+ def load_additional_app(self):
162
+ selected_app = self.additional_apps_var.get()
163
+ if selected_app in self.additional_gui_apps:
164
+ self.load_app(selected_app, self.additional_gui_apps[selected_app][0])
165
+
138
166
  def clear_frame(self, frame):
139
167
  for widget in frame.winfo_children():
140
168
  widget.destroy()
@@ -1,27 +1,24 @@
1
- import os, traceback, ctypes, matplotlib, requests, csv
1
+ import os, traceback, ctypes, matplotlib, requests, csv, matplotlib, time, requests
2
+ import matplotlib.pyplot as plt
2
3
  matplotlib.use('Agg')
3
4
  import tkinter as tk
4
5
  from tkinter import ttk
5
6
  from tkinter import filedialog
6
- from multiprocessing import Process, Value, Queue
7
+ from multiprocessing import Process, Value, Queue, set_start_method
7
8
  from multiprocessing.sharedctypes import Synchronized
8
- from multiprocessing import set_start_method
9
9
  from tkinter import ttk, scrolledtext
10
10
  from matplotlib.figure import Figure
11
11
  from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
12
- import time
13
- import requests
14
12
  from huggingface_hub import list_repo_files
15
13
 
16
- from .settings import set_default_train_test_model, get_measure_crop_settings, set_default_settings_preprocess_generate_masks, get_analyze_reads_default_settings, set_default_umap_image_settings
17
- from .gui_elements import create_menu_bar, spacrButton, spacrLabel, spacrFrame, spacrDropdownMenu ,set_dark_style, set_default_font
18
- from . gui_run import run_mask_gui, run_measure_gui, run_classify_gui, run_sequencing_gui, run_umap_gui
19
-
20
14
  try:
21
15
  ctypes.windll.shcore.SetProcessDpiAwareness(True)
22
16
  except AttributeError:
23
17
  pass
24
18
 
19
+ from .settings import set_default_train_test_model, get_measure_crop_settings, set_default_settings_preprocess_generate_masks, get_analyze_reads_default_settings, set_default_umap_image_settings
20
+ from .gui_elements import create_menu_bar, spacrButton, spacrLabel, spacrFrame, spacrDropdownMenu ,set_dark_style, set_default_font
21
+
25
22
  # Define global variables
26
23
  q = None
27
24
  console_output = None
@@ -44,26 +41,116 @@ def initiate_abort():
44
41
  thread_control["run_thread"].join()
45
42
  thread_control["run_thread"] = None
46
43
 
47
- def start_process_v1(q, fig_queue, settings_type='mask'):
48
- global thread_control, vars_dict
49
- from .settings import check_settings, expected_types
44
+ def spacrFigShow(fig_queue=None):
45
+ """
46
+ Replacement for plt.show() that queues figures instead of displaying them.
47
+ """
48
+ fig = plt.gcf()
49
+ if fig_queue:
50
+ fig_queue.put(fig)
51
+ else:
52
+ fig.show()
53
+ plt.close(fig)
50
54
 
51
- settings = check_settings(vars_dict, expected_types, q)
52
- if thread_control.get("run_thread") is not None:
53
- initiate_abort()
54
- stop_requested = Value('i', 0) # multiprocessing shared value for inter-process communication
55
- thread_control["stop_requested"] = stop_requested
55
+ def function_gui_wrapper(function=None, settings={}, q=None, fig_queue=None, imports=1):
56
+
57
+ """
58
+ Wraps the run_multiple_simulations function to integrate with GUI processes.
59
+
60
+ Parameters:
61
+ - settings: dict, The settings for the run_multiple_simulations function.
62
+ - q: multiprocessing.Queue, Queue for logging messages to the GUI.
63
+ - fig_queue: multiprocessing.Queue, Queue for sending figures to the GUI.
64
+ """
65
+
66
+ # Temporarily override plt.show
67
+ original_show = plt.show
68
+ plt.show = lambda: spacrFigShow(fig_queue)
69
+
70
+ try:
71
+ if imports == 1:
72
+ function(settings=settings)
73
+ elif imports == 2:
74
+ function(src=settings['src'], settings=settings)
75
+ except Exception as e:
76
+ # Send the error message to the GUI via the queue
77
+ errorMessage = f"Error during processing: {e}"
78
+ q.put(errorMessage)
79
+ traceback.print_exc()
80
+ finally:
81
+ # Restore the original plt.show function
82
+ plt.show = original_show
83
+
84
+ def run_function_gui(settings_type, settings, q, fig_queue, stop_requested):
85
+ from .gui_utils import process_stdout_stderr
86
+ from .core import preprocess_generate_masks, generate_ml_scores, identify_masks_finetune, check_cellpose_models, analyze_recruitment, train_cellpose, compare_cellpose_masks, analyze_plaques, generate_dataset, apply_model_to_tar
87
+ from .io import generate_cellpose_train_test
88
+ from .measure import measure_crop
89
+ from .sim import run_multiple_simulations
90
+ from .deep_spacr import train_test_model
91
+ from .sequencing import analyze_reads, map_barcodes_folder, perform_regression
92
+ process_stdout_stderr(q)
93
+
56
94
  if settings_type == 'mask':
57
- thread_control["run_thread"] = Process(target=run_mask_gui, args=(settings, q, fig_queue, stop_requested))
95
+ function = preprocess_generate_masks
96
+ imports = 2
58
97
  elif settings_type == 'measure':
59
- thread_control["run_thread"] = Process(target=run_measure_gui, args=(settings, q, fig_queue, stop_requested))
60
- elif settings_type == 'classify':
61
- thread_control["run_thread"] = Process(target=run_classify_gui, args=(settings, q, fig_queue, stop_requested))
98
+ function = measure_crop
99
+ imports = 1
100
+ elif settings_type == 'simulation':
101
+ function = run_multiple_simulations
102
+ imports = 1
62
103
  elif settings_type == 'sequencing':
63
- thread_control["run_thread"] = Process(target=run_sequencing_gui, args=(settings, q, fig_queue, stop_requested))
64
- elif settings_type == 'umap':
65
- thread_control["run_thread"] = Process(target=run_umap_gui, args=(settings, q, fig_queue, stop_requested))
66
- thread_control["run_thread"].start()
104
+ function = analyze_reads
105
+ imports = 1
106
+ elif settings_type == 'classify':
107
+ function = train_test_model
108
+ imports = 2
109
+ elif settings_type == 'train_cellpose':
110
+ function = train_cellpose
111
+ imports = 1
112
+ elif settings_type == 'ml_analyze':
113
+ function = generate_ml_scores
114
+ imports = 2
115
+ elif settings_type == 'cellpose_masks':
116
+ function = identify_masks_finetune
117
+ imports = 1
118
+ elif settings_type == 'cellpose_all':
119
+ function = check_cellpose_models
120
+ imports = 1
121
+ elif settings_type == 'map_barcodes':
122
+ function = map_barcodes_folder
123
+ imports = 2
124
+ elif settings_type == 'regression':
125
+ function = perform_regression
126
+ imports = 2
127
+ elif settings_type == 'recruitment':
128
+ function = analyze_recruitment
129
+ imports = 2
130
+ #elif settings_type == 'cellpose_dataset':
131
+ # function = generate_cellpose_train_test
132
+ # imports = 1
133
+ #elif settings_type == 'plaques':
134
+ # function = analyze_plaques
135
+ # imports = 1
136
+ #elif settings_type == 'cellpose_compare':
137
+ # function = compare_cellpose_masks
138
+ # imports = 1
139
+ #elif settings_type == 'vision_scores':
140
+ # function = apply_model_to_tar
141
+ # imports = 1
142
+ #elif settings_type == 'vision_dataset':
143
+ # function = generate_dataset
144
+ # imports = 1
145
+ else:
146
+ raise ValueError(f"Invalid settings type: {settings_type}")
147
+ try:
148
+ function_gui_wrapper(function, settings, q, fig_queue, imports)
149
+ except Exception as e:
150
+ q.put(f"Error during processing: {e}")
151
+ traceback.print_exc()
152
+ finally:
153
+ stop_requested.value = 1
67
154
 
68
155
  def start_process(q=None, fig_queue=None, settings_type='mask'):
69
156
  global thread_control, vars_dict
@@ -83,25 +170,15 @@ def start_process(q=None, fig_queue=None, settings_type='mask'):
83
170
  if thread_control.get("run_thread") is not None:
84
171
  initiate_abort()
85
172
 
86
- stop_requested = Value('i', 0) # multiprocessing shared value for inter-process communication
173
+ stop_requested = Value('i', 0)
87
174
  thread_control["stop_requested"] = stop_requested
88
175
 
89
- process_args = (settings, q, fig_queue, stop_requested)
90
-
91
- if settings_type == 'mask':
92
- thread_control["run_thread"] = Process(target=run_mask_gui, args=process_args)
93
- elif settings_type == 'measure':
94
- thread_control["run_thread"] = Process(target=run_measure_gui, args=process_args)
95
- elif settings_type == 'classify':
96
- thread_control["run_thread"] = Process(target=run_classify_gui, args=process_args)
97
- elif settings_type == 'sequencing':
98
- thread_control["run_thread"] = Process(target=run_sequencing_gui, args=process_args)
99
- elif settings_type == 'umap':
100
- thread_control["run_thread"] = Process(target=run_umap_gui, args=process_args)
176
+ process_args = (settings_type, settings, q, fig_queue, stop_requested)
177
+ if settings_type in ['mask','measure','simulation','sequencing','classify','cellpose_dataset','train_cellpose','ml_analyze','cellpose_masks','cellpose_all','map_barcodes','regression','recruitment','plaques','cellpose_compare','vision_scores','vision_dataset']:
178
+ thread_control["run_thread"] = Process(target=run_function_gui, args=process_args)
101
179
  else:
102
180
  q.put(f"Error: Unknown settings type '{settings_type}'")
103
181
  return
104
-
105
182
  thread_control["run_thread"].start()
106
183
 
107
184
  def import_settings(settings_type='mask'):
@@ -194,7 +271,7 @@ def convert_settings_dict_for_gui(settings):
194
271
 
195
272
  def setup_settings_panel(vertical_container, settings_type='mask', window_dimensions=[500, 1000]):
196
273
  global vars_dict, scrollable_frame
197
- from .settings import set_default_settings_preprocess_generate_masks, get_measure_crop_settings, set_default_train_test_model, get_analyze_reads_default_settings, set_default_umap_image_settings, generate_fields, descriptions
274
+ from .settings import descriptions, get_identify_masks_finetune_default_settings, set_default_analyze_screen, set_default_settings_preprocess_generate_masks, get_measure_crop_settings, set_default_train_test_model, get_analyze_reads_default_settings, set_default_umap_image_settings, generate_fields, get_perform_regression_default_settings, get_train_cellpose_default_settings, get_map_barcodes_default_settings, get_analyze_recruitment_default_settings, get_check_cellpose_models_default_settings
198
275
 
199
276
  width = (window_dimensions[0])//6
200
277
  height = window_dimensions[1]
@@ -219,9 +296,36 @@ def setup_settings_panel(vertical_container, settings_type='mask', window_dimens
219
296
  settings = get_analyze_reads_default_settings(settings={})
220
297
  elif settings_type == 'umap':
221
298
  settings = set_default_umap_image_settings(settings={})
299
+ elif settings_type == 'train_cellpose':
300
+ settings = get_train_cellpose_default_settings(settings={})
301
+ elif settings_type == 'ml_analyze':
302
+ settings = set_default_analyze_screen(settings={})
303
+ elif settings_type == 'cellpose_masks':
304
+ settings = get_identify_masks_finetune_default_settings(settings={})
305
+ elif settings_type == 'cellpose_all':
306
+ settings = get_check_cellpose_models_default_settings(settings={})
307
+ elif settings_type == 'map_barcodes':
308
+ settings = get_map_barcodes_default_settings(settings={})
309
+ elif settings_type == 'regression':
310
+ settings = get_perform_regression_default_settings(settings={})
311
+ elif settings_type == 'recruitment':
312
+ settings = get_analyze_recruitment_default_settings(settings={})
313
+ #elif settings_type == 'simulation':
314
+ # settings = set_default_
315
+ #elif settings_type == 'cellpose_dataset':
316
+ # settings = set_default_
317
+ #elif settings_type == 'plaques':
318
+ # settings = set_default_
319
+ #elif settings_type == 'cellpose_compare':
320
+ # settings = set_default_
321
+ #elif settings_type == 'vision_scores':
322
+ # settings = set_default_
323
+ #elif settings_type == 'vision_dataset':
324
+ # settings = set_default_
222
325
  else:
223
326
  raise ValueError(f"Invalid settings type: {settings_type}")
224
327
 
328
+
225
329
  variables = convert_settings_dict_for_gui(settings)
226
330
  vars_dict = generate_fields(variables, scrollable_frame)
227
331
  print("Settings panel setup complete")
@@ -402,8 +506,9 @@ def setup_button_section(horizontal_container, settings_type='mask', window_dim
402
506
  # Description frame
403
507
  description_frame = tk.Frame(horizontal_container, bg='black', height=height, width=width)
404
508
  horizontal_container.add(description_frame, stretch="always", sticky="nsew")
405
- description_label = tk.Label(description_frame, text="Module Description", bg='black', fg='white', anchor='nw', justify='left', wraplength=width//2-100)
406
- description_label.pack(pady=10, padx=10)
509
+ description_frame.grid_columnconfigure(0, weight=1) # Make the column stretch
510
+ description_label = tk.Label(description_frame, text="Module Description", bg='black', fg='white', anchor='nw', justify='left', wraplength=width-50)
511
+ description_label.grid(row=0, column=0, pady=50, padx=20, sticky='nsew') # Use sticky='nsew' to stretch the label
407
512
  description_text = descriptions.get(settings_type, "No description available for this module.")
408
513
  description_label.config(text=description_text)
409
514
 
@@ -1439,7 +1439,14 @@ def create_menu_bar(root):
1439
1439
  "Make Masks": (lambda frame: initiate_root(frame, 'make_masks'), "Adjust pre-existing Cellpose models to your specific dataset for improved performance"),
1440
1440
  "Classify": (lambda frame: initiate_root(frame, 'classify'), "Train Torch Convolutional Neural Networks (CNNs) or Transformers to classify single object images."),
1441
1441
  "Sequencing": (lambda frame: initiate_root(frame, 'sequencing'), "Analyze sequencing data."),
1442
- "Umap": (lambda frame: initiate_root(frame, 'umap'), "Generate UMAP embeddings with datapoints represented as images.")
1442
+ "Umap": (lambda frame: initiate_root(frame, 'umap'), "Generate UMAP embeddings with datapoints represented as images."),
1443
+ "Train Cellpose": (lambda frame: initiate_root(frame, 'train_cellpose'), "Train custom Cellpose models."),
1444
+ "ML Analyze": (lambda frame: initiate_root(frame, 'ml_analyze'), "Machine learning analysis of data."),
1445
+ "Cellpose Masks": (lambda frame: initiate_root(frame, 'cellpose_masks'), "Generate Cellpose masks."),
1446
+ "Cellpose All": (lambda frame: initiate_root(frame, 'cellpose_all'), "Run Cellpose on all images."),
1447
+ "Map Barcodes": (lambda frame: initiate_root(frame, 'map_barcodes'), "Map barcodes to data."),
1448
+ "Regression": (lambda frame: initiate_root(frame, 'regression'), "Perform regression analysis."),
1449
+ "Recruitment": (lambda frame: initiate_root(frame, 'recruitment'), "Analyze recruitment data.")
1443
1450
  }
1444
1451
 
1445
1452
  def load_app_wrapper(app_name, app_func):
@@ -1460,6 +1467,7 @@ def create_menu_bar(root):
1460
1467
  # Configure the menu for the root window
1461
1468
  root.config(menu=menu_bar)
1462
1469
 
1470
+
1463
1471
  def set_dark_style(style):
1464
1472
  font_style = tkFont.Font(family="Helvetica", size=24)
1465
1473
  style.configure('TEntry', padding='5 5 5 5', borderwidth=1, relief='solid', fieldbackground='black', foreground='#ffffff', font=font_style)
@@ -1693,7 +1693,7 @@ def _save_settings_to_db(settings):
1693
1693
  settings_df['setting_value'] = settings_df['setting_value'].apply(str)
1694
1694
  display(settings_df)
1695
1695
  # Determine the directory path
1696
- src = os.path.dirname(settings['input_folder'])
1696
+ src = os.path.dirname(settings['src'])
1697
1697
  directory = f'{src}/measurements'
1698
1698
  # Create the directory if it doesn't exist
1699
1699
  os.makedirs(directory, exist_ok=True)
@@ -610,7 +610,7 @@ def _measure_crop_core(index, time_ls, file, settings):
610
610
 
611
611
  start = time.time()
612
612
  try:
613
- source_folder = os.path.dirname(settings['input_folder'])
613
+ source_folder = os.path.dirname(settings['src'])
614
614
  #if not os.path.basename(source_folder).endswith('merged'):
615
615
  # source_folder = os.path.join(source_folder, 'merged')
616
616
  # print(f'changed source_folder to {source_folder}')
@@ -619,7 +619,7 @@ def _measure_crop_core(index, time_ls, file, settings):
619
619
  # return
620
620
 
621
621
  file_name = os.path.splitext(file)[0]
622
- data = np.load(os.path.join(settings['input_folder'], file))
622
+ data = np.load(os.path.join(settings['src'], file))
623
623
  data_type = data.dtype
624
624
  if data_type not in ['uint8','uint16']:
625
625
  data_type_before = data_type
@@ -663,7 +663,7 @@ def _measure_crop_core(index, time_ls, file, settings):
663
663
  cell_mask, nucleus_mask = _relabel_parent_with_child_labels(cell_mask, nucleus_mask)
664
664
  data[:, :, settings['cell_mask_dim']] = cell_mask
665
665
  data[:, :, settings['nucleus_mask_dim']] = nucleus_mask
666
- save_folder = settings['input_folder']
666
+ save_folder = settings['src']
667
667
  np.save(os.path.join(save_folder, file), data)
668
668
  else:
669
669
  nucleus_mask = np.zeros_like(data[:, :, 0])
@@ -941,13 +941,13 @@ def measure_crop(settings):
941
941
  settings = get_measure_crop_settings(settings)
942
942
  settings = measure_test_mode(settings)
943
943
 
944
- #src_fldr = settings['input_folder']
944
+ #src_fldr = settings['src']
945
945
  #if not os.path.basename(src_fldr).endswith('merged'):
946
- # settings['input_folder'] = os.path.join(src_fldr, 'merged')
947
- # print(f"changed input_folder to {src_fldr}")
946
+ # settings['src'] = os.path.join(src_fldr, 'merged')
947
+ # print(f"changed src to {src_fldr}")
948
948
 
949
- #if not os.path.exists(settings['input_folder']):
950
- # print(f'input_folder: {settings["input_folder"]} does not exist')
949
+ #if not os.path.exists(settings['src']):
950
+ # print(f'src: {settings["src"]} does not exist')
951
951
  # return
952
952
 
953
953
  if settings['cell_mask_dim'] is None:
@@ -961,7 +961,7 @@ def measure_crop(settings):
961
961
  else:
962
962
  settings['cytoplasm'] = False
963
963
 
964
- dirname = os.path.dirname(settings['input_folder'])
964
+ dirname = os.path.dirname(settings['src'])
965
965
  settings_df = pd.DataFrame(list(settings.items()), columns=['Key', 'Value'])
966
966
  settings_csv = os.path.join(dirname,'settings','measure_crop_settings.csv')
967
967
  os.makedirs(os.path.join(dirname,'settings'), exist_ok=True)
@@ -997,7 +997,7 @@ def measure_crop(settings):
997
997
 
998
998
  _save_settings_to_db(settings)
999
999
 
1000
- files = [f for f in os.listdir(settings['input_folder']) if f.endswith('.npy')]
1000
+ files = [f for f in os.listdir(settings['src']) if f.endswith('.npy')]
1001
1001
  n_jobs = settings['n_jobs'] or mp.cpu_count()-4
1002
1002
  print(f'using {n_jobs} cpu cores')
1003
1003
 
@@ -1018,7 +1018,7 @@ def measure_crop(settings):
1018
1018
 
1019
1019
  if settings['representative_images']:
1020
1020
  if settings['save_png']:
1021
- img_fldr = os.path.join(os.path.dirname(settings['input_folder']), 'data')
1021
+ img_fldr = os.path.join(os.path.dirname(settings['src']), 'data')
1022
1022
  sc_img_fldrs = _list_endpoint_subdirectories(img_fldr)
1023
1023
 
1024
1024
  for i, well_src in enumerate(sc_img_fldrs):
@@ -1037,7 +1037,7 @@ def measure_crop(settings):
1037
1037
  #traceback.print_exc()
1038
1038
 
1039
1039
  if settings['save_measurements']:
1040
- db_path = os.path.join(os.path.dirname(settings['input_folder']), 'measurements', 'measurements.db')
1040
+ db_path = os.path.join(os.path.dirname(settings['src']), 'measurements', 'measurements.db')
1041
1041
  channel_indices = settings['png_dims']
1042
1042
  channel_indices = [min(value, 2) for value in channel_indices]
1043
1043
  _generate_representative_images(db_path,
@@ -1061,13 +1061,13 @@ def measure_crop(settings):
1061
1061
 
1062
1062
  if settings['timelapse']:
1063
1063
  if settings['timelapse_objects'] == 'nucleus':
1064
- folder_path = settings['input_folder']
1064
+ folder_path = settings['src']
1065
1065
  mask_channels = [settings['nucleus_mask_dim'], settings['pathogen_mask_dim'],settings['cell_mask_dim']]
1066
1066
  object_types = ['nucleus','pathogen','cell']
1067
1067
  _timelapse_masks_to_gif(folder_path, mask_channels, object_types)
1068
1068
 
1069
1069
  #if settings['save_png']:
1070
- img_fldr = os.path.join(os.path.dirname(settings['input_folder']), 'data')
1070
+ img_fldr = os.path.join(os.path.dirname(settings['src']), 'data')
1071
1071
  sc_img_fldrs = _list_endpoint_subdirectories(img_fldr)
1072
1072
  _scmovie(sc_img_fldrs)
1073
1073
  print("Successfully completed run")