spacr 0.0.63__tar.gz → 0.0.70__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (59) hide show
  1. {spacr-0.0.63/spacr.egg-info → spacr-0.0.70}/PKG-INFO +39 -41
  2. spacr-0.0.70/README.rst +68 -0
  3. {spacr-0.0.63 → spacr-0.0.70}/setup.py +7 -3
  4. {spacr-0.0.63 → spacr-0.0.70/spacr.egg-info}/PKG-INFO +39 -41
  5. {spacr-0.0.63 → spacr-0.0.70}/spacr.egg-info/SOURCES.txt +1 -1
  6. spacr-0.0.63/README.md +0 -70
  7. {spacr-0.0.63 → spacr-0.0.70}/LICENSE +0 -0
  8. {spacr-0.0.63 → spacr-0.0.70}/MANIFEST.in +0 -0
  9. {spacr-0.0.63 → spacr-0.0.70}/setup.cfg +0 -0
  10. {spacr-0.0.63 → spacr-0.0.70}/spacr/__init__.py +0 -0
  11. {spacr-0.0.63 → spacr-0.0.70}/spacr/__main__.py +0 -0
  12. {spacr-0.0.63 → spacr-0.0.70}/spacr/alpha.py +0 -0
  13. {spacr-0.0.63 → spacr-0.0.70}/spacr/annotate_app.py +0 -0
  14. {spacr-0.0.63 → spacr-0.0.70}/spacr/chris.py +0 -0
  15. {spacr-0.0.63 → spacr-0.0.70}/spacr/cli.py +0 -0
  16. {spacr-0.0.63 → spacr-0.0.70}/spacr/core.py +0 -0
  17. {spacr-0.0.63 → spacr-0.0.70}/spacr/deep_spacr.py +0 -0
  18. {spacr-0.0.63 → spacr-0.0.70}/spacr/foldseek.py +0 -0
  19. {spacr-0.0.63 → spacr-0.0.70}/spacr/get_alfafold_structures.py +0 -0
  20. {spacr-0.0.63 → spacr-0.0.70}/spacr/graph_learning.py +0 -0
  21. {spacr-0.0.63 → spacr-0.0.70}/spacr/gui.py +0 -0
  22. {spacr-0.0.63 → spacr-0.0.70}/spacr/gui_2.py +0 -0
  23. {spacr-0.0.63 → spacr-0.0.70}/spacr/gui_classify_app.py +0 -0
  24. {spacr-0.0.63 → spacr-0.0.70}/spacr/gui_mask_app.py +0 -0
  25. {spacr-0.0.63 → spacr-0.0.70}/spacr/gui_measure_app.py +0 -0
  26. {spacr-0.0.63 → spacr-0.0.70}/spacr/gui_sim_app.py +0 -0
  27. {spacr-0.0.63 → spacr-0.0.70}/spacr/gui_utils.py +0 -0
  28. {spacr-0.0.63 → spacr-0.0.70}/spacr/io.py +0 -0
  29. {spacr-0.0.63 → spacr-0.0.70}/spacr/logger.py +0 -0
  30. {spacr-0.0.63 → spacr-0.0.70}/spacr/mask_app.py +0 -0
  31. {spacr-0.0.63 → spacr-0.0.70}/spacr/measure.py +0 -0
  32. {spacr-0.0.63 → spacr-0.0.70}/spacr/models/cp/toxo_pv_lumen.CP_model +0 -0
  33. {spacr-0.0.63 → spacr-0.0.70}/spacr/old_code.py +0 -0
  34. {spacr-0.0.63 → spacr-0.0.70}/spacr/plot.py +0 -0
  35. {spacr-0.0.63 → spacr-0.0.70}/spacr/sequencing.py +0 -0
  36. {spacr-0.0.63 → spacr-0.0.70}/spacr/sim.py +0 -0
  37. {spacr-0.0.63 → spacr-0.0.70}/spacr/timelapse.py +0 -0
  38. {spacr-0.0.63 → spacr-0.0.70}/spacr/utils.py +0 -0
  39. {spacr-0.0.63 → spacr-0.0.70}/spacr/version.py +0 -0
  40. {spacr-0.0.63 → spacr-0.0.70}/spacr.egg-info/dependency_links.txt +0 -0
  41. {spacr-0.0.63 → spacr-0.0.70}/spacr.egg-info/entry_points.txt +0 -0
  42. {spacr-0.0.63 → spacr-0.0.70}/spacr.egg-info/requires.txt +0 -0
  43. {spacr-0.0.63 → spacr-0.0.70}/spacr.egg-info/top_level.txt +0 -0
  44. {spacr-0.0.63 → spacr-0.0.70}/tests/test_annotate_app.py +0 -0
  45. {spacr-0.0.63 → spacr-0.0.70}/tests/test_core.py +0 -0
  46. {spacr-0.0.63 → spacr-0.0.70}/tests/test_gui_classify_app.py +0 -0
  47. {spacr-0.0.63 → spacr-0.0.70}/tests/test_gui_mask_app.py +0 -0
  48. {spacr-0.0.63 → spacr-0.0.70}/tests/test_gui_measure_app.py +0 -0
  49. {spacr-0.0.63 → spacr-0.0.70}/tests/test_gui_sim_app.py +0 -0
  50. {spacr-0.0.63 → spacr-0.0.70}/tests/test_gui_utils.py +0 -0
  51. {spacr-0.0.63 → spacr-0.0.70}/tests/test_io.py +0 -0
  52. {spacr-0.0.63 → spacr-0.0.70}/tests/test_mask_app.py +0 -0
  53. {spacr-0.0.63 → spacr-0.0.70}/tests/test_measure.py +0 -0
  54. {spacr-0.0.63 → spacr-0.0.70}/tests/test_plot.py +0 -0
  55. {spacr-0.0.63 → spacr-0.0.70}/tests/test_sim.py +0 -0
  56. {spacr-0.0.63 → spacr-0.0.70}/tests/test_timelapse.py +0 -0
  57. {spacr-0.0.63 → spacr-0.0.70}/tests/test_train.py +0 -0
  58. {spacr-0.0.63 → spacr-0.0.70}/tests/test_umap.py +0 -0
  59. {spacr-0.0.63 → spacr-0.0.70}/tests/test_utils.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: spacr
3
- Version: 0.0.63
3
+ Version: 0.0.70
4
4
  Summary: Spatial phenotype analysis of crisp screens (SpaCr)
5
5
  Home-page: https://github.com/EinarOlafsson/spacr
6
6
  Author: Einar Birnir Olafsson
@@ -46,54 +46,52 @@ Requires-Dist: opencv-python-headless; extra == "headless"
46
46
  Provides-Extra: full
47
47
  Requires-Dist: opencv-python; extra == "full"
48
48
 
49
- [![PyPI version](https://badge.fury.io/py/spacr.svg)](https://badge.fury.io/py/spacr)
50
- [![Python version](https://img.shields.io/pypi/pyversions/spacr)](https://pypistats.org/packages/spacr)
51
- [![Licence: GPL v3](https://img.shields.io/github/license/EinarOlafsson/spacr)](https://github.com/EinarOlafsson/spacr/blob/master/LICENSE)
52
- [![repo size](https://img.shields.io/github/repo-size/EinarOlafsson/spacr)](https://github.com/EinarOlafsson/spacr/)
49
+ .. |PyPI version| image:: https://badge.fury.io/py/spacr.svg
50
+ :target: https://badge.fury.io/py/spacr
51
+ .. |Python version| image:: https://img.shields.io/pypi/pyversions/spacr
52
+ :target: https://pypistats.org/packages/spacr
53
+ .. |Licence: GPL v3| image:: https://img.shields.io/github/license/EinarOlafsson/spacr
54
+ :target: https://github.com/EinarOlafsson/spacr/blob/master/LICENSE
55
+ .. |repo size| image:: https://img.shields.io/github/repo-size/EinarOlafsson/spacr
56
+ :target: https://github.com/EinarOlafsson/spacr/
53
57
 
54
- # SpaCr
55
- <table>
56
- <tr>
57
- <td>
58
-
59
- Spatial phenotype analysis of CRISPR-Cas9 screens (SpaCr). The spatial organization of organelles and proteins within cells constitutes a key level of functional regulation. In the context of infectious disease, the spatial relationships between host cell structures and intracellular pathogens are critical to understand host clearance mechanisms and how pathogens evade them. Spacr is a Python-based software package for generating single cell image data for deep-learning sub-cellular/cellular phenotypic classification from pooled genetic CRISPR-Cas9 screens. Spacr provides a flexible toolset to extract single cell images and measurements from high content cell painting experiments, train deep-learning models to classify cellular/ subcellular phenotypes, simulate and analyze pooled CRISPR-Cas9 imaging screens.
58
+ |PyPI version| |Python version| |Licence: GPL v3| |repo size|
60
59
 
61
- </td>
62
- <td>
60
+ SpaCr
61
+ =====
63
62
 
64
- <img src="spacr/logo_spacr.png" alt="SPACR Logo" title="SPACR Logo" width="600"/>
63
+ Spatial phenotype analysis of CRISPR-Cas9 screens (SpaCr). The spatial organization of organelles and proteins within cells constitutes a key level of functional regulation. In the context of infectious disease, the spatial relationships between host cell structures and intracellular pathogens are critical to understand host clearance mechanisms and how pathogens evade them. Spacr is a Python-based software package for generating single cell image data for deep-learning sub-cellular/cellular phenotypic classification from pooled genetic CRISPR-Cas9 screens. Spacr provides a flexible toolset to extract single cell images and measurements from high content cell painting experiments, train deep-learning models to classify cellular/subcellular phenotypes, simulate and analyze pooled CRISPR-Cas9 imaging screens.
65
64
 
66
- </td>
67
- </tr>
68
- </table>
65
+ Features
66
+ --------
69
67
 
70
- ## Features
68
+ - **Generate Masks:** Generate cellpose masks of cell, nuclei, and pathogen objects.
71
69
 
72
- - **Generate Masks:** Generate cellpose masks of cell, nuclei and pathogen objects.
70
+ - **Object Measurements:** Measurements for each object including scikit-image-regionprops, intensity percentiles, shannon-entropy, pearsons and manders correlations, homogeneity and radial distribution. Measurements are saved to a SQL database in object level tables.
73
71
 
74
- - **Object Measurements:** Measurements for each object including scikit-image-regionprops, intensity percentiles, shannon-entropy, pearsons and manders correlations, homogenicity and radial distribution. Measurements are saved to a sql database in object level tables.
72
+ - **Crop Images:** Objects (e.g. cells) can be saved as PNGs from the object area or bounding box area of each object. Object paths are saved in a SQL database that can be annotated and used to train CNNs/Transformer models for classification tasks.
75
73
 
76
- - **Crop Images:** Objects (e.g. cells) can be saved as PNGs from the object area or bounding box area of each object. Object paths are saved in an sql database that can be annotated and used to train CNNs/Transformer models for classefication tasks.
74
+ - **Train CNNs or Transformers:** Train Torch Convolutional Neural Networks (CNNs) or Transformers to classify single object images. Train Torch models with IRM/ERM, checkpointing.
77
75
 
78
- - **Train CNNs or Transformers:** Train Torch Convolutional Neural Networks (CNNs) or Transformers to classify single object images. Train Torch models with IRM/ERM, checkpointing.
76
+ - **Manual Annotation:** Supports manual annotation of single cell images and segmentation to refine training datasets for training CNNs/Transformers or cellpose, respectively.
79
77
 
80
- - **Manual Annotation:** Supports manual annotation of single cell images and segmentation to refine training datasets for training CNNs/Transformers or cellpose, respectively.
78
+ - **Finetune Cellpose Models:** Adjust pre-existing Cellpose models to your specific dataset for improved performance.
81
79
 
82
- - **Finetune Cellpose Models:** Adjust pre-existing Cellpose models to your specific dataset for improved performance.
80
+ - **Timelapse Data Support:** Track objects in timelapse image data.
83
81
 
84
- - **Timelapse Data Support:** Track objects in timelapse image data.
82
+ - **Simulations:** Simulate spatial phenotype screens.
85
83
 
86
- - **Simulations:** Simulate spatial phenotype screens.
84
+ - **Sequencing:** Map FASTQ reads to barcode and gRNA barcode metadata.
87
85
 
88
- - **Sequencing:** Map FASTQ reads to barecode and gRNA barecode metadata.
86
+ - **Misc:** Analyze Ca oscillation, recruitment, infection rate, plaque size/count.
89
87
 
90
- - **Misc:** Analyze Ca oscillation, recruitment, infection rate, plaque size/count.
91
-
92
- ## Installation
88
+ Installation
89
+ ------------
93
90
 
94
91
  Requires Tkinter for graphical user interface features.
95
92
 
96
- ### Ubuntu
93
+ Ubuntu
94
+ ~~~~~~
97
95
 
98
96
  Before installing spacr, ensure Tkinter is installed:
99
97
 
@@ -101,18 +99,18 @@ Before installing spacr, ensure Tkinter is installed:
101
99
 
102
100
  On Linux:
103
101
 
104
- ```
105
- sudo apt-get install python3-tk
106
- ```
102
+ ::
103
+
104
+ sudo apt-get install python3-tk
107
105
 
108
- install spacr with pip
106
+ Install spacr with pip
109
107
 
110
- ```
111
- pip install spacr
112
- ```
108
+ ::
109
+
110
+ pip install spacr
113
111
 
114
112
  Run spacr GUI:
115
113
 
116
- ```
117
- gui
118
- ```
114
+ ::
115
+
116
+ gui
@@ -0,0 +1,68 @@
1
+ .. |PyPI version| image:: https://badge.fury.io/py/spacr.svg
2
+ :target: https://badge.fury.io/py/spacr
3
+ .. |Python version| image:: https://img.shields.io/pypi/pyversions/spacr
4
+ :target: https://pypistats.org/packages/spacr
5
+ .. |Licence: GPL v3| image:: https://img.shields.io/github/license/EinarOlafsson/spacr
6
+ :target: https://github.com/EinarOlafsson/spacr/blob/master/LICENSE
7
+ .. |repo size| image:: https://img.shields.io/github/repo-size/EinarOlafsson/spacr
8
+ :target: https://github.com/EinarOlafsson/spacr/
9
+
10
+ |PyPI version| |Python version| |Licence: GPL v3| |repo size|
11
+
12
+ SpaCr
13
+ =====
14
+
15
+ Spatial phenotype analysis of CRISPR-Cas9 screens (SpaCr). The spatial organization of organelles and proteins within cells constitutes a key level of functional regulation. In the context of infectious disease, the spatial relationships between host cell structures and intracellular pathogens are critical to understand host clearance mechanisms and how pathogens evade them. Spacr is a Python-based software package for generating single cell image data for deep-learning sub-cellular/cellular phenotypic classification from pooled genetic CRISPR-Cas9 screens. Spacr provides a flexible toolset to extract single cell images and measurements from high content cell painting experiments, train deep-learning models to classify cellular/subcellular phenotypes, simulate and analyze pooled CRISPR-Cas9 imaging screens.
16
+
17
+ Features
18
+ --------
19
+
20
+ - **Generate Masks:** Generate cellpose masks of cell, nuclei, and pathogen objects.
21
+
22
+ - **Object Measurements:** Measurements for each object including scikit-image-regionprops, intensity percentiles, shannon-entropy, pearsons and manders correlations, homogeneity and radial distribution. Measurements are saved to a SQL database in object level tables.
23
+
24
+ - **Crop Images:** Objects (e.g. cells) can be saved as PNGs from the object area or bounding box area of each object. Object paths are saved in a SQL database that can be annotated and used to train CNNs/Transformer models for classification tasks.
25
+
26
+ - **Train CNNs or Transformers:** Train Torch Convolutional Neural Networks (CNNs) or Transformers to classify single object images. Train Torch models with IRM/ERM, checkpointing.
27
+
28
+ - **Manual Annotation:** Supports manual annotation of single cell images and segmentation to refine training datasets for training CNNs/Transformers or cellpose, respectively.
29
+
30
+ - **Finetune Cellpose Models:** Adjust pre-existing Cellpose models to your specific dataset for improved performance.
31
+
32
+ - **Timelapse Data Support:** Track objects in timelapse image data.
33
+
34
+ - **Simulations:** Simulate spatial phenotype screens.
35
+
36
+ - **Sequencing:** Map FASTQ reads to barcode and gRNA barcode metadata.
37
+
38
+ - **Misc:** Analyze Ca oscillation, recruitment, infection rate, plaque size/count.
39
+
40
+ Installation
41
+ ------------
42
+
43
+ Requires Tkinter for graphical user interface features.
44
+
45
+ Ubuntu
46
+ ~~~~~~
47
+
48
+ Before installing spacr, ensure Tkinter is installed:
49
+
50
+ (Tkinter is included with the standard Python installation on macOS, and Windows)
51
+
52
+ On Linux:
53
+
54
+ ::
55
+
56
+ sudo apt-get install python3-tk
57
+
58
+ Install spacr with pip
59
+
60
+ ::
61
+
62
+ pip install spacr
63
+
64
+ Run spacr GUI:
65
+
66
+ ::
67
+
68
+ gui
@@ -17,8 +17,12 @@ if cuda_version:
17
17
  else:
18
18
  dgl_dependency = 'dgl' # Fallback to CPU version if no CUDA is detected
19
19
 
20
- # Ensure you have read the README.md content into a variable, e.g., `long_description`
21
- with open("README.md", "r", encoding="utf-8") as fh:
20
+ # Ensure you have read the README.rst content into a variable, e.g., `long_description`
21
+ #with open("README.md", "r", encoding="utf-8") as fh:
22
+ # long_description = fh.read()
23
+
24
+ # Ensure you have read the README.rst content into a variable, e.g., `long_description`
25
+ with open("README.rst", "r", encoding="utf-8") as fh:
22
26
  long_description = fh.read()
23
27
 
24
28
  dependencies = [
@@ -56,7 +60,7 @@ dependencies = [
56
60
 
57
61
  setup(
58
62
  name="spacr",
59
- version="0.0.63",
63
+ version="0.0.70",
60
64
  author="Einar Birnir Olafsson",
61
65
  author_email="olafsson@med.umich.com",
62
66
  description="Spatial phenotype analysis of crisp screens (SpaCr)",
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: spacr
3
- Version: 0.0.63
3
+ Version: 0.0.70
4
4
  Summary: Spatial phenotype analysis of crisp screens (SpaCr)
5
5
  Home-page: https://github.com/EinarOlafsson/spacr
6
6
  Author: Einar Birnir Olafsson
@@ -46,54 +46,52 @@ Requires-Dist: opencv-python-headless; extra == "headless"
46
46
  Provides-Extra: full
47
47
  Requires-Dist: opencv-python; extra == "full"
48
48
 
49
- [![PyPI version](https://badge.fury.io/py/spacr.svg)](https://badge.fury.io/py/spacr)
50
- [![Python version](https://img.shields.io/pypi/pyversions/spacr)](https://pypistats.org/packages/spacr)
51
- [![Licence: GPL v3](https://img.shields.io/github/license/EinarOlafsson/spacr)](https://github.com/EinarOlafsson/spacr/blob/master/LICENSE)
52
- [![repo size](https://img.shields.io/github/repo-size/EinarOlafsson/spacr)](https://github.com/EinarOlafsson/spacr/)
49
+ .. |PyPI version| image:: https://badge.fury.io/py/spacr.svg
50
+ :target: https://badge.fury.io/py/spacr
51
+ .. |Python version| image:: https://img.shields.io/pypi/pyversions/spacr
52
+ :target: https://pypistats.org/packages/spacr
53
+ .. |Licence: GPL v3| image:: https://img.shields.io/github/license/EinarOlafsson/spacr
54
+ :target: https://github.com/EinarOlafsson/spacr/blob/master/LICENSE
55
+ .. |repo size| image:: https://img.shields.io/github/repo-size/EinarOlafsson/spacr
56
+ :target: https://github.com/EinarOlafsson/spacr/
53
57
 
54
- # SpaCr
55
- <table>
56
- <tr>
57
- <td>
58
-
59
- Spatial phenotype analysis of CRISPR-Cas9 screens (SpaCr). The spatial organization of organelles and proteins within cells constitutes a key level of functional regulation. In the context of infectious disease, the spatial relationships between host cell structures and intracellular pathogens are critical to understand host clearance mechanisms and how pathogens evade them. Spacr is a Python-based software package for generating single cell image data for deep-learning sub-cellular/cellular phenotypic classification from pooled genetic CRISPR-Cas9 screens. Spacr provides a flexible toolset to extract single cell images and measurements from high content cell painting experiments, train deep-learning models to classify cellular/ subcellular phenotypes, simulate and analyze pooled CRISPR-Cas9 imaging screens.
58
+ |PyPI version| |Python version| |Licence: GPL v3| |repo size|
60
59
 
61
- </td>
62
- <td>
60
+ SpaCr
61
+ =====
63
62
 
64
- <img src="spacr/logo_spacr.png" alt="SPACR Logo" title="SPACR Logo" width="600"/>
63
+ Spatial phenotype analysis of CRISPR-Cas9 screens (SpaCr). The spatial organization of organelles and proteins within cells constitutes a key level of functional regulation. In the context of infectious disease, the spatial relationships between host cell structures and intracellular pathogens are critical to understand host clearance mechanisms and how pathogens evade them. Spacr is a Python-based software package for generating single cell image data for deep-learning sub-cellular/cellular phenotypic classification from pooled genetic CRISPR-Cas9 screens. Spacr provides a flexible toolset to extract single cell images and measurements from high content cell painting experiments, train deep-learning models to classify cellular/subcellular phenotypes, simulate and analyze pooled CRISPR-Cas9 imaging screens.
65
64
 
66
- </td>
67
- </tr>
68
- </table>
65
+ Features
66
+ --------
69
67
 
70
- ## Features
68
+ - **Generate Masks:** Generate cellpose masks of cell, nuclei, and pathogen objects.
71
69
 
72
- - **Generate Masks:** Generate cellpose masks of cell, nuclei and pathogen objects.
70
+ - **Object Measurements:** Measurements for each object including scikit-image-regionprops, intensity percentiles, shannon-entropy, pearsons and manders correlations, homogeneity and radial distribution. Measurements are saved to a SQL database in object level tables.
73
71
 
74
- - **Object Measurements:** Measurements for each object including scikit-image-regionprops, intensity percentiles, shannon-entropy, pearsons and manders correlations, homogenicity and radial distribution. Measurements are saved to a sql database in object level tables.
72
+ - **Crop Images:** Objects (e.g. cells) can be saved as PNGs from the object area or bounding box area of each object. Object paths are saved in a SQL database that can be annotated and used to train CNNs/Transformer models for classification tasks.
75
73
 
76
- - **Crop Images:** Objects (e.g. cells) can be saved as PNGs from the object area or bounding box area of each object. Object paths are saved in an sql database that can be annotated and used to train CNNs/Transformer models for classefication tasks.
74
+ - **Train CNNs or Transformers:** Train Torch Convolutional Neural Networks (CNNs) or Transformers to classify single object images. Train Torch models with IRM/ERM, checkpointing.
77
75
 
78
- - **Train CNNs or Transformers:** Train Torch Convolutional Neural Networks (CNNs) or Transformers to classify single object images. Train Torch models with IRM/ERM, checkpointing.
76
+ - **Manual Annotation:** Supports manual annotation of single cell images and segmentation to refine training datasets for training CNNs/Transformers or cellpose, respectively.
79
77
 
80
- - **Manual Annotation:** Supports manual annotation of single cell images and segmentation to refine training datasets for training CNNs/Transformers or cellpose, respectively.
78
+ - **Finetune Cellpose Models:** Adjust pre-existing Cellpose models to your specific dataset for improved performance.
81
79
 
82
- - **Finetune Cellpose Models:** Adjust pre-existing Cellpose models to your specific dataset for improved performance.
80
+ - **Timelapse Data Support:** Track objects in timelapse image data.
83
81
 
84
- - **Timelapse Data Support:** Track objects in timelapse image data.
82
+ - **Simulations:** Simulate spatial phenotype screens.
85
83
 
86
- - **Simulations:** Simulate spatial phenotype screens.
84
+ - **Sequencing:** Map FASTQ reads to barcode and gRNA barcode metadata.
87
85
 
88
- - **Sequencing:** Map FASTQ reads to barecode and gRNA barecode metadata.
86
+ - **Misc:** Analyze Ca oscillation, recruitment, infection rate, plaque size/count.
89
87
 
90
- - **Misc:** Analyze Ca oscillation, recruitment, infection rate, plaque size/count.
91
-
92
- ## Installation
88
+ Installation
89
+ ------------
93
90
 
94
91
  Requires Tkinter for graphical user interface features.
95
92
 
96
- ### Ubuntu
93
+ Ubuntu
94
+ ~~~~~~
97
95
 
98
96
  Before installing spacr, ensure Tkinter is installed:
99
97
 
@@ -101,18 +99,18 @@ Before installing spacr, ensure Tkinter is installed:
101
99
 
102
100
  On Linux:
103
101
 
104
- ```
105
- sudo apt-get install python3-tk
106
- ```
102
+ ::
103
+
104
+ sudo apt-get install python3-tk
107
105
 
108
- install spacr with pip
106
+ Install spacr with pip
109
107
 
110
- ```
111
- pip install spacr
112
- ```
108
+ ::
109
+
110
+ pip install spacr
113
111
 
114
112
  Run spacr GUI:
115
113
 
116
- ```
117
- gui
118
- ```
114
+ ::
115
+
116
+ gui
@@ -1,6 +1,6 @@
1
1
  LICENSE
2
2
  MANIFEST.in
3
- README.md
3
+ README.rst
4
4
  setup.py
5
5
  spacr/__init__.py
6
6
  spacr/__main__.py
spacr-0.0.63/README.md DELETED
@@ -1,70 +0,0 @@
1
- [![PyPI version](https://badge.fury.io/py/spacr.svg)](https://badge.fury.io/py/spacr)
2
- [![Python version](https://img.shields.io/pypi/pyversions/spacr)](https://pypistats.org/packages/spacr)
3
- [![Licence: GPL v3](https://img.shields.io/github/license/EinarOlafsson/spacr)](https://github.com/EinarOlafsson/spacr/blob/master/LICENSE)
4
- [![repo size](https://img.shields.io/github/repo-size/EinarOlafsson/spacr)](https://github.com/EinarOlafsson/spacr/)
5
-
6
- # SpaCr
7
- <table>
8
- <tr>
9
- <td>
10
-
11
- Spatial phenotype analysis of CRISPR-Cas9 screens (SpaCr). The spatial organization of organelles and proteins within cells constitutes a key level of functional regulation. In the context of infectious disease, the spatial relationships between host cell structures and intracellular pathogens are critical to understand host clearance mechanisms and how pathogens evade them. Spacr is a Python-based software package for generating single cell image data for deep-learning sub-cellular/cellular phenotypic classification from pooled genetic CRISPR-Cas9 screens. Spacr provides a flexible toolset to extract single cell images and measurements from high content cell painting experiments, train deep-learning models to classify cellular/ subcellular phenotypes, simulate and analyze pooled CRISPR-Cas9 imaging screens.
12
-
13
- </td>
14
- <td>
15
-
16
- <img src="spacr/logo_spacr.png" alt="SPACR Logo" title="SPACR Logo" width="600"/>
17
-
18
- </td>
19
- </tr>
20
- </table>
21
-
22
- ## Features
23
-
24
- - **Generate Masks:** Generate cellpose masks of cell, nuclei and pathogen objects.
25
-
26
- - **Object Measurements:** Measurements for each object including scikit-image-regionprops, intensity percentiles, shannon-entropy, pearsons and manders correlations, homogenicity and radial distribution. Measurements are saved to a sql database in object level tables.
27
-
28
- - **Crop Images:** Objects (e.g. cells) can be saved as PNGs from the object area or bounding box area of each object. Object paths are saved in an sql database that can be annotated and used to train CNNs/Transformer models for classefication tasks.
29
-
30
- - **Train CNNs or Transformers:** Train Torch Convolutional Neural Networks (CNNs) or Transformers to classify single object images. Train Torch models with IRM/ERM, checkpointing.
31
-
32
- - **Manual Annotation:** Supports manual annotation of single cell images and segmentation to refine training datasets for training CNNs/Transformers or cellpose, respectively.
33
-
34
- - **Finetune Cellpose Models:** Adjust pre-existing Cellpose models to your specific dataset for improved performance.
35
-
36
- - **Timelapse Data Support:** Track objects in timelapse image data.
37
-
38
- - **Simulations:** Simulate spatial phenotype screens.
39
-
40
- - **Sequencing:** Map FASTQ reads to barecode and gRNA barecode metadata.
41
-
42
- - **Misc:** Analyze Ca oscillation, recruitment, infection rate, plaque size/count.
43
-
44
- ## Installation
45
-
46
- Requires Tkinter for graphical user interface features.
47
-
48
- ### Ubuntu
49
-
50
- Before installing spacr, ensure Tkinter is installed:
51
-
52
- (Tkinter is included with the standard Python installation on macOS, and Windows)
53
-
54
- On Linux:
55
-
56
- ```
57
- sudo apt-get install python3-tk
58
- ```
59
-
60
- install spacr with pip
61
-
62
- ```
63
- pip install spacr
64
- ```
65
-
66
- Run spacr GUI:
67
-
68
- ```
69
- gui
70
- ```
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes