spacr 0.0.62__tar.gz → 0.0.66__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (62) hide show
  1. spacr-0.0.66/PKG-INFO +116 -0
  2. spacr-0.0.66/README.rst +68 -0
  3. {spacr-0.0.62 → spacr-0.0.66}/setup.py +34 -30
  4. spacr-0.0.66/spacr.egg-info/PKG-INFO +116 -0
  5. {spacr-0.0.62 → spacr-0.0.66}/spacr.egg-info/SOURCES.txt +1 -0
  6. spacr-0.0.66/spacr.egg-info/requires.txt +39 -0
  7. spacr-0.0.62/PKG-INFO +0 -118
  8. spacr-0.0.62/spacr.egg-info/PKG-INFO +0 -118
  9. spacr-0.0.62/spacr.egg-info/requires.txt +0 -39
  10. {spacr-0.0.62 → spacr-0.0.66}/LICENSE +0 -0
  11. {spacr-0.0.62 → spacr-0.0.66}/MANIFEST.in +0 -0
  12. {spacr-0.0.62 → spacr-0.0.66}/README.md +0 -0
  13. {spacr-0.0.62 → spacr-0.0.66}/setup.cfg +0 -0
  14. {spacr-0.0.62 → spacr-0.0.66}/spacr/__init__.py +0 -0
  15. {spacr-0.0.62 → spacr-0.0.66}/spacr/__main__.py +0 -0
  16. {spacr-0.0.62 → spacr-0.0.66}/spacr/alpha.py +0 -0
  17. {spacr-0.0.62 → spacr-0.0.66}/spacr/annotate_app.py +0 -0
  18. {spacr-0.0.62 → spacr-0.0.66}/spacr/chris.py +0 -0
  19. {spacr-0.0.62 → spacr-0.0.66}/spacr/cli.py +0 -0
  20. {spacr-0.0.62 → spacr-0.0.66}/spacr/core.py +0 -0
  21. {spacr-0.0.62 → spacr-0.0.66}/spacr/deep_spacr.py +0 -0
  22. {spacr-0.0.62 → spacr-0.0.66}/spacr/foldseek.py +0 -0
  23. {spacr-0.0.62 → spacr-0.0.66}/spacr/get_alfafold_structures.py +0 -0
  24. {spacr-0.0.62 → spacr-0.0.66}/spacr/graph_learning.py +0 -0
  25. {spacr-0.0.62 → spacr-0.0.66}/spacr/gui.py +0 -0
  26. {spacr-0.0.62 → spacr-0.0.66}/spacr/gui_2.py +0 -0
  27. {spacr-0.0.62 → spacr-0.0.66}/spacr/gui_classify_app.py +0 -0
  28. {spacr-0.0.62 → spacr-0.0.66}/spacr/gui_mask_app.py +0 -0
  29. {spacr-0.0.62 → spacr-0.0.66}/spacr/gui_measure_app.py +0 -0
  30. {spacr-0.0.62 → spacr-0.0.66}/spacr/gui_sim_app.py +0 -0
  31. {spacr-0.0.62 → spacr-0.0.66}/spacr/gui_utils.py +0 -0
  32. {spacr-0.0.62 → spacr-0.0.66}/spacr/io.py +0 -0
  33. {spacr-0.0.62 → spacr-0.0.66}/spacr/logger.py +0 -0
  34. {spacr-0.0.62 → spacr-0.0.66}/spacr/mask_app.py +0 -0
  35. {spacr-0.0.62 → spacr-0.0.66}/spacr/measure.py +0 -0
  36. {spacr-0.0.62 → spacr-0.0.66}/spacr/models/cp/toxo_pv_lumen.CP_model +0 -0
  37. {spacr-0.0.62 → spacr-0.0.66}/spacr/old_code.py +0 -0
  38. {spacr-0.0.62 → spacr-0.0.66}/spacr/plot.py +0 -0
  39. {spacr-0.0.62 → spacr-0.0.66}/spacr/sequencing.py +0 -0
  40. {spacr-0.0.62 → spacr-0.0.66}/spacr/sim.py +0 -0
  41. {spacr-0.0.62 → spacr-0.0.66}/spacr/timelapse.py +0 -0
  42. {spacr-0.0.62 → spacr-0.0.66}/spacr/utils.py +0 -0
  43. {spacr-0.0.62 → spacr-0.0.66}/spacr/version.py +0 -0
  44. {spacr-0.0.62 → spacr-0.0.66}/spacr.egg-info/dependency_links.txt +0 -0
  45. {spacr-0.0.62 → spacr-0.0.66}/spacr.egg-info/entry_points.txt +0 -0
  46. {spacr-0.0.62 → spacr-0.0.66}/spacr.egg-info/top_level.txt +0 -0
  47. {spacr-0.0.62 → spacr-0.0.66}/tests/test_annotate_app.py +0 -0
  48. {spacr-0.0.62 → spacr-0.0.66}/tests/test_core.py +0 -0
  49. {spacr-0.0.62 → spacr-0.0.66}/tests/test_gui_classify_app.py +0 -0
  50. {spacr-0.0.62 → spacr-0.0.66}/tests/test_gui_mask_app.py +0 -0
  51. {spacr-0.0.62 → spacr-0.0.66}/tests/test_gui_measure_app.py +0 -0
  52. {spacr-0.0.62 → spacr-0.0.66}/tests/test_gui_sim_app.py +0 -0
  53. {spacr-0.0.62 → spacr-0.0.66}/tests/test_gui_utils.py +0 -0
  54. {spacr-0.0.62 → spacr-0.0.66}/tests/test_io.py +0 -0
  55. {spacr-0.0.62 → spacr-0.0.66}/tests/test_mask_app.py +0 -0
  56. {spacr-0.0.62 → spacr-0.0.66}/tests/test_measure.py +0 -0
  57. {spacr-0.0.62 → spacr-0.0.66}/tests/test_plot.py +0 -0
  58. {spacr-0.0.62 → spacr-0.0.66}/tests/test_sim.py +0 -0
  59. {spacr-0.0.62 → spacr-0.0.66}/tests/test_timelapse.py +0 -0
  60. {spacr-0.0.62 → spacr-0.0.66}/tests/test_train.py +0 -0
  61. {spacr-0.0.62 → spacr-0.0.66}/tests/test_umap.py +0 -0
  62. {spacr-0.0.62 → spacr-0.0.66}/tests/test_utils.py +0 -0
spacr-0.0.66/PKG-INFO ADDED
@@ -0,0 +1,116 @@
1
+ Metadata-Version: 2.1
2
+ Name: spacr
3
+ Version: 0.0.66
4
+ Summary: Spatial phenotype analysis of crisp screens (SpaCr)
5
+ Home-page: https://github.com/EinarOlafsson/spacr
6
+ Author: Einar Birnir Olafsson
7
+ Author-email: olafsson@med.umich.com
8
+ Classifier: Programming Language :: Python :: 3
9
+ Classifier: License :: OSI Approved :: MIT License
10
+ Classifier: Operating System :: OS Independent
11
+ License-File: LICENSE
12
+ Requires-Dist: dgl
13
+ Requires-Dist: torch<3.0,>=2.2.1
14
+ Requires-Dist: torchvision<1.0,>=0.17.1
15
+ Requires-Dist: torch-geometric<3.0,>=2.5.1
16
+ Requires-Dist: numpy<2.0,>=1.26.4
17
+ Requires-Dist: pandas<3.0,>=2.2.1
18
+ Requires-Dist: statsmodels<1.0,>=0.14.1
19
+ Requires-Dist: scikit-image<1.0,>=0.22.0
20
+ Requires-Dist: scikit-learn<2.0,>=1.4.1
21
+ Requires-Dist: seaborn<1.0,>=0.13.2
22
+ Requires-Dist: matplotlib<4.0,>=3.8.3
23
+ Requires-Dist: shap<1.0,>=0.45.0
24
+ Requires-Dist: pillow<11.0,>=10.2.0
25
+ Requires-Dist: imageio<3.0,>=2.34.0
26
+ Requires-Dist: scipy<2.0,>=1.12.0
27
+ Requires-Dist: ipywidgets<9.0,>=8.1.2
28
+ Requires-Dist: mahotas<2.0,>=1.4.13
29
+ Requires-Dist: btrack<1.0,>=0.6.5
30
+ Requires-Dist: trackpy<1.0,>=0.6.2
31
+ Requires-Dist: cellpose<4.0,>=3.0.6
32
+ Requires-Dist: IPython<9.0,>=8.18.1
33
+ Requires-Dist: opencv-python-headless<5.0,>=4.9.0.80
34
+ Requires-Dist: umap-learn<1.0,>=0.5.6
35
+ Requires-Dist: ttkthemes<4.0,>=3.2.2
36
+ Requires-Dist: xgboost<3.0,>=2.0.3
37
+ Requires-Dist: PyWavelets<2.0,>=1.6.0
38
+ Requires-Dist: torchcam<1.0,>=0.4.0
39
+ Requires-Dist: ttf_opensans>=2020.10.30
40
+ Requires-Dist: customtkinter<6.0,>=5.2.2
41
+ Requires-Dist: lxml<6.0,>=5.1.0
42
+ Provides-Extra: dev
43
+ Requires-Dist: pytest>=3.9; extra == "dev"
44
+ Provides-Extra: headless
45
+ Requires-Dist: opencv-python-headless; extra == "headless"
46
+ Provides-Extra: full
47
+ Requires-Dist: opencv-python; extra == "full"
48
+
49
+ .. |PyPI version| image:: https://badge.fury.io/py/spacr.svg
50
+ :target: https://badge.fury.io/py/spacr
51
+ .. |Python version| image:: https://img.shields.io/pypi/pyversions/spacr
52
+ :target: https://pypistats.org/packages/spacr
53
+ .. |Licence: GPL v3| image:: https://img.shields.io/github/license/EinarOlafsson/spacr
54
+ :target: https://github.com/EinarOlafsson/spacr/blob/master/LICENSE
55
+ .. |repo size| image:: https://img.shields.io/github/repo-size/EinarOlafsson/spacr
56
+ :target: https://github.com/EinarOlafsson/spacr/
57
+
58
+ |PyPI version| |Python version| |Licence: GPL v3| |repo size|
59
+
60
+ SpaCr
61
+ =====
62
+
63
+ Spatial phenotype analysis of CRISPR-Cas9 screens (SpaCr). The spatial organization of organelles and proteins within cells constitutes a key level of functional regulation. In the context of infectious disease, the spatial relationships between host cell structures and intracellular pathogens are critical to understand host clearance mechanisms and how pathogens evade them. Spacr is a Python-based software package for generating single cell image data for deep-learning sub-cellular/cellular phenotypic classification from pooled genetic CRISPR-Cas9 screens. Spacr provides a flexible toolset to extract single cell images and measurements from high content cell painting experiments, train deep-learning models to classify cellular/subcellular phenotypes, simulate and analyze pooled CRISPR-Cas9 imaging screens.
64
+
65
+ Features
66
+ --------
67
+
68
+ - **Generate Masks:** Generate cellpose masks of cell, nuclei, and pathogen objects.
69
+
70
+ - **Object Measurements:** Measurements for each object including scikit-image-regionprops, intensity percentiles, shannon-entropy, pearsons and manders correlations, homogeneity and radial distribution. Measurements are saved to a SQL database in object level tables.
71
+
72
+ - **Crop Images:** Objects (e.g. cells) can be saved as PNGs from the object area or bounding box area of each object. Object paths are saved in a SQL database that can be annotated and used to train CNNs/Transformer models for classification tasks.
73
+
74
+ - **Train CNNs or Transformers:** Train Torch Convolutional Neural Networks (CNNs) or Transformers to classify single object images. Train Torch models with IRM/ERM, checkpointing.
75
+
76
+ - **Manual Annotation:** Supports manual annotation of single cell images and segmentation to refine training datasets for training CNNs/Transformers or cellpose, respectively.
77
+
78
+ - **Finetune Cellpose Models:** Adjust pre-existing Cellpose models to your specific dataset for improved performance.
79
+
80
+ - **Timelapse Data Support:** Track objects in timelapse image data.
81
+
82
+ - **Simulations:** Simulate spatial phenotype screens.
83
+
84
+ - **Sequencing:** Map FASTQ reads to barcode and gRNA barcode metadata.
85
+
86
+ - **Misc:** Analyze Ca oscillation, recruitment, infection rate, plaque size/count.
87
+
88
+ Installation
89
+ ------------
90
+
91
+ Requires Tkinter for graphical user interface features.
92
+
93
+ Ubuntu
94
+ ~~~~~~
95
+
96
+ Before installing spacr, ensure Tkinter is installed:
97
+
98
+ (Tkinter is included with the standard Python installation on macOS, and Windows)
99
+
100
+ On Linux:
101
+
102
+ ::
103
+
104
+ sudo apt-get install python3-tk
105
+
106
+ Install spacr with pip
107
+
108
+ ::
109
+
110
+ pip install spacr
111
+
112
+ Run spacr GUI:
113
+
114
+ ::
115
+
116
+ gui
@@ -0,0 +1,68 @@
1
+ .. |PyPI version| image:: https://badge.fury.io/py/spacr.svg
2
+ :target: https://badge.fury.io/py/spacr
3
+ .. |Python version| image:: https://img.shields.io/pypi/pyversions/spacr
4
+ :target: https://pypistats.org/packages/spacr
5
+ .. |Licence: GPL v3| image:: https://img.shields.io/github/license/EinarOlafsson/spacr
6
+ :target: https://github.com/EinarOlafsson/spacr/blob/master/LICENSE
7
+ .. |repo size| image:: https://img.shields.io/github/repo-size/EinarOlafsson/spacr
8
+ :target: https://github.com/EinarOlafsson/spacr/
9
+
10
+ |PyPI version| |Python version| |Licence: GPL v3| |repo size|
11
+
12
+ SpaCr
13
+ =====
14
+
15
+ Spatial phenotype analysis of CRISPR-Cas9 screens (SpaCr). The spatial organization of organelles and proteins within cells constitutes a key level of functional regulation. In the context of infectious disease, the spatial relationships between host cell structures and intracellular pathogens are critical to understand host clearance mechanisms and how pathogens evade them. Spacr is a Python-based software package for generating single cell image data for deep-learning sub-cellular/cellular phenotypic classification from pooled genetic CRISPR-Cas9 screens. Spacr provides a flexible toolset to extract single cell images and measurements from high content cell painting experiments, train deep-learning models to classify cellular/subcellular phenotypes, simulate and analyze pooled CRISPR-Cas9 imaging screens.
16
+
17
+ Features
18
+ --------
19
+
20
+ - **Generate Masks:** Generate cellpose masks of cell, nuclei, and pathogen objects.
21
+
22
+ - **Object Measurements:** Measurements for each object including scikit-image-regionprops, intensity percentiles, shannon-entropy, pearsons and manders correlations, homogeneity and radial distribution. Measurements are saved to a SQL database in object level tables.
23
+
24
+ - **Crop Images:** Objects (e.g. cells) can be saved as PNGs from the object area or bounding box area of each object. Object paths are saved in a SQL database that can be annotated and used to train CNNs/Transformer models for classification tasks.
25
+
26
+ - **Train CNNs or Transformers:** Train Torch Convolutional Neural Networks (CNNs) or Transformers to classify single object images. Train Torch models with IRM/ERM, checkpointing.
27
+
28
+ - **Manual Annotation:** Supports manual annotation of single cell images and segmentation to refine training datasets for training CNNs/Transformers or cellpose, respectively.
29
+
30
+ - **Finetune Cellpose Models:** Adjust pre-existing Cellpose models to your specific dataset for improved performance.
31
+
32
+ - **Timelapse Data Support:** Track objects in timelapse image data.
33
+
34
+ - **Simulations:** Simulate spatial phenotype screens.
35
+
36
+ - **Sequencing:** Map FASTQ reads to barcode and gRNA barcode metadata.
37
+
38
+ - **Misc:** Analyze Ca oscillation, recruitment, infection rate, plaque size/count.
39
+
40
+ Installation
41
+ ------------
42
+
43
+ Requires Tkinter for graphical user interface features.
44
+
45
+ Ubuntu
46
+ ~~~~~~
47
+
48
+ Before installing spacr, ensure Tkinter is installed:
49
+
50
+ (Tkinter is included with the standard Python installation on macOS, and Windows)
51
+
52
+ On Linux:
53
+
54
+ ::
55
+
56
+ sudo apt-get install python3-tk
57
+
58
+ Install spacr with pip
59
+
60
+ ::
61
+
62
+ pip install spacr
63
+
64
+ Run spacr GUI:
65
+
66
+ ::
67
+
68
+ gui
@@ -17,46 +17,50 @@ if cuda_version:
17
17
  else:
18
18
  dgl_dependency = 'dgl' # Fallback to CPU version if no CUDA is detected
19
19
 
20
- # Ensure you have read the README.md content into a variable, e.g., `long_description`
21
- with open("README.md", "r", encoding="utf-8") as fh:
20
+ # Ensure you have read the README.rst content into a variable, e.g., `long_description`
21
+ #with open("README.md", "r", encoding="utf-8") as fh:
22
+ # long_description = fh.read()
23
+
24
+ # Ensure you have read the README.rst content into a variable, e.g., `long_description`
25
+ with open("README.rst", "r", encoding="utf-8") as fh:
22
26
  long_description = fh.read()
23
27
 
24
28
  dependencies = [
25
29
  dgl_dependency,
26
- 'torch>=2.2.1',
27
- 'torchvision>=0.17.1',
28
- 'torch-geometric>=2.5.1',
30
+ 'torch>=2.2.1,<3.0',
31
+ 'torchvision>=0.17.1,<1.0',
32
+ 'torch-geometric>=2.5.1,<3.0',
29
33
  'numpy>=1.26.4,<2.0',
30
- 'pandas>=2.2.1',
31
- 'statsmodels>=0.14.1',
32
- 'scikit-image>=0.22.0',
33
- 'scikit-learn>=1.4.1',
34
- 'seaborn>=0.13.2',
35
- 'matplotlib>=3.8.3',
36
- 'shap>=0.45.0',
37
- 'pillow>=10.2.0',
38
- 'imageio>=2.34.0',
39
- 'scipy>=1.12.0',
40
- 'ipywidgets>=8.1.2',
41
- 'mahotas>=1.4.13',
42
- 'btrack>=0.6.5',
43
- 'trackpy>=0.6.2',
44
- 'cellpose>=3.0.6',
45
- 'IPython>=8.18.1',
46
- 'opencv-python-headless>=4.9.0.80',
47
- 'umap-learn>=0.5.6',
48
- 'ttkthemes>=3.2.2',
49
- 'xgboost>=2.0.3',
50
- 'PyWavelets>=1.6.0',
51
- 'torchcam>=0.4.0',
34
+ 'pandas>=2.2.1,<3.0',
35
+ 'statsmodels>=0.14.1,<1.0',
36
+ 'scikit-image>=0.22.0,<1.0',
37
+ 'scikit-learn>=1.4.1,<2.0',
38
+ 'seaborn>=0.13.2,<1.0',
39
+ 'matplotlib>=3.8.3,<4.0',
40
+ 'shap>=0.45.0,<1.0',
41
+ 'pillow>=10.2.0,<11.0',
42
+ 'imageio>=2.34.0,<3.0',
43
+ 'scipy>=1.12.0,<2.0',
44
+ 'ipywidgets>=8.1.2,<9.0',
45
+ 'mahotas>=1.4.13,<2.0',
46
+ 'btrack>=0.6.5,<1.0',
47
+ 'trackpy>=0.6.2,<1.0',
48
+ 'cellpose>=3.0.6,<4.0',
49
+ 'IPython>=8.18.1,<9.0',
50
+ 'opencv-python-headless>=4.9.0.80,<5.0',
51
+ 'umap-learn>=0.5.6,<1.0',
52
+ 'ttkthemes>=3.2.2,<4.0',
53
+ 'xgboost>=2.0.3,<3.0',
54
+ 'PyWavelets>=1.6.0,<2.0',
55
+ 'torchcam>=0.4.0,<1.0',
52
56
  'ttf_opensans>=2020.10.30',
53
- 'customtkinter>=5.2.2',
54
- 'lxml>=5.1.0'
57
+ 'customtkinter>=5.2.2,<6.0',
58
+ 'lxml>=5.1.0,<6.0'
55
59
  ]
56
60
 
57
61
  setup(
58
62
  name="spacr",
59
- version="0.0.62",
63
+ version="0.0.66",
60
64
  author="Einar Birnir Olafsson",
61
65
  author_email="olafsson@med.umich.com",
62
66
  description="Spatial phenotype analysis of crisp screens (SpaCr)",
@@ -0,0 +1,116 @@
1
+ Metadata-Version: 2.1
2
+ Name: spacr
3
+ Version: 0.0.66
4
+ Summary: Spatial phenotype analysis of crisp screens (SpaCr)
5
+ Home-page: https://github.com/EinarOlafsson/spacr
6
+ Author: Einar Birnir Olafsson
7
+ Author-email: olafsson@med.umich.com
8
+ Classifier: Programming Language :: Python :: 3
9
+ Classifier: License :: OSI Approved :: MIT License
10
+ Classifier: Operating System :: OS Independent
11
+ License-File: LICENSE
12
+ Requires-Dist: dgl
13
+ Requires-Dist: torch<3.0,>=2.2.1
14
+ Requires-Dist: torchvision<1.0,>=0.17.1
15
+ Requires-Dist: torch-geometric<3.0,>=2.5.1
16
+ Requires-Dist: numpy<2.0,>=1.26.4
17
+ Requires-Dist: pandas<3.0,>=2.2.1
18
+ Requires-Dist: statsmodels<1.0,>=0.14.1
19
+ Requires-Dist: scikit-image<1.0,>=0.22.0
20
+ Requires-Dist: scikit-learn<2.0,>=1.4.1
21
+ Requires-Dist: seaborn<1.0,>=0.13.2
22
+ Requires-Dist: matplotlib<4.0,>=3.8.3
23
+ Requires-Dist: shap<1.0,>=0.45.0
24
+ Requires-Dist: pillow<11.0,>=10.2.0
25
+ Requires-Dist: imageio<3.0,>=2.34.0
26
+ Requires-Dist: scipy<2.0,>=1.12.0
27
+ Requires-Dist: ipywidgets<9.0,>=8.1.2
28
+ Requires-Dist: mahotas<2.0,>=1.4.13
29
+ Requires-Dist: btrack<1.0,>=0.6.5
30
+ Requires-Dist: trackpy<1.0,>=0.6.2
31
+ Requires-Dist: cellpose<4.0,>=3.0.6
32
+ Requires-Dist: IPython<9.0,>=8.18.1
33
+ Requires-Dist: opencv-python-headless<5.0,>=4.9.0.80
34
+ Requires-Dist: umap-learn<1.0,>=0.5.6
35
+ Requires-Dist: ttkthemes<4.0,>=3.2.2
36
+ Requires-Dist: xgboost<3.0,>=2.0.3
37
+ Requires-Dist: PyWavelets<2.0,>=1.6.0
38
+ Requires-Dist: torchcam<1.0,>=0.4.0
39
+ Requires-Dist: ttf_opensans>=2020.10.30
40
+ Requires-Dist: customtkinter<6.0,>=5.2.2
41
+ Requires-Dist: lxml<6.0,>=5.1.0
42
+ Provides-Extra: dev
43
+ Requires-Dist: pytest>=3.9; extra == "dev"
44
+ Provides-Extra: headless
45
+ Requires-Dist: opencv-python-headless; extra == "headless"
46
+ Provides-Extra: full
47
+ Requires-Dist: opencv-python; extra == "full"
48
+
49
+ .. |PyPI version| image:: https://badge.fury.io/py/spacr.svg
50
+ :target: https://badge.fury.io/py/spacr
51
+ .. |Python version| image:: https://img.shields.io/pypi/pyversions/spacr
52
+ :target: https://pypistats.org/packages/spacr
53
+ .. |Licence: GPL v3| image:: https://img.shields.io/github/license/EinarOlafsson/spacr
54
+ :target: https://github.com/EinarOlafsson/spacr/blob/master/LICENSE
55
+ .. |repo size| image:: https://img.shields.io/github/repo-size/EinarOlafsson/spacr
56
+ :target: https://github.com/EinarOlafsson/spacr/
57
+
58
+ |PyPI version| |Python version| |Licence: GPL v3| |repo size|
59
+
60
+ SpaCr
61
+ =====
62
+
63
+ Spatial phenotype analysis of CRISPR-Cas9 screens (SpaCr). The spatial organization of organelles and proteins within cells constitutes a key level of functional regulation. In the context of infectious disease, the spatial relationships between host cell structures and intracellular pathogens are critical to understand host clearance mechanisms and how pathogens evade them. Spacr is a Python-based software package for generating single cell image data for deep-learning sub-cellular/cellular phenotypic classification from pooled genetic CRISPR-Cas9 screens. Spacr provides a flexible toolset to extract single cell images and measurements from high content cell painting experiments, train deep-learning models to classify cellular/subcellular phenotypes, simulate and analyze pooled CRISPR-Cas9 imaging screens.
64
+
65
+ Features
66
+ --------
67
+
68
+ - **Generate Masks:** Generate cellpose masks of cell, nuclei, and pathogen objects.
69
+
70
+ - **Object Measurements:** Measurements for each object including scikit-image-regionprops, intensity percentiles, shannon-entropy, pearsons and manders correlations, homogeneity and radial distribution. Measurements are saved to a SQL database in object level tables.
71
+
72
+ - **Crop Images:** Objects (e.g. cells) can be saved as PNGs from the object area or bounding box area of each object. Object paths are saved in a SQL database that can be annotated and used to train CNNs/Transformer models for classification tasks.
73
+
74
+ - **Train CNNs or Transformers:** Train Torch Convolutional Neural Networks (CNNs) or Transformers to classify single object images. Train Torch models with IRM/ERM, checkpointing.
75
+
76
+ - **Manual Annotation:** Supports manual annotation of single cell images and segmentation to refine training datasets for training CNNs/Transformers or cellpose, respectively.
77
+
78
+ - **Finetune Cellpose Models:** Adjust pre-existing Cellpose models to your specific dataset for improved performance.
79
+
80
+ - **Timelapse Data Support:** Track objects in timelapse image data.
81
+
82
+ - **Simulations:** Simulate spatial phenotype screens.
83
+
84
+ - **Sequencing:** Map FASTQ reads to barcode and gRNA barcode metadata.
85
+
86
+ - **Misc:** Analyze Ca oscillation, recruitment, infection rate, plaque size/count.
87
+
88
+ Installation
89
+ ------------
90
+
91
+ Requires Tkinter for graphical user interface features.
92
+
93
+ Ubuntu
94
+ ~~~~~~
95
+
96
+ Before installing spacr, ensure Tkinter is installed:
97
+
98
+ (Tkinter is included with the standard Python installation on macOS, and Windows)
99
+
100
+ On Linux:
101
+
102
+ ::
103
+
104
+ sudo apt-get install python3-tk
105
+
106
+ Install spacr with pip
107
+
108
+ ::
109
+
110
+ pip install spacr
111
+
112
+ Run spacr GUI:
113
+
114
+ ::
115
+
116
+ gui
@@ -1,6 +1,7 @@
1
1
  LICENSE
2
2
  MANIFEST.in
3
3
  README.md
4
+ README.rst
4
5
  setup.py
5
6
  spacr/__init__.py
6
7
  spacr/__main__.py
@@ -0,0 +1,39 @@
1
+ dgl
2
+ torch<3.0,>=2.2.1
3
+ torchvision<1.0,>=0.17.1
4
+ torch-geometric<3.0,>=2.5.1
5
+ numpy<2.0,>=1.26.4
6
+ pandas<3.0,>=2.2.1
7
+ statsmodels<1.0,>=0.14.1
8
+ scikit-image<1.0,>=0.22.0
9
+ scikit-learn<2.0,>=1.4.1
10
+ seaborn<1.0,>=0.13.2
11
+ matplotlib<4.0,>=3.8.3
12
+ shap<1.0,>=0.45.0
13
+ pillow<11.0,>=10.2.0
14
+ imageio<3.0,>=2.34.0
15
+ scipy<2.0,>=1.12.0
16
+ ipywidgets<9.0,>=8.1.2
17
+ mahotas<2.0,>=1.4.13
18
+ btrack<1.0,>=0.6.5
19
+ trackpy<1.0,>=0.6.2
20
+ cellpose<4.0,>=3.0.6
21
+ IPython<9.0,>=8.18.1
22
+ opencv-python-headless<5.0,>=4.9.0.80
23
+ umap-learn<1.0,>=0.5.6
24
+ ttkthemes<4.0,>=3.2.2
25
+ xgboost<3.0,>=2.0.3
26
+ PyWavelets<2.0,>=1.6.0
27
+ torchcam<1.0,>=0.4.0
28
+ ttf_opensans>=2020.10.30
29
+ customtkinter<6.0,>=5.2.2
30
+ lxml<6.0,>=5.1.0
31
+
32
+ [dev]
33
+ pytest>=3.9
34
+
35
+ [full]
36
+ opencv-python
37
+
38
+ [headless]
39
+ opencv-python-headless
spacr-0.0.62/PKG-INFO DELETED
@@ -1,118 +0,0 @@
1
- Metadata-Version: 2.1
2
- Name: spacr
3
- Version: 0.0.62
4
- Summary: Spatial phenotype analysis of crisp screens (SpaCr)
5
- Home-page: https://github.com/EinarOlafsson/spacr
6
- Author: Einar Birnir Olafsson
7
- Author-email: olafsson@med.umich.com
8
- Classifier: Programming Language :: Python :: 3
9
- Classifier: License :: OSI Approved :: MIT License
10
- Classifier: Operating System :: OS Independent
11
- License-File: LICENSE
12
- Requires-Dist: dgl
13
- Requires-Dist: torch>=2.2.1
14
- Requires-Dist: torchvision>=0.17.1
15
- Requires-Dist: torch-geometric>=2.5.1
16
- Requires-Dist: numpy<2.0,>=1.26.4
17
- Requires-Dist: pandas>=2.2.1
18
- Requires-Dist: statsmodels>=0.14.1
19
- Requires-Dist: scikit-image>=0.22.0
20
- Requires-Dist: scikit-learn>=1.4.1
21
- Requires-Dist: seaborn>=0.13.2
22
- Requires-Dist: matplotlib>=3.8.3
23
- Requires-Dist: shap>=0.45.0
24
- Requires-Dist: pillow>=10.2.0
25
- Requires-Dist: imageio>=2.34.0
26
- Requires-Dist: scipy>=1.12.0
27
- Requires-Dist: ipywidgets>=8.1.2
28
- Requires-Dist: mahotas>=1.4.13
29
- Requires-Dist: btrack>=0.6.5
30
- Requires-Dist: trackpy>=0.6.2
31
- Requires-Dist: cellpose>=3.0.6
32
- Requires-Dist: IPython>=8.18.1
33
- Requires-Dist: opencv-python-headless>=4.9.0.80
34
- Requires-Dist: umap-learn>=0.5.6
35
- Requires-Dist: ttkthemes>=3.2.2
36
- Requires-Dist: xgboost>=2.0.3
37
- Requires-Dist: PyWavelets>=1.6.0
38
- Requires-Dist: torchcam>=0.4.0
39
- Requires-Dist: ttf_opensans>=2020.10.30
40
- Requires-Dist: customtkinter>=5.2.2
41
- Requires-Dist: lxml>=5.1.0
42
- Provides-Extra: dev
43
- Requires-Dist: pytest>=3.9; extra == "dev"
44
- Provides-Extra: headless
45
- Requires-Dist: opencv-python-headless; extra == "headless"
46
- Provides-Extra: full
47
- Requires-Dist: opencv-python; extra == "full"
48
-
49
- [![PyPI version](https://badge.fury.io/py/spacr.svg)](https://badge.fury.io/py/spacr)
50
- [![Python version](https://img.shields.io/pypi/pyversions/spacr)](https://pypistats.org/packages/spacr)
51
- [![Licence: GPL v3](https://img.shields.io/github/license/EinarOlafsson/spacr)](https://github.com/EinarOlafsson/spacr/blob/master/LICENSE)
52
- [![repo size](https://img.shields.io/github/repo-size/EinarOlafsson/spacr)](https://github.com/EinarOlafsson/spacr/)
53
-
54
- # SpaCr
55
- <table>
56
- <tr>
57
- <td>
58
-
59
- Spatial phenotype analysis of CRISPR-Cas9 screens (SpaCr). The spatial organization of organelles and proteins within cells constitutes a key level of functional regulation. In the context of infectious disease, the spatial relationships between host cell structures and intracellular pathogens are critical to understand host clearance mechanisms and how pathogens evade them. Spacr is a Python-based software package for generating single cell image data for deep-learning sub-cellular/cellular phenotypic classification from pooled genetic CRISPR-Cas9 screens. Spacr provides a flexible toolset to extract single cell images and measurements from high content cell painting experiments, train deep-learning models to classify cellular/ subcellular phenotypes, simulate and analyze pooled CRISPR-Cas9 imaging screens.
60
-
61
- </td>
62
- <td>
63
-
64
- <img src="spacr/logo_spacr.png" alt="SPACR Logo" title="SPACR Logo" width="600"/>
65
-
66
- </td>
67
- </tr>
68
- </table>
69
-
70
- ## Features
71
-
72
- - **Generate Masks:** Generate cellpose masks of cell, nuclei and pathogen objects.
73
-
74
- - **Object Measurements:** Measurements for each object including scikit-image-regionprops, intensity percentiles, shannon-entropy, pearsons and manders correlations, homogenicity and radial distribution. Measurements are saved to a sql database in object level tables.
75
-
76
- - **Crop Images:** Objects (e.g. cells) can be saved as PNGs from the object area or bounding box area of each object. Object paths are saved in an sql database that can be annotated and used to train CNNs/Transformer models for classefication tasks.
77
-
78
- - **Train CNNs or Transformers:** Train Torch Convolutional Neural Networks (CNNs) or Transformers to classify single object images. Train Torch models with IRM/ERM, checkpointing.
79
-
80
- - **Manual Annotation:** Supports manual annotation of single cell images and segmentation to refine training datasets for training CNNs/Transformers or cellpose, respectively.
81
-
82
- - **Finetune Cellpose Models:** Adjust pre-existing Cellpose models to your specific dataset for improved performance.
83
-
84
- - **Timelapse Data Support:** Track objects in timelapse image data.
85
-
86
- - **Simulations:** Simulate spatial phenotype screens.
87
-
88
- - **Sequencing:** Map FASTQ reads to barecode and gRNA barecode metadata.
89
-
90
- - **Misc:** Analyze Ca oscillation, recruitment, infection rate, plaque size/count.
91
-
92
- ## Installation
93
-
94
- Requires Tkinter for graphical user interface features.
95
-
96
- ### Ubuntu
97
-
98
- Before installing spacr, ensure Tkinter is installed:
99
-
100
- (Tkinter is included with the standard Python installation on macOS, and Windows)
101
-
102
- On Linux:
103
-
104
- ```
105
- sudo apt-get install python3-tk
106
- ```
107
-
108
- install spacr with pip
109
-
110
- ```
111
- pip install spacr
112
- ```
113
-
114
- Run spacr GUI:
115
-
116
- ```
117
- gui
118
- ```
@@ -1,118 +0,0 @@
1
- Metadata-Version: 2.1
2
- Name: spacr
3
- Version: 0.0.62
4
- Summary: Spatial phenotype analysis of crisp screens (SpaCr)
5
- Home-page: https://github.com/EinarOlafsson/spacr
6
- Author: Einar Birnir Olafsson
7
- Author-email: olafsson@med.umich.com
8
- Classifier: Programming Language :: Python :: 3
9
- Classifier: License :: OSI Approved :: MIT License
10
- Classifier: Operating System :: OS Independent
11
- License-File: LICENSE
12
- Requires-Dist: dgl
13
- Requires-Dist: torch>=2.2.1
14
- Requires-Dist: torchvision>=0.17.1
15
- Requires-Dist: torch-geometric>=2.5.1
16
- Requires-Dist: numpy<2.0,>=1.26.4
17
- Requires-Dist: pandas>=2.2.1
18
- Requires-Dist: statsmodels>=0.14.1
19
- Requires-Dist: scikit-image>=0.22.0
20
- Requires-Dist: scikit-learn>=1.4.1
21
- Requires-Dist: seaborn>=0.13.2
22
- Requires-Dist: matplotlib>=3.8.3
23
- Requires-Dist: shap>=0.45.0
24
- Requires-Dist: pillow>=10.2.0
25
- Requires-Dist: imageio>=2.34.0
26
- Requires-Dist: scipy>=1.12.0
27
- Requires-Dist: ipywidgets>=8.1.2
28
- Requires-Dist: mahotas>=1.4.13
29
- Requires-Dist: btrack>=0.6.5
30
- Requires-Dist: trackpy>=0.6.2
31
- Requires-Dist: cellpose>=3.0.6
32
- Requires-Dist: IPython>=8.18.1
33
- Requires-Dist: opencv-python-headless>=4.9.0.80
34
- Requires-Dist: umap-learn>=0.5.6
35
- Requires-Dist: ttkthemes>=3.2.2
36
- Requires-Dist: xgboost>=2.0.3
37
- Requires-Dist: PyWavelets>=1.6.0
38
- Requires-Dist: torchcam>=0.4.0
39
- Requires-Dist: ttf_opensans>=2020.10.30
40
- Requires-Dist: customtkinter>=5.2.2
41
- Requires-Dist: lxml>=5.1.0
42
- Provides-Extra: dev
43
- Requires-Dist: pytest>=3.9; extra == "dev"
44
- Provides-Extra: headless
45
- Requires-Dist: opencv-python-headless; extra == "headless"
46
- Provides-Extra: full
47
- Requires-Dist: opencv-python; extra == "full"
48
-
49
- [![PyPI version](https://badge.fury.io/py/spacr.svg)](https://badge.fury.io/py/spacr)
50
- [![Python version](https://img.shields.io/pypi/pyversions/spacr)](https://pypistats.org/packages/spacr)
51
- [![Licence: GPL v3](https://img.shields.io/github/license/EinarOlafsson/spacr)](https://github.com/EinarOlafsson/spacr/blob/master/LICENSE)
52
- [![repo size](https://img.shields.io/github/repo-size/EinarOlafsson/spacr)](https://github.com/EinarOlafsson/spacr/)
53
-
54
- # SpaCr
55
- <table>
56
- <tr>
57
- <td>
58
-
59
- Spatial phenotype analysis of CRISPR-Cas9 screens (SpaCr). The spatial organization of organelles and proteins within cells constitutes a key level of functional regulation. In the context of infectious disease, the spatial relationships between host cell structures and intracellular pathogens are critical to understand host clearance mechanisms and how pathogens evade them. Spacr is a Python-based software package for generating single cell image data for deep-learning sub-cellular/cellular phenotypic classification from pooled genetic CRISPR-Cas9 screens. Spacr provides a flexible toolset to extract single cell images and measurements from high content cell painting experiments, train deep-learning models to classify cellular/ subcellular phenotypes, simulate and analyze pooled CRISPR-Cas9 imaging screens.
60
-
61
- </td>
62
- <td>
63
-
64
- <img src="spacr/logo_spacr.png" alt="SPACR Logo" title="SPACR Logo" width="600"/>
65
-
66
- </td>
67
- </tr>
68
- </table>
69
-
70
- ## Features
71
-
72
- - **Generate Masks:** Generate cellpose masks of cell, nuclei and pathogen objects.
73
-
74
- - **Object Measurements:** Measurements for each object including scikit-image-regionprops, intensity percentiles, shannon-entropy, pearsons and manders correlations, homogenicity and radial distribution. Measurements are saved to a sql database in object level tables.
75
-
76
- - **Crop Images:** Objects (e.g. cells) can be saved as PNGs from the object area or bounding box area of each object. Object paths are saved in an sql database that can be annotated and used to train CNNs/Transformer models for classefication tasks.
77
-
78
- - **Train CNNs or Transformers:** Train Torch Convolutional Neural Networks (CNNs) or Transformers to classify single object images. Train Torch models with IRM/ERM, checkpointing.
79
-
80
- - **Manual Annotation:** Supports manual annotation of single cell images and segmentation to refine training datasets for training CNNs/Transformers or cellpose, respectively.
81
-
82
- - **Finetune Cellpose Models:** Adjust pre-existing Cellpose models to your specific dataset for improved performance.
83
-
84
- - **Timelapse Data Support:** Track objects in timelapse image data.
85
-
86
- - **Simulations:** Simulate spatial phenotype screens.
87
-
88
- - **Sequencing:** Map FASTQ reads to barecode and gRNA barecode metadata.
89
-
90
- - **Misc:** Analyze Ca oscillation, recruitment, infection rate, plaque size/count.
91
-
92
- ## Installation
93
-
94
- Requires Tkinter for graphical user interface features.
95
-
96
- ### Ubuntu
97
-
98
- Before installing spacr, ensure Tkinter is installed:
99
-
100
- (Tkinter is included with the standard Python installation on macOS, and Windows)
101
-
102
- On Linux:
103
-
104
- ```
105
- sudo apt-get install python3-tk
106
- ```
107
-
108
- install spacr with pip
109
-
110
- ```
111
- pip install spacr
112
- ```
113
-
114
- Run spacr GUI:
115
-
116
- ```
117
- gui
118
- ```
@@ -1,39 +0,0 @@
1
- dgl
2
- torch>=2.2.1
3
- torchvision>=0.17.1
4
- torch-geometric>=2.5.1
5
- numpy<2.0,>=1.26.4
6
- pandas>=2.2.1
7
- statsmodels>=0.14.1
8
- scikit-image>=0.22.0
9
- scikit-learn>=1.4.1
10
- seaborn>=0.13.2
11
- matplotlib>=3.8.3
12
- shap>=0.45.0
13
- pillow>=10.2.0
14
- imageio>=2.34.0
15
- scipy>=1.12.0
16
- ipywidgets>=8.1.2
17
- mahotas>=1.4.13
18
- btrack>=0.6.5
19
- trackpy>=0.6.2
20
- cellpose>=3.0.6
21
- IPython>=8.18.1
22
- opencv-python-headless>=4.9.0.80
23
- umap-learn>=0.5.6
24
- ttkthemes>=3.2.2
25
- xgboost>=2.0.3
26
- PyWavelets>=1.6.0
27
- torchcam>=0.4.0
28
- ttf_opensans>=2020.10.30
29
- customtkinter>=5.2.2
30
- lxml>=5.1.0
31
-
32
- [dev]
33
- pytest>=3.9
34
-
35
- [full]
36
- opencv-python
37
-
38
- [headless]
39
- opencv-python-headless
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes