spacr 0.0.18__tar.gz → 0.0.21__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (59) hide show
  1. {spacr-0.0.18/spacr.egg-info → spacr-0.0.21}/PKG-INFO +32 -27
  2. {spacr-0.0.18 → spacr-0.0.21}/README.md +6 -4
  3. {spacr-0.0.18 → spacr-0.0.21}/setup.py +27 -26
  4. spacr-0.0.21/spacr/alpha.py +295 -0
  5. {spacr-0.0.18 → spacr-0.0.21}/spacr/annotate_app.py +2 -2
  6. {spacr-0.0.18 → spacr-0.0.21}/spacr/core.py +1377 -296
  7. spacr-0.0.21/spacr/foldseek.py +793 -0
  8. spacr-0.0.21/spacr/get_alfafold_structures.py +72 -0
  9. spacr-0.0.21/spacr/graph_learning.py +276 -0
  10. spacr-0.0.21/spacr/graph_learning_lap.py +84 -0
  11. {spacr-0.0.18 → spacr-0.0.21}/spacr/gui_classify_app.py +5 -21
  12. {spacr-0.0.18 → spacr-0.0.21}/spacr/gui_mask_app.py +36 -30
  13. {spacr-0.0.18 → spacr-0.0.21}/spacr/gui_measure_app.py +10 -24
  14. {spacr-0.0.18 → spacr-0.0.21}/spacr/gui_utils.py +82 -54
  15. {spacr-0.0.18 → spacr-0.0.21}/spacr/io.py +505 -205
  16. {spacr-0.0.18 → spacr-0.0.21}/spacr/measure.py +160 -80
  17. spacr-0.0.21/spacr/old_code.py +290 -0
  18. {spacr-0.0.18 → spacr-0.0.21}/spacr/plot.py +243 -99
  19. {spacr-0.0.18 → spacr-0.0.21}/spacr/sim.py +666 -119
  20. {spacr-0.0.18 → spacr-0.0.21}/spacr/timelapse.py +343 -52
  21. {spacr-0.0.18 → spacr-0.0.21}/spacr/train.py +18 -10
  22. {spacr-0.0.18 → spacr-0.0.21}/spacr/utils.py +252 -151
  23. {spacr-0.0.18 → spacr-0.0.21/spacr.egg-info}/PKG-INFO +32 -27
  24. {spacr-0.0.18 → spacr-0.0.21}/spacr.egg-info/SOURCES.txt +2 -0
  25. spacr-0.0.21/spacr.egg-info/requires.txt +35 -0
  26. spacr-0.0.18/spacr/alpha.py +0 -18
  27. spacr-0.0.18/spacr/graph_learning.py +0 -82
  28. spacr-0.0.18/spacr/graph_learning_lap.py +0 -82
  29. spacr-0.0.18/spacr/old_code.py +0 -136
  30. spacr-0.0.18/spacr.egg-info/requires.txt +0 -32
  31. {spacr-0.0.18 → spacr-0.0.21}/LICENSE +0 -0
  32. {spacr-0.0.18 → spacr-0.0.21}/setup.cfg +0 -0
  33. {spacr-0.0.18 → spacr-0.0.21}/spacr/__init__.py +0 -0
  34. {spacr-0.0.18 → spacr-0.0.21}/spacr/__main__.py +0 -0
  35. {spacr-0.0.18 → spacr-0.0.21}/spacr/cli.py +0 -0
  36. {spacr-0.0.18 → spacr-0.0.21}/spacr/gui_sim_app.py +0 -0
  37. {spacr-0.0.18 → spacr-0.0.21}/spacr/logger.py +0 -0
  38. {spacr-0.0.18 → spacr-0.0.21}/spacr/mask_app.py +0 -0
  39. {spacr-0.0.18 → spacr-0.0.21}/spacr/umap.py +0 -0
  40. {spacr-0.0.18 → spacr-0.0.21}/spacr/version.py +0 -0
  41. {spacr-0.0.18 → spacr-0.0.21}/spacr.egg-info/dependency_links.txt +0 -0
  42. {spacr-0.0.18 → spacr-0.0.21}/spacr.egg-info/entry_points.txt +0 -0
  43. {spacr-0.0.18 → spacr-0.0.21}/spacr.egg-info/top_level.txt +0 -0
  44. {spacr-0.0.18 → spacr-0.0.21}/tests/test_annotate_app.py +0 -0
  45. {spacr-0.0.18 → spacr-0.0.21}/tests/test_core.py +0 -0
  46. {spacr-0.0.18 → spacr-0.0.21}/tests/test_gui_classify_app.py +0 -0
  47. {spacr-0.0.18 → spacr-0.0.21}/tests/test_gui_mask_app.py +0 -0
  48. {spacr-0.0.18 → spacr-0.0.21}/tests/test_gui_measure_app.py +0 -0
  49. {spacr-0.0.18 → spacr-0.0.21}/tests/test_gui_sim_app.py +0 -0
  50. {spacr-0.0.18 → spacr-0.0.21}/tests/test_gui_utils.py +0 -0
  51. {spacr-0.0.18 → spacr-0.0.21}/tests/test_io.py +0 -0
  52. {spacr-0.0.18 → spacr-0.0.21}/tests/test_mask_app.py +0 -0
  53. {spacr-0.0.18 → spacr-0.0.21}/tests/test_measure.py +0 -0
  54. {spacr-0.0.18 → spacr-0.0.21}/tests/test_plot.py +0 -0
  55. {spacr-0.0.18 → spacr-0.0.21}/tests/test_sim.py +0 -0
  56. {spacr-0.0.18 → spacr-0.0.21}/tests/test_timelapse.py +0 -0
  57. {spacr-0.0.18 → spacr-0.0.21}/tests/test_train.py +0 -0
  58. {spacr-0.0.18 → spacr-0.0.21}/tests/test_umap.py +0 -0
  59. {spacr-0.0.18 → spacr-0.0.21}/tests/test_utils.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: spacr
3
- Version: 0.0.18
3
+ Version: 0.0.21
4
4
  Summary: Spatial phenotype analysis of crisp screens (SpaCr)
5
5
  Home-page: https://github.com/EinarOlafsson/spacr
6
6
  Author: Einar Birnir Olafsson
@@ -9,29 +9,32 @@ Classifier: Programming Language :: Python :: 3
9
9
  Classifier: License :: OSI Approved :: MIT License
10
10
  Classifier: Operating System :: OS Independent
11
11
  License-File: LICENSE
12
- Requires-Dist: torch
13
- Requires-Dist: torchvision
14
- Requires-Dist: torch-geometric
15
- Requires-Dist: numpy
16
- Requires-Dist: pandas
17
- Requires-Dist: statsmodels
18
- Requires-Dist: scikit-image
19
- Requires-Dist: scikit-learn
20
- Requires-Dist: seaborn
21
- Requires-Dist: matplotlib
22
- Requires-Dist: pillow
23
- Requires-Dist: imageio
24
- Requires-Dist: scipy
25
- Requires-Dist: ipywidgets
26
- Requires-Dist: mahotas
27
- Requires-Dist: btrack
28
- Requires-Dist: trackpy
29
- Requires-Dist: cellpose
30
- Requires-Dist: IPython
31
- Requires-Dist: opencv-python-headless
32
- Requires-Dist: umap
33
- Requires-Dist: ttkthemes
34
- Requires-Dist: lxml
12
+ Requires-Dist: torch>=2.2.1
13
+ Requires-Dist: torchvision>=0.17.1
14
+ Requires-Dist: torch-geometric>=2.5.1
15
+ Requires-Dist: numpy>=1.26.4
16
+ Requires-Dist: pandas>=2.2.1
17
+ Requires-Dist: statsmodels>=0.14.1
18
+ Requires-Dist: scikit-image>=0.22.0
19
+ Requires-Dist: scikit-learn>=1.4.1
20
+ Requires-Dist: seaborn>=0.13.2
21
+ Requires-Dist: matplotlib>=3.8.3
22
+ Requires-Dist: shap>=0.45.0
23
+ Requires-Dist: pillow>=10.2.0
24
+ Requires-Dist: imageio>=2.34.0
25
+ Requires-Dist: scipy>=1.12.0
26
+ Requires-Dist: ipywidgets>=8.1.2
27
+ Requires-Dist: mahotas>=1.4.13
28
+ Requires-Dist: btrack>=0.6.5
29
+ Requires-Dist: trackpy>=0.6.2
30
+ Requires-Dist: cellpose>=3.0.6
31
+ Requires-Dist: IPython>=8.18.1
32
+ Requires-Dist: opencv-python-headless>=4.9.0.80
33
+ Requires-Dist: umap>=0.1.1
34
+ Requires-Dist: ttkthemes>=3.2.2
35
+ Requires-Dist: xgboost>=2.0.3
36
+ Requires-Dist: PyWavelets>=1.6.0
37
+ Requires-Dist: lxml>=5.1.0
35
38
  Provides-Extra: dev
36
39
  Requires-Dist: pytest>=3.9; extra == "dev"
37
40
  Provides-Extra: headless
@@ -49,7 +52,7 @@ Requires-Dist: opencv-python; extra == "full"
49
52
  <tr>
50
53
  <td>
51
54
 
52
- Spatial phenotype analysis of crisp screens (SpaCr). A collection of functions for generating cellpose masks -> single object images and measurements -> annotation and classification of single object images. Spacr uses batch normalization to facilitate accurate segmentation of objects with low foreground representation.
55
+ Spatial phenotype analysis of CRISPR-Cas9 screens (SpaCr). The spatial organization of organelles and proteins within cells constitutes a key level of functional regulation. In the context of infectious disease, the spatial relationships between host cell structures and intracellular pathogens are critical to understand host clearance mechanisms and how pathogens evade them. Spacr is a Python-based software package for generating single cell image data for deep-learning sub-cellular/cellular phenotypic classification from pooled genetic CRISPR-Cas9 screens. Spacr provides a flexible toolset to extract single cell images and measurements from high content cell painting experiments, train deep-learning models to classify cellular/ subcellular phenotypes, simulate and analyze pooled CRISPR-Cas9 imaging screens.
53
56
 
54
57
  </td>
55
58
  <td>
@@ -68,16 +71,18 @@ Spatial phenotype analysis of crisp screens (SpaCr). A collection of functions f
68
71
 
69
72
  - **Crop Images:** Objects (e.g. cells) can be saved as PNGs from the object area or bounding box area of each object. Object paths are saved in an sql database that can be annotated and used to train CNNs/Transformer models for classefication tasks.
70
73
 
71
- - **Train CNNs or Transformers:** Train Torch Convolutional Neural Networks (CNNs) or Transformers to classify single object images. Train Torch models with IRM/ERM, checkpointing,
74
+ - **Train CNNs or Transformers:** Train Torch Convolutional Neural Networks (CNNs) or Transformers to classify single object images. Train Torch models with IRM/ERM, checkpointing.
72
75
 
73
76
  - **Manual Annotation:** Supports manual annotation of single cell images and segmentation to refine training datasets for training CNNs/Transformers or cellpose, respectively.
74
77
 
75
78
  - **Finetune Cellpose Models:** Adjust pre-existing Cellpose models to your specific dataset for improved performance.
76
79
 
77
- - **Timelapse Data Support:** Includes support for analyzing timelapse data.
80
+ - **Timelapse Data Support:** Track objects in timelapse image data.
78
81
 
79
82
  - **Simulations:** Simulate spatial phenotype screens.
80
83
 
84
+ - **Misc:** Analyze Ca oscillation, recruitment, infection rate, plaque size/count.
85
+
81
86
  ## Installation
82
87
 
83
88
  spacr requires Tkinter for its graphical user interface features.
@@ -8,7 +8,7 @@
8
8
  <tr>
9
9
  <td>
10
10
 
11
- Spatial phenotype analysis of crisp screens (SpaCr). A collection of functions for generating cellpose masks -> single object images and measurements -> annotation and classification of single object images. Spacr uses batch normalization to facilitate accurate segmentation of objects with low foreground representation.
11
+ Spatial phenotype analysis of CRISPR-Cas9 screens (SpaCr). The spatial organization of organelles and proteins within cells constitutes a key level of functional regulation. In the context of infectious disease, the spatial relationships between host cell structures and intracellular pathogens are critical to understand host clearance mechanisms and how pathogens evade them. Spacr is a Python-based software package for generating single cell image data for deep-learning sub-cellular/cellular phenotypic classification from pooled genetic CRISPR-Cas9 screens. Spacr provides a flexible toolset to extract single cell images and measurements from high content cell painting experiments, train deep-learning models to classify cellular/ subcellular phenotypes, simulate and analyze pooled CRISPR-Cas9 imaging screens.
12
12
 
13
13
  </td>
14
14
  <td>
@@ -27,16 +27,18 @@ Spatial phenotype analysis of crisp screens (SpaCr). A collection of functions f
27
27
 
28
28
  - **Crop Images:** Objects (e.g. cells) can be saved as PNGs from the object area or bounding box area of each object. Object paths are saved in an sql database that can be annotated and used to train CNNs/Transformer models for classefication tasks.
29
29
 
30
- - **Train CNNs or Transformers:** Train Torch Convolutional Neural Networks (CNNs) or Transformers to classify single object images. Train Torch models with IRM/ERM, checkpointing,
30
+ - **Train CNNs or Transformers:** Train Torch Convolutional Neural Networks (CNNs) or Transformers to classify single object images. Train Torch models with IRM/ERM, checkpointing.
31
31
 
32
32
  - **Manual Annotation:** Supports manual annotation of single cell images and segmentation to refine training datasets for training CNNs/Transformers or cellpose, respectively.
33
33
 
34
34
  - **Finetune Cellpose Models:** Adjust pre-existing Cellpose models to your specific dataset for improved performance.
35
35
 
36
- - **Timelapse Data Support:** Includes support for analyzing timelapse data.
36
+ - **Timelapse Data Support:** Track objects in timelapse image data.
37
37
 
38
38
  - **Simulations:** Simulate spatial phenotype screens.
39
39
 
40
+ - **Misc:** Analyze Ca oscillation, recruitment, infection rate, plaque size/count.
41
+
40
42
  ## Installation
41
43
 
42
44
  spacr requires Tkinter for its graphical user interface features.
@@ -84,4 +86,4 @@ gui_classify
84
86
  Simulate spatial phenotype screens.
85
87
  ```
86
88
  gui_sim
87
- ```
89
+ ```
@@ -5,36 +5,37 @@ with open("README.md", "r", encoding="utf-8") as fh:
5
5
  long_description = fh.read()
6
6
 
7
7
  dependencies = [
8
- 'torch',
9
- 'torchvision',
10
- 'torch-geometric',
11
- #'torch-sparse',
12
- #'torch-scatter',
13
- 'numpy',
14
- 'pandas',
15
- 'statsmodels',
16
- 'scikit-image',
17
- 'scikit-learn',
18
- 'seaborn',
19
- 'matplotlib',
20
- 'pillow',
21
- 'imageio',
22
- 'scipy',
23
- 'ipywidgets',
24
- 'mahotas',
25
- 'btrack',
26
- 'trackpy',
27
- 'cellpose',
28
- 'IPython',
29
- 'opencv-python-headless',
30
- 'umap',
31
- 'ttkthemes',
32
- 'lxml'
8
+ 'torch>=2.2.1',
9
+ 'torchvision>=0.17.1',
10
+ 'torch-geometric>=2.5.1',
11
+ 'numpy>=1.26.4',
12
+ 'pandas>=2.2.1',
13
+ 'statsmodels>=0.14.1',
14
+ 'scikit-image>=0.22.0',
15
+ 'scikit-learn>=1.4.1',
16
+ 'seaborn>=0.13.2',
17
+ 'matplotlib>=3.8.3',
18
+ 'shap>=0.45.0',
19
+ 'pillow>=10.2.0',
20
+ 'imageio>=2.34.0',
21
+ 'scipy>=1.12.0',
22
+ 'ipywidgets>=8.1.2',
23
+ 'mahotas>=1.4.13',
24
+ 'btrack>=0.6.5',
25
+ 'trackpy>=0.6.2',
26
+ 'cellpose>=3.0.6',
27
+ 'IPython>=8.18.1',
28
+ 'opencv-python-headless>=4.9.0.80',
29
+ 'umap>=0.1.1',
30
+ 'ttkthemes>=3.2.2',
31
+ 'xgboost>=2.0.3',
32
+ 'PyWavelets>=1.6.0',
33
+ 'lxml>=5.1.0'
33
34
  ]
34
35
 
35
36
  setup(
36
37
  name="spacr",
37
- version="0.0.18",
38
+ version="0.0.21",
38
39
  author="Einar Birnir Olafsson",
39
40
  author_email="olafsson@med.umich.com",
40
41
  description="Spatial phenotype analysis of crisp screens (SpaCr)",
@@ -0,0 +1,295 @@
1
+ from skimage import measure, feature
2
+ from skimage.filters import gabor
3
+ from skimage.color import rgb2gray
4
+ from skimage.feature.texture import greycomatrix, greycoprops, local_binary_pattern
5
+ from skimage.util import img_as_ubyte
6
+ import numpy as np
7
+ import pandas as pd
8
+ from scipy.stats import skew, kurtosis, entropy, hmean, gmean, mode
9
+ import pywt
10
+
11
+ import os
12
+ import pandas as pd
13
+ from PIL import Image
14
+ from torchvision import transforms
15
+ import torch
16
+ import torch.nn as nn
17
+ import torch.nn.functional as F
18
+ from torch_geometric.data import Data, DataLoader
19
+ from torch_geometric.nn import GCNConv, global_mean_pool
20
+ from torch.optim import Adam
21
+
22
+ # Step 1: Data Preparation
23
+
24
+ # Load images
25
+ def load_images(image_dir):
26
+ images = {}
27
+ for filename in os.listdir(image_dir):
28
+ if filename.endswith(".png"):
29
+ img = Image.open(os.path.join(image_dir, filename))
30
+ images[filename] = img
31
+ return images
32
+
33
+ # Load sequencing data
34
+ def load_sequencing_data(seq_file):
35
+ seq_data = pd.read_csv(seq_file)
36
+ return seq_data
37
+
38
+ # Step 2: Data Representation
39
+
40
+ # Image Representation (Using a simple CNN for feature extraction)
41
+ class CNNFeatureExtractor(nn.Module):
42
+ def __init__(self):
43
+ super(CNNFeatureExtractor, self).__init__()
44
+ self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1)
45
+ self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1)
46
+ self.fc = nn.Linear(32 * 8 * 8, 128) # Assuming input images are 64x64
47
+
48
+ def forward(self, x):
49
+ x = F.relu(self.conv1(x))
50
+ x = F.max_pool2d(x, 2)
51
+ x = F.relu(self.conv2(x))
52
+ x = F.max_pool2d(x, 2)
53
+ x = x.view(x.size(0), -1)
54
+ x = self.fc(x)
55
+ return x
56
+
57
+ # Graph Representation
58
+ def create_graph(wells, sequencing_data):
59
+ nodes = []
60
+ edges = []
61
+ node_features = []
62
+
63
+ for well in wells:
64
+ # Add node for each well
65
+ nodes.append(well)
66
+
67
+ # Get sequencing data for the well
68
+ seq_info = sequencing_data[sequencing_data['well'] == well]
69
+
70
+ # Create node features based on gene knockouts and abundances
71
+ features = torch.tensor(seq_info['abundance'].values, dtype=torch.float)
72
+ node_features.append(features)
73
+
74
+ # Define edges (for simplicity, assume fully connected graph)
75
+ for other_well in wells:
76
+ if other_well != well:
77
+ edges.append((wells.index(well), wells.index(other_well)))
78
+
79
+ edge_index = torch.tensor(edges, dtype=torch.long).t().contiguous()
80
+ x = torch.stack(node_features)
81
+
82
+ data = Data(x=x, edge_index=edge_index)
83
+ return data
84
+
85
+ # Step 3: Model Architecture
86
+
87
+ class GraphTransformer(nn.Module):
88
+ def __init__(self, in_channels, hidden_channels, out_channels):
89
+ super(GraphTransformer, self).__init__()
90
+ self.conv1 = GCNConv(in_channels, hidden_channels)
91
+ self.conv2 = GCNConv(hidden_channels, hidden_channels)
92
+ self.fc = nn.Linear(hidden_channels, out_channels)
93
+ self.attention = nn.MultiheadAttention(hidden_channels, num_heads=8)
94
+
95
+ def forward(self, x, edge_index, batch):
96
+ x = F.relu(self.conv1(x, edge_index))
97
+ x = F.relu(self.conv2(x, edge_index))
98
+
99
+ # Apply attention mechanism
100
+ x, _ = self.attention(x.unsqueeze(1), x.unsqueeze(1), x.unsqueeze(1))
101
+ x = x.squeeze(1)
102
+
103
+ x = global_mean_pool(x, batch)
104
+ x = self.fc(x)
105
+ return x
106
+
107
+ # Step 4: Training
108
+
109
+ # Training Loop
110
+ def train(model, data_loader, criterion, optimizer, epochs=10):
111
+ model.train()
112
+ for epoch in range(epochs):
113
+ for data in data_loader:
114
+ optimizer.zero_grad()
115
+ out = model(data.x, data.edge_index, data.batch)
116
+ loss = criterion(out, data.y)
117
+ loss.backward()
118
+ optimizer.step()
119
+ print(f'Epoch {epoch+1}, Loss: {loss.item()}')
120
+
121
+ def evaluate(model, data_loader):
122
+ model.eval()
123
+ correct = 0
124
+ total = 0
125
+ with torch.no_grad():
126
+ for data in data_loader:
127
+ out = model(data.x, data.edge_index, data.batch)
128
+ _, predicted = torch.max(out, 1)
129
+ total += data.y.size(0)
130
+ correct += (predicted == data.y).sum().item()
131
+ accuracy = correct / total
132
+ print(f'Accuracy: {accuracy * 100:.2f}%')
133
+
134
+ def spacr_transformer(image_dir, seq_file, nr_grnas=1350, lr=0.001, mode='train'):
135
+ images = load_images(image_dir)
136
+
137
+ sequencing_data = load_sequencing_data(seq_file)
138
+ wells = sequencing_data['well'].unique()
139
+ graph_data = create_graph(wells, sequencing_data)
140
+ model = GraphTransformer(in_channels=nr_grnas, hidden_channels=128, out_channels=nr_grnas)
141
+ criterion = nn.CrossEntropyLoss()
142
+ optimizer = Adam(model.parameters(), lr=lr)
143
+ data_list = [graph_data]
144
+ loader = DataLoader(data_list, batch_size=1, shuffle=True)
145
+ if mode == 'train':
146
+ train(model, loader, criterion, optimizer)
147
+ elif mode == 'eval':
148
+ evaluate(model, loader)
149
+ else:
150
+ raise ValueError('Invalid mode. Use "train" or "eval".')
151
+
152
+ def _calculate_glcm_features(intensity_image):
153
+ glcm = greycomatrix(img_as_ubyte(intensity_image), distances=[1, 2, 3, 4], angles=[0, np.pi/4, np.pi/2, 3*np.pi/4], symmetric=True, normed=True)
154
+ features = {}
155
+ for prop in ['contrast', 'dissimilarity', 'homogeneity', 'energy', 'correlation', 'ASM']:
156
+ for i, distance in enumerate([1, 2, 3, 4]):
157
+ for j, angle in enumerate([0, np.pi/4, np.pi/2, 3*np.pi/4]):
158
+ features[f'glcm_{prop}_d{distance}_a{angle}'] = greycoprops(glcm, prop)[i, j]
159
+ return features
160
+
161
+ def _calculate_lbp_features(intensity_image, P=8, R=1):
162
+ lbp = local_binary_pattern(intensity_image, P, R, method='uniform')
163
+ lbp_hist, _ = np.histogram(lbp, density=True, bins=np.arange(0, P + 3), range=(0, P + 2))
164
+ return {f'lbp_{i}': val for i, val in enumerate(lbp_hist)}
165
+
166
+ def _calculate_wavelet_features(intensity_image, wavelet='db1'):
167
+ coeffs = pywt.wavedec2(intensity_image, wavelet=wavelet, level=3)
168
+ features = {}
169
+ for i, coeff in enumerate(coeffs):
170
+ if isinstance(coeff, tuple):
171
+ for j, subband in enumerate(coeff):
172
+ features[f'wavelet_coeff_{i}_{j}_mean'] = np.mean(subband)
173
+ features[f'wavelet_coeff_{i}_{j}_std'] = np.std(subband)
174
+ features[f'wavelet_coeff_{i}_{j}_energy'] = np.sum(subband**2)
175
+ else:
176
+ features[f'wavelet_coeff_{i}_mean'] = np.mean(coeff)
177
+ features[f'wavelet_coeff_{i}_std'] = np.std(coeff)
178
+ features[f'wavelet_coeff_{i}_energy'] = np.sum(coeff**2)
179
+ return features
180
+
181
+
182
+ from .measure import _estimate_blur, _calculate_correlation_object_level, _calculate_homogeneity, _periphery_intensity, _outside_intensity, _calculate_radial_distribution, _create_dataframe, _extended_regionprops_table, _calculate_correlation_object_level
183
+
184
+ def _intensity_measurements(cell_mask, nucleus_mask, pathogen_mask, cytoplasm_mask, channel_arrays, settings, sizes=[3, 6, 12, 24], periphery=True, outside=True):
185
+ radial_dist = settings['radial_dist']
186
+ calculate_correlation = settings['calculate_correlation']
187
+ homogeneity = settings['homogeneity']
188
+ distances = settings['homogeneity_distances']
189
+
190
+ intensity_props = ["label", "centroid_weighted", "centroid_weighted_local", "max_intensity", "mean_intensity", "min_intensity", "integrated_intensity"]
191
+ additional_props = ["standard_deviation_intensity", "median_intensity", "sum_intensity", "intensity_range", "mean_absolute_deviation_intensity", "skewness_intensity", "kurtosis_intensity", "variance_intensity", "mode_intensity", "energy_intensity", "entropy_intensity", "harmonic_mean_intensity", "geometric_mean_intensity"]
192
+ col_lables = ['region_label', 'mean', '5_percentile', '10_percentile', '25_percentile', '50_percentile', '75_percentile', '85_percentile', '95_percentile']
193
+ cell_dfs, nucleus_dfs, pathogen_dfs, cytoplasm_dfs = [], [], [], []
194
+ ls = ['cell','nucleus','pathogen','cytoplasm']
195
+ labels = [cell_mask, nucleus_mask, pathogen_mask, cytoplasm_mask]
196
+ dfs = [cell_dfs, nucleus_dfs, pathogen_dfs, cytoplasm_dfs]
197
+
198
+ for i in range(0,channel_arrays.shape[-1]):
199
+ channel = channel_arrays[:, :, i]
200
+ for j, (label, df) in enumerate(zip(labels, dfs)):
201
+
202
+ if np.max(label) == 0:
203
+ empty_df = pd.DataFrame()
204
+ df.append(empty_df)
205
+ continue
206
+
207
+ mask_intensity_df = _extended_regionprops_table(label, channel, intensity_props)
208
+
209
+ # Additional intensity properties
210
+ region_props = measure.regionprops_table(label, intensity_image=channel, properties=['label'])
211
+ intensity_values = [channel[region.coords[:, 0], region.coords[:, 1]] for region in measure.regionprops(label)]
212
+ additional_data = {prop: [] for prop in additional_props}
213
+
214
+ for values in intensity_values:
215
+ if len(values) == 0:
216
+ continue
217
+ additional_data["standard_deviation_intensity"].append(np.std(values))
218
+ additional_data["median_intensity"].append(np.median(values))
219
+ additional_data["sum_intensity"].append(np.sum(values))
220
+ additional_data["intensity_range"].append(np.max(values) - np.min(values))
221
+ additional_data["mean_absolute_deviation_intensity"].append(np.mean(np.abs(values - np.mean(values))))
222
+ additional_data["skewness_intensity"].append(skew(values))
223
+ additional_data["kurtosis_intensity"].append(kurtosis(values))
224
+ additional_data["variance_intensity"].append(np.var(values))
225
+ additional_data["mode_intensity"].append(mode(values)[0][0])
226
+ additional_data["energy_intensity"].append(np.sum(values**2))
227
+ additional_data["entropy_intensity"].append(entropy(values))
228
+ additional_data["harmonic_mean_intensity"].append(hmean(values))
229
+ additional_data["geometric_mean_intensity"].append(gmean(values))
230
+
231
+ for prop in additional_props:
232
+ region_props[prop] = additional_data[prop]
233
+
234
+ additional_df = pd.DataFrame(region_props)
235
+ mask_intensity_df = pd.concat([mask_intensity_df.reset_index(drop=True), additional_df.reset_index(drop=True)], axis=1)
236
+
237
+ if homogeneity:
238
+ homogeneity_df = _calculate_homogeneity(label, channel, distances)
239
+ mask_intensity_df = pd.concat([mask_intensity_df.reset_index(drop=True), homogeneity_df], axis=1)
240
+
241
+ if periphery:
242
+ if ls[j] == 'nucleus' or ls[j] == 'pathogen':
243
+ periphery_intensity_stats = _periphery_intensity(label, channel)
244
+ mask_intensity_df = pd.concat([mask_intensity_df, pd.DataFrame(periphery_intensity_stats, columns=[f'periphery_{stat}' for stat in col_lables])],axis=1)
245
+
246
+ if outside:
247
+ if ls[j] == 'nucleus' or ls[j] == 'pathogen':
248
+ outside_intensity_stats = _outside_intensity(label, channel)
249
+ mask_intensity_df = pd.concat([mask_intensity_df, pd.DataFrame(outside_intensity_stats, columns=[f'outside_{stat}' for stat in col_lables])], axis=1)
250
+
251
+ # Adding GLCM features
252
+ glcm_features = _calculate_glcm_features(channel)
253
+ for k, v in glcm_features.items():
254
+ mask_intensity_df[f'{ls[j]}_channel_{i}_{k}'] = v
255
+
256
+ # Adding LBP features
257
+ lbp_features = _calculate_lbp_features(channel)
258
+ for k, v in lbp_features.items():
259
+ mask_intensity_df[f'{ls[j]}_channel_{i}_{k}'] = v
260
+
261
+ # Adding Wavelet features
262
+ wavelet_features = _calculate_wavelet_features(channel)
263
+ for k, v in wavelet_features.items():
264
+ mask_intensity_df[f'{ls[j]}_channel_{i}_{k}'] = v
265
+
266
+ blur_col = [_estimate_blur(channel[label == region_label]) for region_label in mask_intensity_df['label']]
267
+ mask_intensity_df[f'{ls[j]}_channel_{i}_blur'] = blur_col
268
+
269
+ mask_intensity_df.columns = [f'{ls[j]}_channel_{i}_{col}' if col != 'label' else col for col in mask_intensity_df.columns]
270
+ df.append(mask_intensity_df)
271
+
272
+ if radial_dist:
273
+ if np.max(nucleus_mask) != 0:
274
+ nucleus_radial_distributions = _calculate_radial_distribution(cell_mask, nucleus_mask, channel_arrays, num_bins=6)
275
+ nucleus_df = _create_dataframe(nucleus_radial_distributions, 'nucleus')
276
+ dfs[1].append(nucleus_df)
277
+
278
+ if np.max(nucleus_mask) != 0:
279
+ pathogen_radial_distributions = _calculate_radial_distribution(cell_mask, pathogen_mask, channel_arrays, num_bins=6)
280
+ pathogen_df = _create_dataframe(pathogen_radial_distributions, 'pathogen')
281
+ dfs[2].append(pathogen_df)
282
+
283
+ if calculate_correlation:
284
+ if channel_arrays.shape[-1] >= 2:
285
+ for i in range(channel_arrays.shape[-1]):
286
+ for j in range(i+1, channel_arrays.shape[-1]):
287
+ chan_i = channel_arrays[:, :, i]
288
+ chan_j = channel_arrays[:, :, j]
289
+ for m, mask in enumerate(labels):
290
+ coloc_df = _calculate_correlation_object_level(chan_i, chan_j, mask, settings)
291
+ coloc_df.columns = [f'{ls[m]}_channel_{i}_channel_{j}_{col}' for col in coloc_df.columns]
292
+ dfs[m].append(coloc_df)
293
+
294
+ return pd.concat(cell_dfs, axis=1), pd.concat(nucleus_dfs, axis=1), pd.concat(pathogen_dfs, axis=1), pd.concat(cytoplasm_dfs, axis=1)
295
+
@@ -38,7 +38,7 @@ class ImageApp:
38
38
  - db_update_thread (threading.Thread): A thread for updating the database.
39
39
  """
40
40
 
41
- def _init_(self, root, db_path, image_type=None, channels=None, grid_rows=None, grid_cols=None, image_size=(200, 200), annotation_column='annotate'):
41
+ def __init__(self, root, db_path, image_type=None, channels=None, grid_rows=None, grid_cols=None, image_size=(200, 200), annotation_column='annotate'):
42
42
  """
43
43
  Initializes an instance of the ImageApp class.
44
44
 
@@ -383,7 +383,7 @@ def annotate(db, image_type=None, channels=None, geom="1000x1100", img_size=(200
383
383
  root = tk.Tk()
384
384
  root.geometry(geom)
385
385
  app = ImageApp(root, db, image_type=image_type, channels=channels, image_size=img_size, grid_rows=rows, grid_cols=columns, annotation_column=annotation_column)
386
-
386
+ #app = ImageApp()
387
387
  next_button = tk.Button(root, text="Next", command=app.next_page)
388
388
  next_button.grid(row=app.grid_rows, column=app.grid_cols - 1)
389
389
  back_button = tk.Button(root, text="Back", command=app.previous_page)