spacr 0.0.18__tar.gz → 0.0.20__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (56) hide show
  1. {spacr-0.0.18/spacr.egg-info → spacr-0.0.20}/PKG-INFO +28 -26
  2. {spacr-0.0.18 → spacr-0.0.20}/README.md +4 -2
  3. {spacr-0.0.18 → spacr-0.0.20}/setup.py +24 -26
  4. {spacr-0.0.18 → spacr-0.0.20}/spacr/core.py +260 -54
  5. spacr-0.0.20/spacr/graph_learning.py +276 -0
  6. spacr-0.0.20/spacr/graph_learning_lap.py +84 -0
  7. {spacr-0.0.18 → spacr-0.0.20}/spacr/gui_classify_app.py +5 -21
  8. {spacr-0.0.18 → spacr-0.0.20}/spacr/gui_mask_app.py +9 -23
  9. {spacr-0.0.18 → spacr-0.0.20}/spacr/gui_measure_app.py +10 -24
  10. {spacr-0.0.18 → spacr-0.0.20}/spacr/gui_utils.py +65 -52
  11. {spacr-0.0.18 → spacr-0.0.20}/spacr/io.py +248 -106
  12. {spacr-0.0.18 → spacr-0.0.20}/spacr/measure.py +10 -16
  13. spacr-0.0.20/spacr/old_code.py +290 -0
  14. {spacr-0.0.18 → spacr-0.0.20}/spacr/plot.py +92 -87
  15. {spacr-0.0.18 → spacr-0.0.20}/spacr/timelapse.py +213 -52
  16. {spacr-0.0.18 → spacr-0.0.20}/spacr/utils.py +219 -118
  17. {spacr-0.0.18 → spacr-0.0.20/spacr.egg-info}/PKG-INFO +28 -26
  18. spacr-0.0.20/spacr.egg-info/requires.txt +32 -0
  19. spacr-0.0.18/spacr/graph_learning.py +0 -82
  20. spacr-0.0.18/spacr/graph_learning_lap.py +0 -82
  21. spacr-0.0.18/spacr/old_code.py +0 -136
  22. spacr-0.0.18/spacr.egg-info/requires.txt +0 -32
  23. {spacr-0.0.18 → spacr-0.0.20}/LICENSE +0 -0
  24. {spacr-0.0.18 → spacr-0.0.20}/setup.cfg +0 -0
  25. {spacr-0.0.18 → spacr-0.0.20}/spacr/__init__.py +0 -0
  26. {spacr-0.0.18 → spacr-0.0.20}/spacr/__main__.py +0 -0
  27. {spacr-0.0.18 → spacr-0.0.20}/spacr/alpha.py +0 -0
  28. {spacr-0.0.18 → spacr-0.0.20}/spacr/annotate_app.py +0 -0
  29. {spacr-0.0.18 → spacr-0.0.20}/spacr/cli.py +0 -0
  30. {spacr-0.0.18 → spacr-0.0.20}/spacr/gui_sim_app.py +0 -0
  31. {spacr-0.0.18 → spacr-0.0.20}/spacr/logger.py +0 -0
  32. {spacr-0.0.18 → spacr-0.0.20}/spacr/mask_app.py +0 -0
  33. {spacr-0.0.18 → spacr-0.0.20}/spacr/sim.py +0 -0
  34. {spacr-0.0.18 → spacr-0.0.20}/spacr/train.py +0 -0
  35. {spacr-0.0.18 → spacr-0.0.20}/spacr/umap.py +0 -0
  36. {spacr-0.0.18 → spacr-0.0.20}/spacr/version.py +0 -0
  37. {spacr-0.0.18 → spacr-0.0.20}/spacr.egg-info/SOURCES.txt +0 -0
  38. {spacr-0.0.18 → spacr-0.0.20}/spacr.egg-info/dependency_links.txt +0 -0
  39. {spacr-0.0.18 → spacr-0.0.20}/spacr.egg-info/entry_points.txt +0 -0
  40. {spacr-0.0.18 → spacr-0.0.20}/spacr.egg-info/top_level.txt +0 -0
  41. {spacr-0.0.18 → spacr-0.0.20}/tests/test_annotate_app.py +0 -0
  42. {spacr-0.0.18 → spacr-0.0.20}/tests/test_core.py +0 -0
  43. {spacr-0.0.18 → spacr-0.0.20}/tests/test_gui_classify_app.py +0 -0
  44. {spacr-0.0.18 → spacr-0.0.20}/tests/test_gui_mask_app.py +0 -0
  45. {spacr-0.0.18 → spacr-0.0.20}/tests/test_gui_measure_app.py +0 -0
  46. {spacr-0.0.18 → spacr-0.0.20}/tests/test_gui_sim_app.py +0 -0
  47. {spacr-0.0.18 → spacr-0.0.20}/tests/test_gui_utils.py +0 -0
  48. {spacr-0.0.18 → spacr-0.0.20}/tests/test_io.py +0 -0
  49. {spacr-0.0.18 → spacr-0.0.20}/tests/test_mask_app.py +0 -0
  50. {spacr-0.0.18 → spacr-0.0.20}/tests/test_measure.py +0 -0
  51. {spacr-0.0.18 → spacr-0.0.20}/tests/test_plot.py +0 -0
  52. {spacr-0.0.18 → spacr-0.0.20}/tests/test_sim.py +0 -0
  53. {spacr-0.0.18 → spacr-0.0.20}/tests/test_timelapse.py +0 -0
  54. {spacr-0.0.18 → spacr-0.0.20}/tests/test_train.py +0 -0
  55. {spacr-0.0.18 → spacr-0.0.20}/tests/test_umap.py +0 -0
  56. {spacr-0.0.18 → spacr-0.0.20}/tests/test_utils.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: spacr
3
- Version: 0.0.18
3
+ Version: 0.0.20
4
4
  Summary: Spatial phenotype analysis of crisp screens (SpaCr)
5
5
  Home-page: https://github.com/EinarOlafsson/spacr
6
6
  Author: Einar Birnir Olafsson
@@ -9,29 +9,29 @@ Classifier: Programming Language :: Python :: 3
9
9
  Classifier: License :: OSI Approved :: MIT License
10
10
  Classifier: Operating System :: OS Independent
11
11
  License-File: LICENSE
12
- Requires-Dist: torch
13
- Requires-Dist: torchvision
14
- Requires-Dist: torch-geometric
15
- Requires-Dist: numpy
16
- Requires-Dist: pandas
17
- Requires-Dist: statsmodels
18
- Requires-Dist: scikit-image
19
- Requires-Dist: scikit-learn
20
- Requires-Dist: seaborn
21
- Requires-Dist: matplotlib
22
- Requires-Dist: pillow
23
- Requires-Dist: imageio
24
- Requires-Dist: scipy
25
- Requires-Dist: ipywidgets
26
- Requires-Dist: mahotas
27
- Requires-Dist: btrack
28
- Requires-Dist: trackpy
29
- Requires-Dist: cellpose
30
- Requires-Dist: IPython
31
- Requires-Dist: opencv-python-headless
32
- Requires-Dist: umap
33
- Requires-Dist: ttkthemes
34
- Requires-Dist: lxml
12
+ Requires-Dist: torch>=2.2.1
13
+ Requires-Dist: torchvision>=0.17.1
14
+ Requires-Dist: torch-geometric>=2.5.1
15
+ Requires-Dist: numpy>=1.26.4
16
+ Requires-Dist: pandas>=2.2.1
17
+ Requires-Dist: statsmodels>=0.14.1
18
+ Requires-Dist: scikit-image>=0.22.0
19
+ Requires-Dist: scikit-learn>=1.4.1
20
+ Requires-Dist: seaborn>=0.13.2
21
+ Requires-Dist: matplotlib>=3.8.3
22
+ Requires-Dist: pillow>=10.2.0
23
+ Requires-Dist: imageio>=2.34.0
24
+ Requires-Dist: scipy>=1.12.0
25
+ Requires-Dist: ipywidgets>=8.1.2
26
+ Requires-Dist: mahotas>=1.4.13
27
+ Requires-Dist: btrack>=0.6.5
28
+ Requires-Dist: trackpy>=0.6.2
29
+ Requires-Dist: cellpose>=3.0.6
30
+ Requires-Dist: IPython>=8.18.1
31
+ Requires-Dist: opencv-python-headless>=4.9.0.80
32
+ Requires-Dist: umap>=0.1.1
33
+ Requires-Dist: ttkthemes>=3.2.2
34
+ Requires-Dist: lxml>=5.1.0
35
35
  Provides-Extra: dev
36
36
  Requires-Dist: pytest>=3.9; extra == "dev"
37
37
  Provides-Extra: headless
@@ -68,16 +68,18 @@ Spatial phenotype analysis of crisp screens (SpaCr). A collection of functions f
68
68
 
69
69
  - **Crop Images:** Objects (e.g. cells) can be saved as PNGs from the object area or bounding box area of each object. Object paths are saved in an sql database that can be annotated and used to train CNNs/Transformer models for classefication tasks.
70
70
 
71
- - **Train CNNs or Transformers:** Train Torch Convolutional Neural Networks (CNNs) or Transformers to classify single object images. Train Torch models with IRM/ERM, checkpointing,
71
+ - **Train CNNs or Transformers:** Train Torch Convolutional Neural Networks (CNNs) or Transformers to classify single object images. Train Torch models with IRM/ERM, checkpointing.
72
72
 
73
73
  - **Manual Annotation:** Supports manual annotation of single cell images and segmentation to refine training datasets for training CNNs/Transformers or cellpose, respectively.
74
74
 
75
75
  - **Finetune Cellpose Models:** Adjust pre-existing Cellpose models to your specific dataset for improved performance.
76
76
 
77
- - **Timelapse Data Support:** Includes support for analyzing timelapse data.
77
+ - **Timelapse Data Support:** Track objects in timelapse image data.
78
78
 
79
79
  - **Simulations:** Simulate spatial phenotype screens.
80
80
 
81
+ - **Misc:** Analyze Ca oscillation, recruitment, infection rate, plaque size/count.
82
+
81
83
  ## Installation
82
84
 
83
85
  spacr requires Tkinter for its graphical user interface features.
@@ -27,16 +27,18 @@ Spatial phenotype analysis of crisp screens (SpaCr). A collection of functions f
27
27
 
28
28
  - **Crop Images:** Objects (e.g. cells) can be saved as PNGs from the object area or bounding box area of each object. Object paths are saved in an sql database that can be annotated and used to train CNNs/Transformer models for classefication tasks.
29
29
 
30
- - **Train CNNs or Transformers:** Train Torch Convolutional Neural Networks (CNNs) or Transformers to classify single object images. Train Torch models with IRM/ERM, checkpointing,
30
+ - **Train CNNs or Transformers:** Train Torch Convolutional Neural Networks (CNNs) or Transformers to classify single object images. Train Torch models with IRM/ERM, checkpointing.
31
31
 
32
32
  - **Manual Annotation:** Supports manual annotation of single cell images and segmentation to refine training datasets for training CNNs/Transformers or cellpose, respectively.
33
33
 
34
34
  - **Finetune Cellpose Models:** Adjust pre-existing Cellpose models to your specific dataset for improved performance.
35
35
 
36
- - **Timelapse Data Support:** Includes support for analyzing timelapse data.
36
+ - **Timelapse Data Support:** Track objects in timelapse image data.
37
37
 
38
38
  - **Simulations:** Simulate spatial phenotype screens.
39
39
 
40
+ - **Misc:** Analyze Ca oscillation, recruitment, infection rate, plaque size/count.
41
+
40
42
  ## Installation
41
43
 
42
44
  spacr requires Tkinter for its graphical user interface features.
@@ -5,36 +5,34 @@ with open("README.md", "r", encoding="utf-8") as fh:
5
5
  long_description = fh.read()
6
6
 
7
7
  dependencies = [
8
- 'torch',
9
- 'torchvision',
10
- 'torch-geometric',
11
- #'torch-sparse',
12
- #'torch-scatter',
13
- 'numpy',
14
- 'pandas',
15
- 'statsmodels',
16
- 'scikit-image',
17
- 'scikit-learn',
18
- 'seaborn',
19
- 'matplotlib',
20
- 'pillow',
21
- 'imageio',
22
- 'scipy',
23
- 'ipywidgets',
24
- 'mahotas',
25
- 'btrack',
26
- 'trackpy',
27
- 'cellpose',
28
- 'IPython',
29
- 'opencv-python-headless',
30
- 'umap',
31
- 'ttkthemes',
32
- 'lxml'
8
+ 'torch>=2.2.1',
9
+ 'torchvision>=0.17.1',
10
+ 'torch-geometric>=2.5.1',
11
+ 'numpy>=1.26.4',
12
+ 'pandas>=2.2.1',
13
+ 'statsmodels>=0.14.1',
14
+ 'scikit-image>=0.22.0',
15
+ 'scikit-learn>=1.4.1',
16
+ 'seaborn>=0.13.2',
17
+ 'matplotlib>=3.8.3',
18
+ 'pillow>=10.2.0',
19
+ 'imageio>=2.34.0',
20
+ 'scipy>=1.12.0',
21
+ 'ipywidgets>=8.1.2',
22
+ 'mahotas>=1.4.13',
23
+ 'btrack>=0.6.5',
24
+ 'trackpy>=0.6.2',
25
+ 'cellpose>=3.0.6',
26
+ 'IPython>=8.18.1',
27
+ 'opencv-python-headless>=4.9.0.80',
28
+ 'umap>=0.1.1',
29
+ 'ttkthemes>=3.2.2',
30
+ 'lxml>=5.1.0'
33
31
  ]
34
32
 
35
33
  setup(
36
34
  name="spacr",
37
- version="0.0.18",
35
+ version="0.0.20",
38
36
  author="Einar Birnir Olafsson",
39
37
  author_email="olafsson@med.umich.com",
40
38
  description="Spatial phenotype analysis of crisp screens (SpaCr)",