spacr 0.0.17__tar.gz → 0.0.20__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (57) hide show
  1. {spacr-0.0.17/spacr.egg-info → spacr-0.0.20}/PKG-INFO +28 -26
  2. {spacr-0.0.17 → spacr-0.0.20}/README.md +4 -2
  3. {spacr-0.0.17 → spacr-0.0.20}/setup.py +24 -24
  4. {spacr-0.0.17 → spacr-0.0.20}/spacr/__init__.py +2 -0
  5. spacr-0.0.20/spacr/alpha.py +18 -0
  6. spacr-0.0.20/spacr/cli.py +41 -0
  7. {spacr-0.0.17 → spacr-0.0.20}/spacr/core.py +267 -56
  8. spacr-0.0.20/spacr/graph_learning.py +276 -0
  9. spacr-0.0.20/spacr/graph_learning_lap.py +84 -0
  10. {spacr-0.0.17 → spacr-0.0.20}/spacr/gui_classify_app.py +6 -21
  11. {spacr-0.0.17 → spacr-0.0.20}/spacr/gui_mask_app.py +9 -43
  12. {spacr-0.0.17 → spacr-0.0.20}/spacr/gui_measure_app.py +10 -24
  13. spacr-0.0.20/spacr/gui_sim_app.py +0 -0
  14. {spacr-0.0.17 → spacr-0.0.20}/spacr/gui_utils.py +84 -66
  15. {spacr-0.0.17 → spacr-0.0.20}/spacr/io.py +258 -110
  16. {spacr-0.0.17 → spacr-0.0.20}/spacr/measure.py +11 -17
  17. spacr-0.0.20/spacr/old_code.py +290 -0
  18. {spacr-0.0.17 → spacr-0.0.20}/spacr/plot.py +92 -87
  19. {spacr-0.0.17 → spacr-0.0.20}/spacr/timelapse.py +213 -52
  20. {spacr-0.0.17 → spacr-0.0.20}/spacr/utils.py +219 -118
  21. {spacr-0.0.17 → spacr-0.0.20/spacr.egg-info}/PKG-INFO +28 -26
  22. {spacr-0.0.17 → spacr-0.0.20}/spacr.egg-info/SOURCES.txt +2 -0
  23. spacr-0.0.20/spacr.egg-info/requires.txt +32 -0
  24. spacr-0.0.17/spacr/cli.py +0 -240
  25. spacr-0.0.17/spacr/graph_learning.py +0 -95
  26. spacr-0.0.17/spacr/gui_sim_app.py +0 -213
  27. spacr-0.0.17/spacr/old_code.py +0 -104
  28. spacr-0.0.17/spacr.egg-info/requires.txt +0 -32
  29. {spacr-0.0.17 → spacr-0.0.20}/LICENSE +0 -0
  30. {spacr-0.0.17 → spacr-0.0.20}/setup.cfg +0 -0
  31. {spacr-0.0.17 → spacr-0.0.20}/spacr/__main__.py +0 -0
  32. {spacr-0.0.17 → spacr-0.0.20}/spacr/annotate_app.py +0 -0
  33. {spacr-0.0.17 → spacr-0.0.20}/spacr/logger.py +0 -0
  34. {spacr-0.0.17 → spacr-0.0.20}/spacr/mask_app.py +0 -0
  35. {spacr-0.0.17 → spacr-0.0.20}/spacr/sim.py +0 -0
  36. {spacr-0.0.17 → spacr-0.0.20}/spacr/train.py +0 -0
  37. {spacr-0.0.17 → spacr-0.0.20}/spacr/umap.py +0 -0
  38. {spacr-0.0.17 → spacr-0.0.20}/spacr/version.py +0 -0
  39. {spacr-0.0.17 → spacr-0.0.20}/spacr.egg-info/dependency_links.txt +0 -0
  40. {spacr-0.0.17 → spacr-0.0.20}/spacr.egg-info/entry_points.txt +0 -0
  41. {spacr-0.0.17 → spacr-0.0.20}/spacr.egg-info/top_level.txt +0 -0
  42. {spacr-0.0.17 → spacr-0.0.20}/tests/test_annotate_app.py +0 -0
  43. {spacr-0.0.17 → spacr-0.0.20}/tests/test_core.py +0 -0
  44. {spacr-0.0.17 → spacr-0.0.20}/tests/test_gui_classify_app.py +0 -0
  45. {spacr-0.0.17 → spacr-0.0.20}/tests/test_gui_mask_app.py +0 -0
  46. {spacr-0.0.17 → spacr-0.0.20}/tests/test_gui_measure_app.py +0 -0
  47. {spacr-0.0.17 → spacr-0.0.20}/tests/test_gui_sim_app.py +0 -0
  48. {spacr-0.0.17 → spacr-0.0.20}/tests/test_gui_utils.py +0 -0
  49. {spacr-0.0.17 → spacr-0.0.20}/tests/test_io.py +0 -0
  50. {spacr-0.0.17 → spacr-0.0.20}/tests/test_mask_app.py +0 -0
  51. {spacr-0.0.17 → spacr-0.0.20}/tests/test_measure.py +0 -0
  52. {spacr-0.0.17 → spacr-0.0.20}/tests/test_plot.py +0 -0
  53. {spacr-0.0.17 → spacr-0.0.20}/tests/test_sim.py +0 -0
  54. {spacr-0.0.17 → spacr-0.0.20}/tests/test_timelapse.py +0 -0
  55. {spacr-0.0.17 → spacr-0.0.20}/tests/test_train.py +0 -0
  56. {spacr-0.0.17 → spacr-0.0.20}/tests/test_umap.py +0 -0
  57. {spacr-0.0.17 → spacr-0.0.20}/tests/test_utils.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: spacr
3
- Version: 0.0.17
3
+ Version: 0.0.20
4
4
  Summary: Spatial phenotype analysis of crisp screens (SpaCr)
5
5
  Home-page: https://github.com/EinarOlafsson/spacr
6
6
  Author: Einar Birnir Olafsson
@@ -9,29 +9,29 @@ Classifier: Programming Language :: Python :: 3
9
9
  Classifier: License :: OSI Approved :: MIT License
10
10
  Classifier: Operating System :: OS Independent
11
11
  License-File: LICENSE
12
- Requires-Dist: torch
13
- Requires-Dist: torchvision
14
- Requires-Dist: torch-geometric
15
- Requires-Dist: numpy
16
- Requires-Dist: pandas
17
- Requires-Dist: statsmodels
18
- Requires-Dist: scikit-image
19
- Requires-Dist: scikit-learn
20
- Requires-Dist: seaborn
21
- Requires-Dist: matplotlib
22
- Requires-Dist: pillow
23
- Requires-Dist: imageio
24
- Requires-Dist: scipy
25
- Requires-Dist: ipywidgets
26
- Requires-Dist: mahotas
27
- Requires-Dist: btrack
28
- Requires-Dist: trackpy
29
- Requires-Dist: cellpose
30
- Requires-Dist: IPython
31
- Requires-Dist: opencv-python-headless
32
- Requires-Dist: umap
33
- Requires-Dist: ttkthemes
34
- Requires-Dist: lxml
12
+ Requires-Dist: torch>=2.2.1
13
+ Requires-Dist: torchvision>=0.17.1
14
+ Requires-Dist: torch-geometric>=2.5.1
15
+ Requires-Dist: numpy>=1.26.4
16
+ Requires-Dist: pandas>=2.2.1
17
+ Requires-Dist: statsmodels>=0.14.1
18
+ Requires-Dist: scikit-image>=0.22.0
19
+ Requires-Dist: scikit-learn>=1.4.1
20
+ Requires-Dist: seaborn>=0.13.2
21
+ Requires-Dist: matplotlib>=3.8.3
22
+ Requires-Dist: pillow>=10.2.0
23
+ Requires-Dist: imageio>=2.34.0
24
+ Requires-Dist: scipy>=1.12.0
25
+ Requires-Dist: ipywidgets>=8.1.2
26
+ Requires-Dist: mahotas>=1.4.13
27
+ Requires-Dist: btrack>=0.6.5
28
+ Requires-Dist: trackpy>=0.6.2
29
+ Requires-Dist: cellpose>=3.0.6
30
+ Requires-Dist: IPython>=8.18.1
31
+ Requires-Dist: opencv-python-headless>=4.9.0.80
32
+ Requires-Dist: umap>=0.1.1
33
+ Requires-Dist: ttkthemes>=3.2.2
34
+ Requires-Dist: lxml>=5.1.0
35
35
  Provides-Extra: dev
36
36
  Requires-Dist: pytest>=3.9; extra == "dev"
37
37
  Provides-Extra: headless
@@ -68,16 +68,18 @@ Spatial phenotype analysis of crisp screens (SpaCr). A collection of functions f
68
68
 
69
69
  - **Crop Images:** Objects (e.g. cells) can be saved as PNGs from the object area or bounding box area of each object. Object paths are saved in an sql database that can be annotated and used to train CNNs/Transformer models for classefication tasks.
70
70
 
71
- - **Train CNNs or Transformers:** Train Torch Convolutional Neural Networks (CNNs) or Transformers to classify single object images. Train Torch models with IRM/ERM, checkpointing,
71
+ - **Train CNNs or Transformers:** Train Torch Convolutional Neural Networks (CNNs) or Transformers to classify single object images. Train Torch models with IRM/ERM, checkpointing.
72
72
 
73
73
  - **Manual Annotation:** Supports manual annotation of single cell images and segmentation to refine training datasets for training CNNs/Transformers or cellpose, respectively.
74
74
 
75
75
  - **Finetune Cellpose Models:** Adjust pre-existing Cellpose models to your specific dataset for improved performance.
76
76
 
77
- - **Timelapse Data Support:** Includes support for analyzing timelapse data.
77
+ - **Timelapse Data Support:** Track objects in timelapse image data.
78
78
 
79
79
  - **Simulations:** Simulate spatial phenotype screens.
80
80
 
81
+ - **Misc:** Analyze Ca oscillation, recruitment, infection rate, plaque size/count.
82
+
81
83
  ## Installation
82
84
 
83
85
  spacr requires Tkinter for its graphical user interface features.
@@ -27,16 +27,18 @@ Spatial phenotype analysis of crisp screens (SpaCr). A collection of functions f
27
27
 
28
28
  - **Crop Images:** Objects (e.g. cells) can be saved as PNGs from the object area or bounding box area of each object. Object paths are saved in an sql database that can be annotated and used to train CNNs/Transformer models for classefication tasks.
29
29
 
30
- - **Train CNNs or Transformers:** Train Torch Convolutional Neural Networks (CNNs) or Transformers to classify single object images. Train Torch models with IRM/ERM, checkpointing,
30
+ - **Train CNNs or Transformers:** Train Torch Convolutional Neural Networks (CNNs) or Transformers to classify single object images. Train Torch models with IRM/ERM, checkpointing.
31
31
 
32
32
  - **Manual Annotation:** Supports manual annotation of single cell images and segmentation to refine training datasets for training CNNs/Transformers or cellpose, respectively.
33
33
 
34
34
  - **Finetune Cellpose Models:** Adjust pre-existing Cellpose models to your specific dataset for improved performance.
35
35
 
36
- - **Timelapse Data Support:** Includes support for analyzing timelapse data.
36
+ - **Timelapse Data Support:** Track objects in timelapse image data.
37
37
 
38
38
  - **Simulations:** Simulate spatial phenotype screens.
39
39
 
40
+ - **Misc:** Analyze Ca oscillation, recruitment, infection rate, plaque size/count.
41
+
40
42
  ## Installation
41
43
 
42
44
  spacr requires Tkinter for its graphical user interface features.
@@ -5,34 +5,34 @@ with open("README.md", "r", encoding="utf-8") as fh:
5
5
  long_description = fh.read()
6
6
 
7
7
  dependencies = [
8
- 'torch',
9
- 'torchvision',
10
- 'torch-geometric',
11
- 'numpy',
12
- 'pandas',
13
- 'statsmodels',
14
- 'scikit-image',
15
- 'scikit-learn',
16
- 'seaborn',
17
- 'matplotlib',
18
- 'pillow',
19
- 'imageio',
20
- 'scipy',
21
- 'ipywidgets',
22
- 'mahotas',
23
- 'btrack',
24
- 'trackpy',
25
- 'cellpose',
26
- 'IPython',
27
- 'opencv-python-headless',
28
- 'umap',
29
- 'ttkthemes',
30
- 'lxml'
8
+ 'torch>=2.2.1',
9
+ 'torchvision>=0.17.1',
10
+ 'torch-geometric>=2.5.1',
11
+ 'numpy>=1.26.4',
12
+ 'pandas>=2.2.1',
13
+ 'statsmodels>=0.14.1',
14
+ 'scikit-image>=0.22.0',
15
+ 'scikit-learn>=1.4.1',
16
+ 'seaborn>=0.13.2',
17
+ 'matplotlib>=3.8.3',
18
+ 'pillow>=10.2.0',
19
+ 'imageio>=2.34.0',
20
+ 'scipy>=1.12.0',
21
+ 'ipywidgets>=8.1.2',
22
+ 'mahotas>=1.4.13',
23
+ 'btrack>=0.6.5',
24
+ 'trackpy>=0.6.2',
25
+ 'cellpose>=3.0.6',
26
+ 'IPython>=8.18.1',
27
+ 'opencv-python-headless>=4.9.0.80',
28
+ 'umap>=0.1.1',
29
+ 'ttkthemes>=3.2.2',
30
+ 'lxml>=5.1.0'
31
31
  ]
32
32
 
33
33
  setup(
34
34
  name="spacr",
35
- version="0.0.17",
35
+ version="0.0.20",
36
36
  author="Einar Birnir Olafsson",
37
37
  author_email="olafsson@med.umich.com",
38
38
  description="Spatial phenotype analysis of crisp screens (SpaCr)",
@@ -11,6 +11,7 @@ from . import timelapse
11
11
  from . import train
12
12
  from . import mask_app
13
13
  from . import annotate_app
14
+ from . import graph_learning
14
15
  from . import gui_utils
15
16
  from . import gui_mask_app
16
17
  from . import gui_measure_app
@@ -27,6 +28,7 @@ __all__ = [
27
28
  "timelapse",
28
29
  "train",
29
30
  "annotate_app",
31
+ "graph_learning",
30
32
  "gui_utils",
31
33
  "mask_app",
32
34
  "gui_mask_app",
@@ -0,0 +1,18 @@
1
+ def gui_mask():
2
+ from .cli import get_arg_parser
3
+ from .version import version_str
4
+
5
+ args = get_arg_parser().parse_args()
6
+
7
+ if args.version:
8
+ print(version_str)
9
+ return
10
+
11
+ if args.headless:
12
+ settings = {}
13
+ spacr.core.preprocess_generate_masks(settings['src'], settings=settings, advanced_settings={})
14
+ return
15
+
16
+ global vars_dict, root
17
+ root, vars_dict = initiate_mask_root(1000, 1500)
18
+ root.mainloop()
@@ -0,0 +1,41 @@
1
+ """
2
+ Copyright © 2023 Howard Hughes Medical Institute, Authored by Carsen Stringer and Marius Pachitariu and Michael Rariden.
3
+ """
4
+
5
+ import argparse
6
+
7
+ import argparse
8
+
9
+
10
+ def get_arg_parser():
11
+ """ Parses command line arguments for spacr main functions
12
+
13
+ Note: this function has to be in a separate file to allow autodoc to work for CLI.
14
+ The autodoc_mock_imports in conf.py does not work for sphinx-argparse sometimes,
15
+ see https://github.com/ashb/sphinx-argparse/issues/9#issue-1097057823
16
+ """
17
+
18
+ parser = argparse.ArgumentParser(description="SPACR Mask App Command Line Parameters")
19
+ hardware_args = parser.add_argument_group("Hardware Arguments")
20
+ input_img_args = parser.add_argument_group("Input Image Arguments")
21
+ #model_args = parser.add_argument_group("Model Arguments")
22
+ #algorithm_args = parser.add_argument_group("Algorithm Arguments")
23
+ #training_args = parser.add_argument_group("Training Arguments")
24
+ #output_args = parser.add_argument_group("Output Arguments")
25
+
26
+ # misc settings
27
+ parser.add_argument("--version", action="store_true",
28
+ help="show version info")
29
+ # misc settings
30
+ parser.add_argument("--headless", action="store_true",
31
+ help="run the app without the gui")
32
+
33
+ parser.add_argument("--verbose", action="store_true",
34
+ help="show information about running and settings and save to log")
35
+
36
+ hardware_args.add_argument("--gpu_device", required=False, default="0", type=str,
37
+ help="which gpu device to use, use an integer for torch, or mps for M1")
38
+
39
+ input_img_args.add_argument("--src", default=[], type=str,
40
+ help="folder containing data to run or train on.")
41
+ return parser