sonika-langchain-bot 0.0.5__tar.gz → 0.0.6__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (22) hide show
  1. sonika_langchain_bot-0.0.6/PKG-INFO +125 -0
  2. sonika_langchain_bot-0.0.6/README.md +93 -0
  3. {sonika_langchain_bot-0.0.5 → sonika_langchain_bot-0.0.6}/setup.py +1 -1
  4. sonika_langchain_bot-0.0.6/src/sonika_langchain_bot.egg-info/PKG-INFO +125 -0
  5. {sonika_langchain_bot-0.0.5 → sonika_langchain_bot-0.0.6}/test/test.py +1 -24
  6. sonika_langchain_bot-0.0.5/PKG-INFO +0 -45
  7. sonika_langchain_bot-0.0.5/README.md +0 -13
  8. sonika_langchain_bot-0.0.5/src/sonika_langchain_bot.egg-info/PKG-INFO +0 -45
  9. {sonika_langchain_bot-0.0.5 → sonika_langchain_bot-0.0.6}/LICENSE +0 -0
  10. {sonika_langchain_bot-0.0.5 → sonika_langchain_bot-0.0.6}/setup.cfg +0 -0
  11. {sonika_langchain_bot-0.0.5 → sonika_langchain_bot-0.0.6}/src/sonika_langchain_bot/__init__.py +0 -0
  12. {sonika_langchain_bot-0.0.5 → sonika_langchain_bot-0.0.6}/src/sonika_langchain_bot/langchain_bdi.py +0 -0
  13. {sonika_langchain_bot-0.0.5 → sonika_langchain_bot-0.0.6}/src/sonika_langchain_bot/langchain_bot_agent_bdi.py +0 -0
  14. {sonika_langchain_bot-0.0.5 → sonika_langchain_bot-0.0.6}/src/sonika_langchain_bot/langchain_clasificator.py +0 -0
  15. {sonika_langchain_bot-0.0.5 → sonika_langchain_bot-0.0.6}/src/sonika_langchain_bot/langchain_class.py +0 -0
  16. {sonika_langchain_bot-0.0.5 → sonika_langchain_bot-0.0.6}/src/sonika_langchain_bot/langchain_files.py +0 -0
  17. {sonika_langchain_bot-0.0.5 → sonika_langchain_bot-0.0.6}/src/sonika_langchain_bot/langchain_models.py +0 -0
  18. {sonika_langchain_bot-0.0.5 → sonika_langchain_bot-0.0.6}/src/sonika_langchain_bot/langchain_tools.py +0 -0
  19. {sonika_langchain_bot-0.0.5 → sonika_langchain_bot-0.0.6}/src/sonika_langchain_bot.egg-info/SOURCES.txt +0 -0
  20. {sonika_langchain_bot-0.0.5 → sonika_langchain_bot-0.0.6}/src/sonika_langchain_bot.egg-info/dependency_links.txt +0 -0
  21. {sonika_langchain_bot-0.0.5 → sonika_langchain_bot-0.0.6}/src/sonika_langchain_bot.egg-info/requires.txt +0 -0
  22. {sonika_langchain_bot-0.0.5 → sonika_langchain_bot-0.0.6}/src/sonika_langchain_bot.egg-info/top_level.txt +0 -0
@@ -0,0 +1,125 @@
1
+ Metadata-Version: 2.1
2
+ Name: sonika-langchain-bot
3
+ Version: 0.0.6
4
+ Summary: Agente langchain con LLM
5
+ Author: Erley Blanco Carvajal
6
+ License: MIT License
7
+ Classifier: Programming Language :: Python :: 3
8
+ Classifier: License :: OSI Approved :: MIT License
9
+ Classifier: Operating System :: OS Independent
10
+ Requires-Python: >=3.6
11
+ Description-Content-Type: text/markdown
12
+ License-File: LICENSE
13
+ Requires-Dist: langchain<1.0.0,>=0.3.0
14
+ Requires-Dist: langchain-community<1.0.0,>=0.3.0
15
+ Requires-Dist: langchain-core<1.0.0,>=0.3.5
16
+ Requires-Dist: langchain-openai<1.0.0,>=0.2.0
17
+ Requires-Dist: langgraph<1.0.0,>=0.2.39
18
+ Requires-Dist: langgraph-checkpoint<3.0.0,>=2.0.2
19
+ Requires-Dist: langgraph-sdk<2.0.0,>=0.1.34
20
+ Requires-Dist: dataclasses-json<1.0.0,>=0.6.7
21
+ Requires-Dist: python-dateutil<3.0.0,>=2.9.0
22
+ Requires-Dist: tiktoken<1.0.0,>=0.7.0
23
+ Requires-Dist: pydantic<3.0.0,>=2.9.2
24
+ Requires-Dist: faiss-cpu<2.0.0,>=1.8.0
25
+ Requires-Dist: pypdf<6.0.0,>=5.0.0
26
+ Requires-Dist: python-dotenv<2.0.0,>=1.0.1
27
+ Requires-Dist: typing_extensions<5.0.0,>=4.12.0
28
+ Requires-Dist: typing-inspect<1.0.0,>=0.9.0
29
+ Provides-Extra: dev
30
+ Requires-Dist: sphinx<9.0.0,>=8.1.3; extra == "dev"
31
+ Requires-Dist: sphinx-rtd-theme<4.0.0,>=3.0.1; extra == "dev"
32
+
33
+ # Sonika LangChain Bot
34
+
35
+ Una librería Python que implementa un bot conversacional utilizando LangChain con capacidades BDI (Belief-Desire-Intention) y clasificación de texto.
36
+
37
+ ## Instalación
38
+
39
+ ```bash
40
+ pip install sonika-langchain-bot
41
+ ```
42
+
43
+ ## Requisitos previos
44
+
45
+ Necesitarás las siguientes API keys:
46
+
47
+ - OpenAI API Key
48
+
49
+ Crea un archivo `.env` en la raíz de tu proyecto con las siguientes variables:
50
+
51
+ ```env
52
+ OPENAI_API_KEY=tu_api_key_aqui
53
+ ```
54
+
55
+ ## Características principales
56
+
57
+ - Bot conversacional con arquitectura BDI
58
+ - Clasificación de texto
59
+ - Ejecución de código personalizado por medio de tools
60
+
61
+ ## Uso básico
62
+
63
+ ### Ejemplo de Bot BDI
64
+
65
+ ```python
66
+ from sonika_langchain_bot.langchain_bdi import Belief, BeliefType
67
+ from sonika_langchain_bot.langchain_bot_agent_bdi import LangChainBot
68
+ from sonika_langchain_bot.langchain_models import OpenAILanguageModel
69
+ from langchain_openai import OpenAIEmbeddings
70
+
71
+ # Inicializar el modelo de lenguaje
72
+ language_model = OpenAILanguageModel(api_key, model_name='gpt-4-mini-2024-07-18', temperature=1)
73
+ embeddings = OpenAIEmbeddings(api_key=api_key)
74
+
75
+ # Configurar herramientas propias o de terceros
76
+ search = TavilySearchResults(max_results=2, api_key=api_key_tavily)
77
+ tools = [search]
78
+
79
+ # Configurar creencias
80
+ beliefs = [
81
+ Belief(
82
+ content="Eres un asistente de chat",
83
+ type=BeliefType.PERSONALITY,
84
+ confidence=1,
85
+ source='personality'
86
+ )
87
+ ]
88
+
89
+ # Crear instancia del bot
90
+ bot = LangChainBot(language_model, embeddings, beliefs=beliefs, tools=tools)
91
+
92
+ # Obtener respuesta
93
+ response = bot.get_response("Hola como te llamas?")
94
+ ```
95
+
96
+ ### Ejemplo de Clasificación de Texto
97
+
98
+ ```python
99
+ from sonika_langchain_bot.langchain_clasificator import OpenAIModel, TextClassifier
100
+ from pydantic import BaseModel, Field
101
+
102
+ # Definir estructura de clasificación
103
+ class Classification(BaseModel):
104
+ intention: str = Field()
105
+ sentiment: str = Field(..., enum=["feliz", "neutral", "triste", "excitado"])
106
+ aggressiveness: int = Field(
107
+ ...,
108
+ description="describes how aggressive the statement is",
109
+ enum=[1, 2, 3, 4, 5],
110
+ )
111
+ language: str = Field(
112
+ ..., enum=["español", "ingles", "frances", "aleman", "italiano"]
113
+ )
114
+
115
+ # Inicializar clasificador
116
+ model = OpenAIModel(api_key=api_key, validation_class=Classification)
117
+ classifier = TextClassifier(api_key=api_key, llm=model, validation_class=Classification)
118
+
119
+ # Clasificar texto
120
+ result = classifier.classify("Tu texto aquí")
121
+ ```
122
+
123
+ ## Contribución
124
+
125
+ Las contribuciones son bienvenidas. Por favor, abre un issue para discutir los cambios importantes que te gustaría hacer.
@@ -0,0 +1,93 @@
1
+ # Sonika LangChain Bot
2
+
3
+ Una librería Python que implementa un bot conversacional utilizando LangChain con capacidades BDI (Belief-Desire-Intention) y clasificación de texto.
4
+
5
+ ## Instalación
6
+
7
+ ```bash
8
+ pip install sonika-langchain-bot
9
+ ```
10
+
11
+ ## Requisitos previos
12
+
13
+ Necesitarás las siguientes API keys:
14
+
15
+ - OpenAI API Key
16
+
17
+ Crea un archivo `.env` en la raíz de tu proyecto con las siguientes variables:
18
+
19
+ ```env
20
+ OPENAI_API_KEY=tu_api_key_aqui
21
+ ```
22
+
23
+ ## Características principales
24
+
25
+ - Bot conversacional con arquitectura BDI
26
+ - Clasificación de texto
27
+ - Ejecución de código personalizado por medio de tools
28
+
29
+ ## Uso básico
30
+
31
+ ### Ejemplo de Bot BDI
32
+
33
+ ```python
34
+ from sonika_langchain_bot.langchain_bdi import Belief, BeliefType
35
+ from sonika_langchain_bot.langchain_bot_agent_bdi import LangChainBot
36
+ from sonika_langchain_bot.langchain_models import OpenAILanguageModel
37
+ from langchain_openai import OpenAIEmbeddings
38
+
39
+ # Inicializar el modelo de lenguaje
40
+ language_model = OpenAILanguageModel(api_key, model_name='gpt-4-mini-2024-07-18', temperature=1)
41
+ embeddings = OpenAIEmbeddings(api_key=api_key)
42
+
43
+ # Configurar herramientas propias o de terceros
44
+ search = TavilySearchResults(max_results=2, api_key=api_key_tavily)
45
+ tools = [search]
46
+
47
+ # Configurar creencias
48
+ beliefs = [
49
+ Belief(
50
+ content="Eres un asistente de chat",
51
+ type=BeliefType.PERSONALITY,
52
+ confidence=1,
53
+ source='personality'
54
+ )
55
+ ]
56
+
57
+ # Crear instancia del bot
58
+ bot = LangChainBot(language_model, embeddings, beliefs=beliefs, tools=tools)
59
+
60
+ # Obtener respuesta
61
+ response = bot.get_response("Hola como te llamas?")
62
+ ```
63
+
64
+ ### Ejemplo de Clasificación de Texto
65
+
66
+ ```python
67
+ from sonika_langchain_bot.langchain_clasificator import OpenAIModel, TextClassifier
68
+ from pydantic import BaseModel, Field
69
+
70
+ # Definir estructura de clasificación
71
+ class Classification(BaseModel):
72
+ intention: str = Field()
73
+ sentiment: str = Field(..., enum=["feliz", "neutral", "triste", "excitado"])
74
+ aggressiveness: int = Field(
75
+ ...,
76
+ description="describes how aggressive the statement is",
77
+ enum=[1, 2, 3, 4, 5],
78
+ )
79
+ language: str = Field(
80
+ ..., enum=["español", "ingles", "frances", "aleman", "italiano"]
81
+ )
82
+
83
+ # Inicializar clasificador
84
+ model = OpenAIModel(api_key=api_key, validation_class=Classification)
85
+ classifier = TextClassifier(api_key=api_key, llm=model, validation_class=Classification)
86
+
87
+ # Clasificar texto
88
+ result = classifier.classify("Tu texto aquí")
89
+ ```
90
+
91
+ ## Contribución
92
+
93
+ Las contribuciones son bienvenidas. Por favor, abre un issue para discutir los cambios importantes que te gustaría hacer.
@@ -2,7 +2,7 @@ from setuptools import setup, find_packages
2
2
 
3
3
  setup(
4
4
  name="sonika-langchain-bot",
5
- version="0.0.5",
5
+ version="0.0.6",
6
6
  description="Agente langchain con LLM",
7
7
  author="Erley Blanco Carvajal",
8
8
  license="MIT License",
@@ -0,0 +1,125 @@
1
+ Metadata-Version: 2.1
2
+ Name: sonika-langchain-bot
3
+ Version: 0.0.6
4
+ Summary: Agente langchain con LLM
5
+ Author: Erley Blanco Carvajal
6
+ License: MIT License
7
+ Classifier: Programming Language :: Python :: 3
8
+ Classifier: License :: OSI Approved :: MIT License
9
+ Classifier: Operating System :: OS Independent
10
+ Requires-Python: >=3.6
11
+ Description-Content-Type: text/markdown
12
+ License-File: LICENSE
13
+ Requires-Dist: langchain<1.0.0,>=0.3.0
14
+ Requires-Dist: langchain-community<1.0.0,>=0.3.0
15
+ Requires-Dist: langchain-core<1.0.0,>=0.3.5
16
+ Requires-Dist: langchain-openai<1.0.0,>=0.2.0
17
+ Requires-Dist: langgraph<1.0.0,>=0.2.39
18
+ Requires-Dist: langgraph-checkpoint<3.0.0,>=2.0.2
19
+ Requires-Dist: langgraph-sdk<2.0.0,>=0.1.34
20
+ Requires-Dist: dataclasses-json<1.0.0,>=0.6.7
21
+ Requires-Dist: python-dateutil<3.0.0,>=2.9.0
22
+ Requires-Dist: tiktoken<1.0.0,>=0.7.0
23
+ Requires-Dist: pydantic<3.0.0,>=2.9.2
24
+ Requires-Dist: faiss-cpu<2.0.0,>=1.8.0
25
+ Requires-Dist: pypdf<6.0.0,>=5.0.0
26
+ Requires-Dist: python-dotenv<2.0.0,>=1.0.1
27
+ Requires-Dist: typing_extensions<5.0.0,>=4.12.0
28
+ Requires-Dist: typing-inspect<1.0.0,>=0.9.0
29
+ Provides-Extra: dev
30
+ Requires-Dist: sphinx<9.0.0,>=8.1.3; extra == "dev"
31
+ Requires-Dist: sphinx-rtd-theme<4.0.0,>=3.0.1; extra == "dev"
32
+
33
+ # Sonika LangChain Bot
34
+
35
+ Una librería Python que implementa un bot conversacional utilizando LangChain con capacidades BDI (Belief-Desire-Intention) y clasificación de texto.
36
+
37
+ ## Instalación
38
+
39
+ ```bash
40
+ pip install sonika-langchain-bot
41
+ ```
42
+
43
+ ## Requisitos previos
44
+
45
+ Necesitarás las siguientes API keys:
46
+
47
+ - OpenAI API Key
48
+
49
+ Crea un archivo `.env` en la raíz de tu proyecto con las siguientes variables:
50
+
51
+ ```env
52
+ OPENAI_API_KEY=tu_api_key_aqui
53
+ ```
54
+
55
+ ## Características principales
56
+
57
+ - Bot conversacional con arquitectura BDI
58
+ - Clasificación de texto
59
+ - Ejecución de código personalizado por medio de tools
60
+
61
+ ## Uso básico
62
+
63
+ ### Ejemplo de Bot BDI
64
+
65
+ ```python
66
+ from sonika_langchain_bot.langchain_bdi import Belief, BeliefType
67
+ from sonika_langchain_bot.langchain_bot_agent_bdi import LangChainBot
68
+ from sonika_langchain_bot.langchain_models import OpenAILanguageModel
69
+ from langchain_openai import OpenAIEmbeddings
70
+
71
+ # Inicializar el modelo de lenguaje
72
+ language_model = OpenAILanguageModel(api_key, model_name='gpt-4-mini-2024-07-18', temperature=1)
73
+ embeddings = OpenAIEmbeddings(api_key=api_key)
74
+
75
+ # Configurar herramientas propias o de terceros
76
+ search = TavilySearchResults(max_results=2, api_key=api_key_tavily)
77
+ tools = [search]
78
+
79
+ # Configurar creencias
80
+ beliefs = [
81
+ Belief(
82
+ content="Eres un asistente de chat",
83
+ type=BeliefType.PERSONALITY,
84
+ confidence=1,
85
+ source='personality'
86
+ )
87
+ ]
88
+
89
+ # Crear instancia del bot
90
+ bot = LangChainBot(language_model, embeddings, beliefs=beliefs, tools=tools)
91
+
92
+ # Obtener respuesta
93
+ response = bot.get_response("Hola como te llamas?")
94
+ ```
95
+
96
+ ### Ejemplo de Clasificación de Texto
97
+
98
+ ```python
99
+ from sonika_langchain_bot.langchain_clasificator import OpenAIModel, TextClassifier
100
+ from pydantic import BaseModel, Field
101
+
102
+ # Definir estructura de clasificación
103
+ class Classification(BaseModel):
104
+ intention: str = Field()
105
+ sentiment: str = Field(..., enum=["feliz", "neutral", "triste", "excitado"])
106
+ aggressiveness: int = Field(
107
+ ...,
108
+ description="describes how aggressive the statement is",
109
+ enum=[1, 2, 3, 4, 5],
110
+ )
111
+ language: str = Field(
112
+ ..., enum=["español", "ingles", "frances", "aleman", "italiano"]
113
+ )
114
+
115
+ # Inicializar clasificador
116
+ model = OpenAIModel(api_key=api_key, validation_class=Classification)
117
+ classifier = TextClassifier(api_key=api_key, llm=model, validation_class=Classification)
118
+
119
+ # Clasificar texto
120
+ result = classifier.classify("Tu texto aquí")
121
+ ```
122
+
123
+ ## Contribución
124
+
125
+ Las contribuciones son bienvenidas. Por favor, abre un issue para discutir los cambios importantes que te gustaría hacer.
@@ -10,7 +10,7 @@ from sonika_langchain_bot.langchain_class import ResponseModel
10
10
  from sonika_langchain_bot.langchain_models import OpenAILanguageModel
11
11
  from langchain_community.tools.tavily_search import TavilySearchResults
12
12
  from pydantic import BaseModel, Field
13
- from sonika_langchain_bot.langchain_bot import OpenAIModel
13
+ from sonika_langchain_bot.langchain_models import OpenAIModel
14
14
 
15
15
 
16
16
  env_path = os.path.join(os.path.dirname(os.path.dirname(__file__)), '.env')
@@ -39,28 +39,6 @@ def bot_bdi():
39
39
 
40
40
  print(bot_response)
41
41
 
42
- def bot():
43
- # Obtener claves de API desde el archivo .env
44
- api_key = os.getenv("OPENAI_API_KEY")
45
- api_key_tavily = os.getenv("TAVILY_API_KEY")
46
-
47
- language_model = OpenAILanguageModel(api_key, model_name='gpt-4o-mini-2024-07-18', temperature=1)
48
- embeddings = OpenAIEmbeddings(api_key=api_key)
49
-
50
- # Configuración de herramientas y bots
51
- search = TavilySearchResults(max_results=2, api_key=api_key_tavily)
52
- email_tool = EmailTool()
53
-
54
- tools =[search, email_tool]
55
- bot = LangChainBot(language_model, embeddings, instructions="Eres un bot de telegram", tools=tools)
56
-
57
- user_message = 'Hola como te llamas?'
58
- # Obtener la respuesta del bot
59
- response_model: ResponseModel = bot.get_response(user_message)
60
- bot_response = response_model.response
61
-
62
- print(bot_response)
63
-
64
42
  # Definir la clase 'Classification' con Pydantic para validar la estructura
65
43
  class Classification(BaseModel):
66
44
  intention: str = Field()
@@ -82,5 +60,4 @@ def clasification():
82
60
  print(result)
83
61
 
84
62
  bot_bdi()
85
- #bot()
86
63
  #clasification()
@@ -1,45 +0,0 @@
1
- Metadata-Version: 2.1
2
- Name: sonika-langchain-bot
3
- Version: 0.0.5
4
- Summary: Agente langchain con LLM
5
- Author: Erley Blanco Carvajal
6
- License: MIT License
7
- Classifier: Programming Language :: Python :: 3
8
- Classifier: License :: OSI Approved :: MIT License
9
- Classifier: Operating System :: OS Independent
10
- Requires-Python: >=3.6
11
- Description-Content-Type: text/markdown
12
- License-File: LICENSE
13
- Requires-Dist: langchain<1.0.0,>=0.3.0
14
- Requires-Dist: langchain-community<1.0.0,>=0.3.0
15
- Requires-Dist: langchain-core<1.0.0,>=0.3.5
16
- Requires-Dist: langchain-openai<1.0.0,>=0.2.0
17
- Requires-Dist: langgraph<1.0.0,>=0.2.39
18
- Requires-Dist: langgraph-checkpoint<3.0.0,>=2.0.2
19
- Requires-Dist: langgraph-sdk<2.0.0,>=0.1.34
20
- Requires-Dist: dataclasses-json<1.0.0,>=0.6.7
21
- Requires-Dist: python-dateutil<3.0.0,>=2.9.0
22
- Requires-Dist: tiktoken<1.0.0,>=0.7.0
23
- Requires-Dist: pydantic<3.0.0,>=2.9.2
24
- Requires-Dist: faiss-cpu<2.0.0,>=1.8.0
25
- Requires-Dist: pypdf<6.0.0,>=5.0.0
26
- Requires-Dist: python-dotenv<2.0.0,>=1.0.1
27
- Requires-Dist: typing_extensions<5.0.0,>=4.12.0
28
- Requires-Dist: typing-inspect<1.0.0,>=0.9.0
29
- Provides-Extra: dev
30
- Requires-Dist: sphinx<9.0.0,>=8.1.3; extra == "dev"
31
- Requires-Dist: sphinx-rtd-theme<4.0.0,>=3.0.1; extra == "dev"
32
-
33
- ## Instalacion
34
-
35
- 1. Creacion del ambiente virtual
36
-
37
- `python -m venv myvenv`
38
-
39
- 2. Ingresar al ambiente virtual
40
-
41
- `source myvenv/bin/activate`
42
-
43
- 3. Instalacion de dependencias necesarias
44
-
45
- `pip install -r requirements.txt`
@@ -1,13 +0,0 @@
1
- ## Instalacion
2
-
3
- 1. Creacion del ambiente virtual
4
-
5
- `python -m venv myvenv`
6
-
7
- 2. Ingresar al ambiente virtual
8
-
9
- `source myvenv/bin/activate`
10
-
11
- 3. Instalacion de dependencias necesarias
12
-
13
- `pip install -r requirements.txt`
@@ -1,45 +0,0 @@
1
- Metadata-Version: 2.1
2
- Name: sonika-langchain-bot
3
- Version: 0.0.5
4
- Summary: Agente langchain con LLM
5
- Author: Erley Blanco Carvajal
6
- License: MIT License
7
- Classifier: Programming Language :: Python :: 3
8
- Classifier: License :: OSI Approved :: MIT License
9
- Classifier: Operating System :: OS Independent
10
- Requires-Python: >=3.6
11
- Description-Content-Type: text/markdown
12
- License-File: LICENSE
13
- Requires-Dist: langchain<1.0.0,>=0.3.0
14
- Requires-Dist: langchain-community<1.0.0,>=0.3.0
15
- Requires-Dist: langchain-core<1.0.0,>=0.3.5
16
- Requires-Dist: langchain-openai<1.0.0,>=0.2.0
17
- Requires-Dist: langgraph<1.0.0,>=0.2.39
18
- Requires-Dist: langgraph-checkpoint<3.0.0,>=2.0.2
19
- Requires-Dist: langgraph-sdk<2.0.0,>=0.1.34
20
- Requires-Dist: dataclasses-json<1.0.0,>=0.6.7
21
- Requires-Dist: python-dateutil<3.0.0,>=2.9.0
22
- Requires-Dist: tiktoken<1.0.0,>=0.7.0
23
- Requires-Dist: pydantic<3.0.0,>=2.9.2
24
- Requires-Dist: faiss-cpu<2.0.0,>=1.8.0
25
- Requires-Dist: pypdf<6.0.0,>=5.0.0
26
- Requires-Dist: python-dotenv<2.0.0,>=1.0.1
27
- Requires-Dist: typing_extensions<5.0.0,>=4.12.0
28
- Requires-Dist: typing-inspect<1.0.0,>=0.9.0
29
- Provides-Extra: dev
30
- Requires-Dist: sphinx<9.0.0,>=8.1.3; extra == "dev"
31
- Requires-Dist: sphinx-rtd-theme<4.0.0,>=3.0.1; extra == "dev"
32
-
33
- ## Instalacion
34
-
35
- 1. Creacion del ambiente virtual
36
-
37
- `python -m venv myvenv`
38
-
39
- 2. Ingresar al ambiente virtual
40
-
41
- `source myvenv/bin/activate`
42
-
43
- 3. Instalacion de dependencias necesarias
44
-
45
- `pip install -r requirements.txt`