solana-agent 30.0.9__tar.gz → 31.1.0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (43) hide show
  1. {solana_agent-30.0.9 → solana_agent-31.1.0}/PKG-INFO +33 -28
  2. {solana_agent-30.0.9 → solana_agent-31.1.0}/README.md +22 -17
  3. {solana_agent-30.0.9 → solana_agent-31.1.0}/pyproject.toml +15 -15
  4. {solana_agent-30.0.9 → solana_agent-31.1.0}/solana_agent/client/solana_agent.py +4 -0
  5. {solana_agent-30.0.9 → solana_agent-31.1.0}/solana_agent/domains/agent.py +7 -1
  6. {solana_agent-30.0.9 → solana_agent-31.1.0}/solana_agent/factories/agent_factory.py +30 -6
  7. {solana_agent-30.0.9 → solana_agent-31.1.0}/solana_agent/interfaces/providers/memory.py +12 -0
  8. {solana_agent-30.0.9 → solana_agent-31.1.0}/solana_agent/interfaces/services/query.py +2 -0
  9. solana_agent-31.1.0/solana_agent/repositories/memory.py +276 -0
  10. {solana_agent-30.0.9 → solana_agent-31.1.0}/solana_agent/services/agent.py +33 -1
  11. {solana_agent-30.0.9 → solana_agent-31.1.0}/solana_agent/services/query.py +116 -0
  12. solana_agent-30.0.9/solana_agent/repositories/memory.py +0 -208
  13. {solana_agent-30.0.9 → solana_agent-31.1.0}/LICENSE +0 -0
  14. {solana_agent-30.0.9 → solana_agent-31.1.0}/solana_agent/__init__.py +0 -0
  15. {solana_agent-30.0.9 → solana_agent-31.1.0}/solana_agent/adapters/__init__.py +0 -0
  16. {solana_agent-30.0.9 → solana_agent-31.1.0}/solana_agent/adapters/mongodb_adapter.py +0 -0
  17. {solana_agent-30.0.9 → solana_agent-31.1.0}/solana_agent/adapters/openai_adapter.py +0 -0
  18. {solana_agent-30.0.9 → solana_agent-31.1.0}/solana_agent/adapters/pinecone_adapter.py +0 -0
  19. {solana_agent-30.0.9 → solana_agent-31.1.0}/solana_agent/cli.py +0 -0
  20. {solana_agent-30.0.9 → solana_agent-31.1.0}/solana_agent/client/__init__.py +0 -0
  21. {solana_agent-30.0.9 → solana_agent-31.1.0}/solana_agent/domains/__init__.py +0 -0
  22. {solana_agent-30.0.9 → solana_agent-31.1.0}/solana_agent/domains/routing.py +0 -0
  23. {solana_agent-30.0.9 → solana_agent-31.1.0}/solana_agent/factories/__init__.py +0 -0
  24. {solana_agent-30.0.9 → solana_agent-31.1.0}/solana_agent/guardrails/pii.py +0 -0
  25. {solana_agent-30.0.9 → solana_agent-31.1.0}/solana_agent/interfaces/__init__.py +0 -0
  26. {solana_agent-30.0.9 → solana_agent-31.1.0}/solana_agent/interfaces/client/client.py +0 -0
  27. {solana_agent-30.0.9 → solana_agent-31.1.0}/solana_agent/interfaces/guardrails/guardrails.py +0 -0
  28. {solana_agent-30.0.9 → solana_agent-31.1.0}/solana_agent/interfaces/plugins/plugins.py +0 -0
  29. {solana_agent-30.0.9 → solana_agent-31.1.0}/solana_agent/interfaces/providers/data_storage.py +0 -0
  30. {solana_agent-30.0.9 → solana_agent-31.1.0}/solana_agent/interfaces/providers/llm.py +0 -0
  31. {solana_agent-30.0.9 → solana_agent-31.1.0}/solana_agent/interfaces/providers/vector_storage.py +0 -0
  32. {solana_agent-30.0.9 → solana_agent-31.1.0}/solana_agent/interfaces/services/agent.py +0 -0
  33. {solana_agent-30.0.9 → solana_agent-31.1.0}/solana_agent/interfaces/services/knowledge_base.py +0 -0
  34. {solana_agent-30.0.9 → solana_agent-31.1.0}/solana_agent/interfaces/services/routing.py +0 -0
  35. {solana_agent-30.0.9 → solana_agent-31.1.0}/solana_agent/plugins/__init__.py +0 -0
  36. {solana_agent-30.0.9 → solana_agent-31.1.0}/solana_agent/plugins/manager.py +0 -0
  37. {solana_agent-30.0.9 → solana_agent-31.1.0}/solana_agent/plugins/registry.py +0 -0
  38. {solana_agent-30.0.9 → solana_agent-31.1.0}/solana_agent/plugins/tools/__init__.py +0 -0
  39. {solana_agent-30.0.9 → solana_agent-31.1.0}/solana_agent/plugins/tools/auto_tool.py +0 -0
  40. {solana_agent-30.0.9 → solana_agent-31.1.0}/solana_agent/repositories/__init__.py +0 -0
  41. {solana_agent-30.0.9 → solana_agent-31.1.0}/solana_agent/services/__init__.py +0 -0
  42. {solana_agent-30.0.9 → solana_agent-31.1.0}/solana_agent/services/knowledge_base.py +0 -0
  43. {solana_agent-30.0.9 → solana_agent-31.1.0}/solana_agent/services/routing.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: solana-agent
3
- Version: 30.0.9
3
+ Version: 31.1.0
4
4
  Summary: AI Agents for Solana
5
5
  License: MIT
6
6
  Keywords: solana,solana ai,solana agent,ai,ai agent,ai agents
@@ -14,20 +14,20 @@ Classifier: Programming Language :: Python :: 3
14
14
  Classifier: Programming Language :: Python :: 3.12
15
15
  Classifier: Programming Language :: Python :: 3.13
16
16
  Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
17
- Requires-Dist: instructor (==1.9.2)
18
- Requires-Dist: llama-index-core (==0.12.48)
19
- Requires-Dist: llama-index-embeddings-openai (==0.3.1)
20
- Requires-Dist: logfire (==3.23.0)
21
- Requires-Dist: openai (==1.93.3)
17
+ Requires-Dist: instructor (==1.10.0)
18
+ Requires-Dist: llama-index-core (==0.13.3)
19
+ Requires-Dist: llama-index-embeddings-openai (==0.5.0)
20
+ Requires-Dist: logfire (==4.3.5)
21
+ Requires-Dist: openai (==1.101.0)
22
22
  Requires-Dist: pillow (==11.3.0)
23
- Requires-Dist: pinecone (==7.3.0)
23
+ Requires-Dist: pinecone[asyncio] (==7.3.0)
24
24
  Requires-Dist: pydantic (>=2)
25
- Requires-Dist: pymongo (==4.13.2)
26
- Requires-Dist: pypdf (==5.7.0)
25
+ Requires-Dist: pymongo (==4.14.1)
26
+ Requires-Dist: pypdf (==6.0.0)
27
27
  Requires-Dist: rich (>=13,<14.0)
28
28
  Requires-Dist: scrubadub (==2.0.1)
29
- Requires-Dist: typer (==0.16.0)
30
- Requires-Dist: zep-cloud (==2.17.0)
29
+ Requires-Dist: typer (==0.16.1)
30
+ Requires-Dist: zep-cloud (==3.4.1)
31
31
  Project-URL: Documentation, https://docs.solana-agent.com
32
32
  Project-URL: Homepage, https://solana-agent.com
33
33
  Project-URL: Repository, https://github.com/truemagic-coder/solana-agent
@@ -63,7 +63,7 @@ Build your AI agents in three lines of code!
63
63
  * Extensible Tooling
64
64
  * Autonomous Operation
65
65
  * Smart Workflows
66
- * Structured Outputs
66
+ * Agentic Forms
67
67
  * Knowledge Base
68
68
  * MCP Support
69
69
  * Guardrails
@@ -112,7 +112,7 @@ Smart workflows are as easy as combining your tools and prompts.
112
112
  * Integrated Knowledge Base with semantic search and automatic PDF chunking
113
113
  * Input and output guardrails for content filtering, safety, and data sanitization
114
114
  * Generate custom images based on text prompts with storage on S3 compatible services
115
- * Deterministically return structured outputs
115
+ * Deterministic agentic form filling in natural conversation
116
116
  * Combine with event-driven systems to create autonomous agents
117
117
 
118
118
  ## Stack
@@ -344,7 +344,9 @@ async for response in solana_agent.process("user123", "What is in this image? De
344
344
  print(response, end="")
345
345
  ```
346
346
 
347
- ### Structured Outputs
347
+ ### Agentic Forms
348
+
349
+ You can attach a JSON Schema to any agent in your config so it can collect structured data conversationally.
348
350
 
349
351
  ```python
350
352
  from solana_agent import SolanaAgent
@@ -355,25 +357,28 @@ config = {
355
357
  },
356
358
  "agents": [
357
359
  {
358
- "name": "researcher",
359
- "instructions": "You are a research expert.",
360
- "specialization": "Researcher",
360
+ "name": "customer_support",
361
+ "instructions": "You provide friendly, helpful customer support responses.",
362
+ "specialization": "Customer inquiries",
363
+ "capture_name": "contact_info",
364
+ "capture_mode": "once",
365
+ "capture_schema": {
366
+ "type": "object",
367
+ "properties": {
368
+ "email": { "type": "string" },
369
+ "phone": { "type": "string" },
370
+ "newsletter_subscribe": { "type": "boolean" }
371
+ },
372
+ "required": ["email"]
373
+ }
361
374
  }
362
- ],
375
+ ]
363
376
  }
364
377
 
365
378
  solana_agent = SolanaAgent(config=config)
366
379
 
367
- class ResearchProposal(BaseModel):
368
- title: str
369
- abstract: str
370
- key_points: list[str]
371
-
372
- full_response = None
373
- async for response in solana_agent.process("user123", "Research the life of Ben Franklin - the founding Father.", output_model=ResearchProposal):
374
- full_response = response
375
-
376
- print(full_response.model_dump())
380
+ async for response in solana_agent.process("user123", "What are the latest AI developments?"):
381
+ print(response, end="")
377
382
  ```
378
383
 
379
384
  ### Command Line Interface (CLI)
@@ -28,7 +28,7 @@ Build your AI agents in three lines of code!
28
28
  * Extensible Tooling
29
29
  * Autonomous Operation
30
30
  * Smart Workflows
31
- * Structured Outputs
31
+ * Agentic Forms
32
32
  * Knowledge Base
33
33
  * MCP Support
34
34
  * Guardrails
@@ -77,7 +77,7 @@ Smart workflows are as easy as combining your tools and prompts.
77
77
  * Integrated Knowledge Base with semantic search and automatic PDF chunking
78
78
  * Input and output guardrails for content filtering, safety, and data sanitization
79
79
  * Generate custom images based on text prompts with storage on S3 compatible services
80
- * Deterministically return structured outputs
80
+ * Deterministic agentic form filling in natural conversation
81
81
  * Combine with event-driven systems to create autonomous agents
82
82
 
83
83
  ## Stack
@@ -309,7 +309,9 @@ async for response in solana_agent.process("user123", "What is in this image? De
309
309
  print(response, end="")
310
310
  ```
311
311
 
312
- ### Structured Outputs
312
+ ### Agentic Forms
313
+
314
+ You can attach a JSON Schema to any agent in your config so it can collect structured data conversationally.
313
315
 
314
316
  ```python
315
317
  from solana_agent import SolanaAgent
@@ -320,25 +322,28 @@ config = {
320
322
  },
321
323
  "agents": [
322
324
  {
323
- "name": "researcher",
324
- "instructions": "You are a research expert.",
325
- "specialization": "Researcher",
325
+ "name": "customer_support",
326
+ "instructions": "You provide friendly, helpful customer support responses.",
327
+ "specialization": "Customer inquiries",
328
+ "capture_name": "contact_info",
329
+ "capture_mode": "once",
330
+ "capture_schema": {
331
+ "type": "object",
332
+ "properties": {
333
+ "email": { "type": "string" },
334
+ "phone": { "type": "string" },
335
+ "newsletter_subscribe": { "type": "boolean" }
336
+ },
337
+ "required": ["email"]
338
+ }
326
339
  }
327
- ],
340
+ ]
328
341
  }
329
342
 
330
343
  solana_agent = SolanaAgent(config=config)
331
344
 
332
- class ResearchProposal(BaseModel):
333
- title: str
334
- abstract: str
335
- key_points: list[str]
336
-
337
- full_response = None
338
- async for response in solana_agent.process("user123", "Research the life of Ben Franklin - the founding Father.", output_model=ResearchProposal):
339
- full_response = response
340
-
341
- print(full_response.model_dump())
345
+ async for response in solana_agent.process("user123", "What are the latest AI developments?"):
346
+ print(response, end="")
342
347
  ```
343
348
 
344
349
  ### Command Line Interface (CLI)
@@ -1,6 +1,6 @@
1
1
  [tool.poetry]
2
2
  name = "solana-agent"
3
- version = "30.0.9"
3
+ version = "31.1.0"
4
4
  description = "AI Agents for Solana"
5
5
  authors = ["Bevan Hunt <bevan@bevanhunt.com>"]
6
6
  license = "MIT"
@@ -19,30 +19,30 @@ classifiers = [
19
19
  ]
20
20
  packages = [{ include = "solana_agent" }]
21
21
 
22
- [tool.pytest.ini-options]
23
- python_paths = [".", "tests"]
22
+ [tool.pytest.ini_options]
23
+ testpaths = ["tests"]
24
24
 
25
25
  [tool.poetry.dependencies]
26
26
  python = ">=3.12,<4.0"
27
- openai = "1.93.3"
27
+ openai = "1.101.0"
28
28
  pydantic = ">=2"
29
- pymongo = "4.13.2"
30
- zep-cloud = "2.17.0"
31
- instructor = "1.9.2"
32
- pinecone = "7.3.0"
33
- llama-index-core = "0.12.48"
34
- llama-index-embeddings-openai = "0.3.1"
35
- pypdf = "5.7.0"
29
+ pymongo = "4.14.1"
30
+ zep-cloud = "3.4.1"
31
+ instructor = "1.10.0"
32
+ pinecone = { version = "7.3.0", extras = ["asyncio"] }
33
+ llama-index-core = "0.13.3"
34
+ llama-index-embeddings-openai = "0.5.0"
35
+ pypdf = "6.0.0"
36
36
  scrubadub = "2.0.1"
37
- logfire = "3.23.0"
38
- typer = "0.16.0"
37
+ logfire = "4.3.5"
38
+ typer = "0.16.1"
39
39
  rich = ">=13,<14.0"
40
40
  pillow = "11.3.0"
41
41
 
42
42
  [tool.poetry.group.dev.dependencies]
43
43
  pytest = "^8.4.0"
44
44
  pytest-cov = "^6.1.1"
45
- pytest-asyncio = "^1.0.0"
45
+ pytest-asyncio = "^1.1.0"
46
46
  pytest-mock = "^3.14.0"
47
47
  pytest-github-actions-annotate-failures = "^0.3.0"
48
48
  sphinx = "^8.2.3"
@@ -50,7 +50,7 @@ sphinx-rtd-theme = "^3.0.2"
50
50
  myst-parser = "^4.0.1"
51
51
  sphinx-autobuild = "^2024.10.3"
52
52
  mongomock = "^4.3.0"
53
- ruff = "^0.12.2"
53
+ ruff = "^0.12.10"
54
54
 
55
55
  [tool.poetry.scripts]
56
56
  solana-agent = "solana_agent.cli:app"
@@ -49,6 +49,8 @@ class SolanaAgent(SolanaAgentInterface):
49
49
  user_id: str,
50
50
  message: Union[str, bytes],
51
51
  prompt: Optional[str] = None,
52
+ capture_schema: Optional[Dict[str, Any]] = None,
53
+ capture_name: Optional[str] = None,
52
54
  output_format: Literal["text", "audio"] = "text",
53
55
  audio_voice: Literal[
54
56
  "alloy",
@@ -103,6 +105,8 @@ class SolanaAgent(SolanaAgentInterface):
103
105
  prompt=prompt,
104
106
  router=router,
105
107
  output_model=output_model,
108
+ capture_schema=capture_schema,
109
+ capture_name=capture_name,
106
110
  ):
107
111
  yield chunk
108
112
 
@@ -5,7 +5,7 @@ This module defines the core domain models for representing
5
5
  AI agents, human agents, and business mission/values.
6
6
  """
7
7
 
8
- from typing import List, Dict
8
+ from typing import List, Dict, Optional, Any
9
9
  from pydantic import BaseModel, Field, field_validator
10
10
 
11
11
 
@@ -53,6 +53,12 @@ class AIAgent(BaseModel):
53
53
  name: str = Field(..., description="Unique agent identifier name")
54
54
  instructions: str = Field(..., description="Base instructions for the agent")
55
55
  specialization: str = Field(..., description="Agent's specialized domain")
56
+ capture_name: Optional[str] = Field(
57
+ default=None, description="Optional capture name for structured data"
58
+ )
59
+ capture_schema: Optional[Dict[str, Any]] = Field(
60
+ default=None, description="Optional JSON schema for structured capture"
61
+ )
56
62
 
57
63
  @field_validator("name", "specialization")
58
64
  @classmethod
@@ -133,21 +133,38 @@ class SolanaAgentFactory:
133
133
  voice=org_config.get("voice", ""),
134
134
  )
135
135
 
136
+ # Build capture modes from agent config if provided
137
+ capture_modes: Dict[str, str] = {}
138
+ for agent in config.get("agents", []):
139
+ mode = agent.get("capture_mode")
140
+ if mode in {"once", "multiple"} and agent.get("name"):
141
+ capture_modes[agent["name"]] = mode
142
+
136
143
  # Create repositories
137
144
  memory_provider = None
138
145
 
139
146
  if "zep" in config and "mongo" in config:
140
- memory_provider = MemoryRepository(
141
- mongo_adapter=db_adapter, zep_api_key=config["zep"].get("api_key")
142
- )
147
+ mem_kwargs: Dict[str, Any] = {
148
+ "mongo_adapter": db_adapter,
149
+ "zep_api_key": config["zep"].get("api_key"),
150
+ }
151
+ if capture_modes: # pragma: no cover
152
+ mem_kwargs["capture_modes"] = capture_modes
153
+ memory_provider = MemoryRepository(**mem_kwargs)
143
154
 
144
155
  if "mongo" in config and "zep" not in config:
145
- memory_provider = MemoryRepository(mongo_adapter=db_adapter)
156
+ mem_kwargs = {"mongo_adapter": db_adapter}
157
+ if capture_modes:
158
+ mem_kwargs["capture_modes"] = capture_modes
159
+ memory_provider = MemoryRepository(**mem_kwargs)
146
160
 
147
161
  if "zep" in config and "mongo" not in config:
148
162
  if "api_key" not in config["zep"]:
149
163
  raise ValueError("Zep API key is required.")
150
- memory_provider = MemoryRepository(zep_api_key=config["zep"].get("api_key"))
164
+ mem_kwargs = {"zep_api_key": config["zep"].get("api_key")}
165
+ if capture_modes: # pragma: no cover
166
+ mem_kwargs["capture_modes"] = capture_modes
167
+ memory_provider = MemoryRepository(**mem_kwargs)
151
168
 
152
169
  guardrail_config = config.get("guardrails", {})
153
170
  input_guardrails: List[InputGuardrail] = SolanaAgentFactory._create_guardrails(
@@ -191,11 +208,18 @@ class SolanaAgentFactory:
191
208
  loaded_plugins = 0
192
209
 
193
210
  # Register predefined agents
194
- for agent_config in config.get("agents", []):
211
+ for agent_config in config.get("agents", []): # pragma: no cover
212
+ extra_kwargs = {}
213
+ if "capture_name" in agent_config:
214
+ extra_kwargs["capture_name"] = agent_config.get("capture_name")
215
+ if "capture_schema" in agent_config:
216
+ extra_kwargs["capture_schema"] = agent_config.get("capture_schema")
217
+
195
218
  agent_service.register_ai_agent(
196
219
  name=agent_config["name"],
197
220
  instructions=agent_config["instructions"],
198
221
  specialization=agent_config["specialization"],
222
+ **extra_kwargs,
199
223
  )
200
224
 
201
225
  # Register tools for this agent
@@ -36,3 +36,15 @@ class MemoryProvider(ABC):
36
36
  def count_documents(self, collection: str, query: Dict) -> int:
37
37
  """Count documents matching query."""
38
38
  pass
39
+
40
+ @abstractmethod
41
+ async def save_capture(
42
+ self,
43
+ user_id: str,
44
+ capture_name: str,
45
+ agent_name: Optional[str],
46
+ data: Dict[str, Any],
47
+ schema: Optional[Dict[str, Any]] = None,
48
+ ) -> Optional[str]:
49
+ """Persist a structured capture for a user and return its ID if available."""
50
+ pass
@@ -38,6 +38,8 @@ class QueryService(ABC):
38
38
  router: Optional[RoutingInterface] = None,
39
39
  images: Optional[List[Union[str, bytes]]] = None,
40
40
  output_model: Optional[Type[BaseModel]] = None,
41
+ capture_schema: Optional[Dict[str, Any]] = None,
42
+ capture_name: Optional[str] = None,
41
43
  ) -> AsyncGenerator[Union[str, bytes, BaseModel], None]:
42
44
  """Process the user request and generate a response."""
43
45
  pass
@@ -0,0 +1,276 @@
1
+ import logging
2
+ from typing import List, Dict, Optional, Tuple, Any
3
+ from datetime import datetime, timezone
4
+ from copy import deepcopy
5
+
6
+ from zep_cloud.client import AsyncZep as AsyncZepCloud
7
+ from zep_cloud.types import Message
8
+
9
+ from solana_agent.interfaces.providers.memory import MemoryProvider
10
+ from solana_agent.adapters.mongodb_adapter import MongoDBAdapter
11
+
12
+ logger = logging.getLogger(__name__)
13
+
14
+
15
+ class MemoryRepository(MemoryProvider):
16
+ """Combined Zep and MongoDB implementation of MemoryProvider."""
17
+
18
+ def __init__(
19
+ self,
20
+ mongo_adapter: Optional[MongoDBAdapter] = None,
21
+ zep_api_key: Optional[str] = None,
22
+ capture_modes: Optional[Dict[str, str]] = None,
23
+ ):
24
+ self.capture_modes: Dict[str, str] = capture_modes or {}
25
+
26
+ # Mongo setup
27
+ if not mongo_adapter:
28
+ self.mongo = None
29
+ self.collection = None
30
+ self.captures_collection = "captures"
31
+ else:
32
+ self.mongo = mongo_adapter
33
+ self.collection = "conversations"
34
+ try:
35
+ self.mongo.create_collection(self.collection)
36
+ self.mongo.create_index(self.collection, [("user_id", 1)])
37
+ self.mongo.create_index(self.collection, [("timestamp", 1)])
38
+ except Exception as e:
39
+ logger.error(f"Error initializing MongoDB: {e}")
40
+
41
+ try:
42
+ self.captures_collection = "captures"
43
+ self.mongo.create_collection(self.captures_collection)
44
+ # Basic indexes
45
+ self.mongo.create_index(self.captures_collection, [("user_id", 1)])
46
+ self.mongo.create_index(self.captures_collection, [("capture_name", 1)])
47
+ self.mongo.create_index(self.captures_collection, [("agent_name", 1)])
48
+ self.mongo.create_index(self.captures_collection, [("timestamp", 1)])
49
+ # Unique only when mode == 'once'
50
+ try:
51
+ self.mongo.create_index(
52
+ self.captures_collection,
53
+ [("user_id", 1), ("agent_name", 1), ("capture_name", 1)],
54
+ unique=True,
55
+ partialFilterExpression={"mode": "once"},
56
+ )
57
+ except Exception as e:
58
+ logger.error(
59
+ f"Error creating partial unique index for captures: {e}"
60
+ )
61
+ except Exception as e:
62
+ logger.error(f"Error initializing MongoDB captures collection: {e}")
63
+ self.captures_collection = "captures"
64
+
65
+ # Zep setup
66
+ self.zep = AsyncZepCloud(api_key=zep_api_key) if zep_api_key else None
67
+
68
+ async def store(self, user_id: str, messages: List[Dict[str, Any]]) -> None:
69
+ if not user_id or not isinstance(user_id, str):
70
+ raise ValueError("User ID cannot be None or empty")
71
+ if not messages or not isinstance(messages, list):
72
+ raise ValueError("Messages must be a non-empty list")
73
+ if not all(
74
+ isinstance(m, dict) and "role" in m and "content" in m for m in messages
75
+ ):
76
+ raise ValueError(
77
+ "All messages must be dictionaries with 'role' and 'content' keys"
78
+ )
79
+ for m in messages:
80
+ if m["role"] not in ["user", "assistant"]:
81
+ raise ValueError(
82
+ "Invalid role in message. Only 'user' and 'assistant' are accepted."
83
+ )
84
+
85
+ # Persist last user/assistant pair to Mongo
86
+ if self.mongo and len(messages) >= 2:
87
+ try:
88
+ user_msg = None
89
+ assistant_msg = None
90
+ for m in reversed(messages):
91
+ if m.get("role") == "user" and not user_msg:
92
+ user_msg = m.get("content")
93
+ elif m.get("role") == "assistant" and not assistant_msg:
94
+ assistant_msg = m.get("content")
95
+ if user_msg and assistant_msg:
96
+ break
97
+ if user_msg and assistant_msg:
98
+ self.mongo.insert_one(
99
+ self.collection,
100
+ {
101
+ "user_id": user_id,
102
+ "user_message": user_msg,
103
+ "assistant_message": assistant_msg,
104
+ "timestamp": datetime.now(timezone.utc),
105
+ },
106
+ )
107
+ except Exception as e:
108
+ logger.error(f"MongoDB storage error: {e}")
109
+
110
+ # Zep
111
+ if not self.zep:
112
+ return
113
+
114
+ zep_messages: List[Message] = []
115
+ for m in messages:
116
+ content = (
117
+ self._truncate(deepcopy(m.get("content"))) if "content" in m else None
118
+ )
119
+ if content is None: # pragma: no cover
120
+ continue
121
+ role_type = "user" if m.get("role") == "user" else "assistant"
122
+ zep_messages.append(Message(content=content, role=role_type))
123
+
124
+ if zep_messages:
125
+ try:
126
+ await self.zep.thread.add_messages(
127
+ thread_id=user_id, messages=zep_messages
128
+ )
129
+ except Exception:
130
+ try:
131
+ try:
132
+ await self.zep.user.add(user_id=user_id)
133
+ except Exception as e:
134
+ logger.error(f"Zep user addition error: {e}")
135
+ try:
136
+ await self.zep.thread.create(thread_id=user_id, user_id=user_id)
137
+ except Exception as e:
138
+ logger.error(f"Zep thread creation error: {e}")
139
+ await self.zep.thread.add_messages(
140
+ thread_id=user_id, messages=zep_messages
141
+ )
142
+ except Exception as e:
143
+ logger.error(f"Zep memory addition error: {e}")
144
+
145
+ async def retrieve(self, user_id: str) -> str:
146
+ try:
147
+ memories = ""
148
+ if self.zep:
149
+ memory = await self.zep.thread.get_user_context(thread_id=user_id)
150
+ if memory and memory.context:
151
+ memories = memory.context
152
+ return memories
153
+ except Exception as e:
154
+ logger.error(f"Error retrieving memories: {e}")
155
+ return ""
156
+
157
+ async def delete(self, user_id: str) -> None:
158
+ if self.mongo:
159
+ try:
160
+ self.mongo.delete_all(self.collection, {"user_id": user_id})
161
+ except Exception as e:
162
+ logger.error(f"MongoDB deletion error: {e}")
163
+ if not self.zep:
164
+ return
165
+ try:
166
+ await self.zep.thread.delete(thread_id=user_id)
167
+ except Exception as e:
168
+ logger.error(f"Zep memory deletion error: {e}")
169
+ try:
170
+ await self.zep.user.delete(user_id=user_id)
171
+ except Exception as e:
172
+ logger.error(f"Zep user deletion error: {e}")
173
+
174
+ def find(
175
+ self,
176
+ collection: str,
177
+ query: Dict,
178
+ sort: Optional[List[Tuple]] = None,
179
+ limit: int = 0,
180
+ skip: int = 0,
181
+ ) -> List[Dict]: # pragma: no cover
182
+ if not self.mongo:
183
+ return []
184
+ try:
185
+ return self.mongo.find(collection, query, sort=sort, limit=limit, skip=skip)
186
+ except Exception as e:
187
+ logger.error(f"MongoDB find error: {e}")
188
+ return []
189
+
190
+ def count_documents(self, collection: str, query: Dict) -> int:
191
+ if not self.mongo:
192
+ return 0
193
+ return self.mongo.count_documents(collection, query)
194
+
195
+ def _truncate(self, text: str, limit: int = 2500) -> str:
196
+ if text is None:
197
+ raise AttributeError("Cannot truncate None text")
198
+ if not text:
199
+ return ""
200
+ if len(text) <= limit:
201
+ return text
202
+ last_period = text.rfind(".", 0, limit)
203
+ if last_period > 0:
204
+ return text[: last_period + 1]
205
+ return text[: limit - 3] + "..."
206
+
207
+ async def save_capture(
208
+ self,
209
+ user_id: str,
210
+ capture_name: str,
211
+ agent_name: Optional[str],
212
+ data: Dict[str, Any],
213
+ schema: Optional[Dict[str, Any]] = None,
214
+ ) -> Optional[str]:
215
+ if not self.mongo: # pragma: no cover
216
+ logger.warning("MongoDB not configured; cannot save capture.")
217
+ return None
218
+ if not user_id or not isinstance(user_id, str):
219
+ raise ValueError("user_id must be a non-empty string")
220
+ if not capture_name or not isinstance(capture_name, str):
221
+ raise ValueError("capture_name must be a non-empty string")
222
+ if not isinstance(data, dict):
223
+ raise ValueError("data must be a dictionary")
224
+
225
+ try:
226
+ mode = self.capture_modes.get(agent_name, "once") if agent_name else "once"
227
+ now = datetime.now(timezone.utc)
228
+ if mode == "multiple":
229
+ doc = {
230
+ "user_id": user_id,
231
+ "agent_name": agent_name,
232
+ "capture_name": capture_name,
233
+ "data": data or {},
234
+ "schema": schema or {},
235
+ "mode": "multiple",
236
+ "timestamp": now,
237
+ "created_at": now,
238
+ }
239
+ return self.mongo.insert_one(self.captures_collection, doc)
240
+ else:
241
+ key = {
242
+ "user_id": user_id,
243
+ "agent_name": agent_name,
244
+ "capture_name": capture_name,
245
+ }
246
+ existing = self.mongo.find_one(self.captures_collection, key)
247
+ merged_data: Dict[str, Any] = {}
248
+ if existing and isinstance(existing.get("data"), dict):
249
+ merged_data.update(existing.get("data", {}))
250
+ merged_data.update(data or {})
251
+ update_doc = {
252
+ "$set": {
253
+ "user_id": user_id,
254
+ "agent_name": agent_name,
255
+ "capture_name": capture_name,
256
+ "data": merged_data,
257
+ "schema": (
258
+ schema
259
+ if schema is not None
260
+ else existing.get("schema")
261
+ if existing
262
+ else {}
263
+ ),
264
+ "mode": "once",
265
+ "timestamp": now,
266
+ },
267
+ "$setOnInsert": {"created_at": now},
268
+ }
269
+ self.mongo.update_one(
270
+ self.captures_collection, key, update_doc, upsert=True
271
+ )
272
+ doc = self.mongo.find_one(self.captures_collection, key)
273
+ return str(doc.get("_id")) if doc and doc.get("_id") else None
274
+ except Exception as e: # pragma: no cover
275
+ logger.error(f"MongoDB save_capture error: {e}")
276
+ return None
@@ -73,6 +73,8 @@ class AgentService(AgentServiceInterface):
73
73
  name: str,
74
74
  instructions: str,
75
75
  specialization: str,
76
+ capture_name: Optional[str] = None,
77
+ capture_schema: Optional[Dict[str, Any]] = None,
76
78
  ) -> None:
77
79
  """Register an AI agent with its specialization.
78
80
 
@@ -85,6 +87,8 @@ class AgentService(AgentServiceInterface):
85
87
  name=name,
86
88
  instructions=instructions,
87
89
  specialization=specialization,
90
+ capture_name=capture_name,
91
+ capture_schema=capture_schema,
88
92
  )
89
93
  self.agents.append(agent)
90
94
  logger.info(f"Registered AI agent: {name}")
@@ -98,7 +102,6 @@ class AgentService(AgentServiceInterface):
98
102
  Returns:
99
103
  System prompt
100
104
  """
101
-
102
105
  # Get agent by name
103
106
  agent = next((a for a in self.agents if a.name == agent_name), None)
104
107
 
@@ -130,8 +133,37 @@ class AgentService(AgentServiceInterface):
130
133
  )
131
134
  system_prompt += f"\n\nBUSINESS GOALS:\n{goals_text}"
132
135
 
136
+ # Add capture guidance if this agent has a capture schema
137
+ if getattr(agent, "capture_schema", None) and getattr(
138
+ agent, "capture_name", None
139
+ ): # pragma: no cover
140
+ system_prompt += (
141
+ "\n\nSTRUCTURED DATA CAPTURE:\n"
142
+ f"You must collect the following fields for the form '{agent.capture_name}'. "
143
+ "Ask concise follow-up questions to fill any missing required fields one at a time. "
144
+ "Confirm values when ambiguous, and summarize the captured data before finalizing.\n\n"
145
+ "JSON Schema (authoritative definition of the fields):\n"
146
+ f"{agent.capture_schema}\n\n"
147
+ "Rules:\n"
148
+ "- Never invent values—ask the user.\n"
149
+ "- Validate types (emails look like emails, numbers are numbers, booleans are yes/no).\n"
150
+ "- If the user declines to provide a required value, note it clearly.\n"
151
+ "- When all required fields are provided, acknowledge completion.\n"
152
+ )
153
+
133
154
  return system_prompt
134
155
 
156
+ def get_agent_capture(
157
+ self, agent_name: str
158
+ ) -> Optional[Dict[str, Any]]: # pragma: no cover
159
+ """Return capture metadata for the agent, if any."""
160
+ agent = next((a for a in self.agents if a.name == agent_name), None)
161
+ if not agent:
162
+ return None
163
+ if agent.capture_name and agent.capture_schema:
164
+ return {"name": agent.capture_name, "schema": agent.capture_schema}
165
+ return None
166
+
135
167
  def get_all_ai_agents(self) -> Dict[str, AIAgent]:
136
168
  """Get all registered AI agents.
137
169
 
@@ -89,6 +89,8 @@ class QueryService(QueryServiceInterface):
89
89
  prompt: Optional[str] = None,
90
90
  router: Optional[RoutingServiceInterface] = None,
91
91
  output_model: Optional[Type[BaseModel]] = None,
92
+ capture_schema: Optional[Dict[str, Any]] = None,
93
+ capture_name: Optional[str] = None,
92
94
  ) -> AsyncGenerator[Union[str, bytes, BaseModel], None]: # pragma: no cover
93
95
  """Process the user request with appropriate agent and apply input guardrails.
94
96
 
@@ -263,6 +265,47 @@ class QueryService(QueryServiceInterface):
263
265
  )
264
266
  else:
265
267
  full_text_response = ""
268
+ # If capture_schema is provided, we run a structured output pass first
269
+ capture_data: Optional[BaseModel] = None
270
+ # If no explicit capture provided, use the agent's configured capture
271
+ if not capture_schema or not capture_name:
272
+ try:
273
+ cap = self.agent_service.get_agent_capture(agent_name)
274
+ if cap:
275
+ capture_name = cap.get("name")
276
+ capture_schema = cap.get("schema")
277
+ except Exception:
278
+ pass
279
+
280
+ if capture_schema and capture_name:
281
+ try:
282
+ # Build a dynamic Pydantic model from JSON schema
283
+ DynamicModel = self._build_model_from_json_schema(
284
+ capture_name, capture_schema
285
+ )
286
+ async for result in self.agent_service.generate_response(
287
+ agent_name=agent_name,
288
+ user_id=user_id,
289
+ query=user_text,
290
+ images=images,
291
+ memory_context=combined_context,
292
+ output_format="text",
293
+ prompt=(
294
+ (
295
+ prompt
296
+ + "\n\nReturn only the JSON for the requested schema."
297
+ )
298
+ if prompt
299
+ else "Return only the JSON for the requested schema."
300
+ ),
301
+ output_model=DynamicModel,
302
+ ):
303
+ # This yields a pydantic model instance
304
+ capture_data = result # type: ignore
305
+ break
306
+ except Exception as e:
307
+ logger.error(f"Error during capture structured output: {e}")
308
+
266
309
  async for chunk in self.agent_service.generate_response(
267
310
  agent_name=agent_name,
268
311
  user_id=user_id,
@@ -286,6 +329,30 @@ class QueryService(QueryServiceInterface):
286
329
  assistant_message=full_text_response,
287
330
  )
288
331
 
332
+ # Persist capture if available
333
+ if (
334
+ self.memory_provider
335
+ and capture_schema
336
+ and capture_name
337
+ and capture_data is not None
338
+ ):
339
+ try:
340
+ # pydantic v2: model_dump
341
+ data_dict = (
342
+ capture_data.model_dump() # type: ignore[attr-defined]
343
+ if hasattr(capture_data, "model_dump")
344
+ else capture_data.dict() # type: ignore
345
+ )
346
+ await self.memory_provider.save_capture(
347
+ user_id=user_id,
348
+ capture_name=capture_name,
349
+ agent_name=agent_name,
350
+ data=data_dict,
351
+ schema=capture_schema,
352
+ )
353
+ except Exception as e:
354
+ logger.error(f"Error saving capture: {e}")
355
+
289
356
  except Exception as e:
290
357
  import traceback
291
358
 
@@ -458,3 +525,52 @@ class QueryService(QueryServiceInterface):
458
525
  logger.debug(
459
526
  "Memory provider not configured, skipping conversation storage."
460
527
  )
528
+
529
+ def _build_model_from_json_schema(
530
+ self, name: str, schema: Dict[str, Any]
531
+ ) -> Type[BaseModel]:
532
+ """Create a Pydantic model dynamically from a JSON Schema subset.
533
+
534
+ Supports 'type' string, integer, number, boolean, object (flat), array (of simple types),
535
+ required fields, and default values. Nested objects/arrays can be extended later.
536
+ """
537
+ from pydantic import create_model
538
+
539
+ def py_type(js: Dict[str, Any]):
540
+ t = js.get("type")
541
+ if isinstance(t, list):
542
+ # handle ["null", "string"] => Optional[str]
543
+ non_null = [x for x in t if x != "null"]
544
+ if not non_null:
545
+ return Optional[Any]
546
+ base = py_type({"type": non_null[0]})
547
+ return Optional[base]
548
+ if t == "string":
549
+ return str
550
+ if t == "integer":
551
+ return int
552
+ if t == "number":
553
+ return float
554
+ if t == "boolean":
555
+ return bool
556
+ if t == "array":
557
+ items = js.get("items", {"type": "string"})
558
+ return List[py_type(items)]
559
+ if t == "object":
560
+ # For now, represent as Dict[str, Any]
561
+ return Dict[str, Any]
562
+ return Any
563
+
564
+ properties: Dict[str, Any] = schema.get("properties", {})
565
+ required = set(schema.get("required", []))
566
+ fields = {}
567
+ for field_name, field_schema in properties.items():
568
+ typ = py_type(field_schema)
569
+ default = field_schema.get("default")
570
+ if field_name in required and default is None:
571
+ fields[field_name] = (typ, ...)
572
+ else:
573
+ fields[field_name] = (typ, default)
574
+
575
+ Model = create_model(name, **fields) # type: ignore
576
+ return Model
@@ -1,208 +0,0 @@
1
- import logging # Import logging
2
- from copy import deepcopy
3
- from typing import List, Dict, Any, Optional, Tuple
4
- from datetime import datetime, timezone
5
- from zep_cloud.client import AsyncZep as AsyncZepCloud
6
- from zep_cloud.types import Message
7
- from solana_agent.interfaces.providers.memory import MemoryProvider
8
- from solana_agent.adapters.mongodb_adapter import MongoDBAdapter
9
-
10
- # Setup logger for this module
11
- logger = logging.getLogger(__name__)
12
-
13
-
14
- class MemoryRepository(MemoryProvider):
15
- """Combined Zep and MongoDB implementation of MemoryProvider."""
16
-
17
- def __init__(
18
- self,
19
- mongo_adapter: Optional[MongoDBAdapter] = None,
20
- zep_api_key: Optional[str] = None,
21
- ):
22
- """Initialize the combined memory provider."""
23
- if not mongo_adapter:
24
- self.mongo = None
25
- self.collection = None
26
- else:
27
- # Initialize MongoDB
28
- self.mongo = mongo_adapter
29
- self.collection = "conversations"
30
-
31
- try:
32
- # Ensure MongoDB collection and indexes
33
- self.mongo.create_collection(self.collection)
34
- self.mongo.create_index(self.collection, [("user_id", 1)])
35
- self.mongo.create_index(self.collection, [("timestamp", 1)])
36
- except Exception as e:
37
- logger.error(f"Error initializing MongoDB: {e}") # Use logger.error
38
-
39
- self.zep = None
40
- # Initialize Zep
41
- if zep_api_key:
42
- self.zep = AsyncZepCloud(api_key=zep_api_key)
43
-
44
- async def store(self, user_id: str, messages: List[Dict[str, Any]]) -> None:
45
- """Store messages in both Zep and MongoDB."""
46
- if not user_id:
47
- raise ValueError("User ID cannot be None or empty")
48
- if not messages or not isinstance(messages, list):
49
- raise ValueError("Messages must be a non-empty list")
50
- if not all(
51
- isinstance(msg, dict) and "role" in msg and "content" in msg
52
- for msg in messages
53
- ):
54
- raise ValueError(
55
- "All messages must be dictionaries with 'role' and 'content' keys"
56
- )
57
- for msg in messages:
58
- if msg["role"] not in ["user", "assistant"]:
59
- raise ValueError(
60
- f"Invalid role '{msg['role']}' in message. Only 'user' and 'assistant' roles are accepted."
61
- )
62
-
63
- # Store in MongoDB
64
- if self.mongo and len(messages) >= 2:
65
- try:
66
- # Get last user and assistant messages
67
- user_msg = None
68
- assistant_msg = None
69
- for msg in reversed(messages):
70
- if msg.get("role") == "user" and not user_msg:
71
- user_msg = msg.get("content")
72
- elif msg.get("role") == "assistant" and not assistant_msg:
73
- assistant_msg = msg.get("content")
74
- if user_msg and assistant_msg:
75
- break
76
-
77
- if user_msg and assistant_msg:
78
- # Store truncated messages
79
- doc = {
80
- "user_id": user_id,
81
- "user_message": user_msg,
82
- "assistant_message": assistant_msg,
83
- "timestamp": datetime.now(timezone.utc),
84
- }
85
- self.mongo.insert_one(self.collection, doc)
86
- except Exception as e:
87
- logger.error(f"MongoDB storage error: {e}") # Use logger.error
88
-
89
- # Store in Zep
90
- if not self.zep:
91
- return
92
-
93
- # Convert messages to Zep format
94
- zep_messages = []
95
- for msg in messages:
96
- if "role" in msg and "content" in msg:
97
- content = self._truncate(deepcopy(msg["content"]))
98
- zep_msg = Message(
99
- role=msg["role"],
100
- content=content,
101
- role_type=msg["role"],
102
- )
103
- zep_messages.append(zep_msg)
104
-
105
- # Add messages to Zep memory
106
- if zep_messages:
107
- try:
108
- await self.zep.memory.add(session_id=user_id, messages=zep_messages)
109
- except Exception:
110
- try:
111
- try:
112
- await self.zep.user.add(user_id=user_id)
113
- except Exception as e:
114
- logger.error(
115
- f"Zep user addition error: {e}"
116
- ) # Use logger.error
117
-
118
- try:
119
- await self.zep.memory.add_session(
120
- session_id=user_id, user_id=user_id
121
- )
122
- except Exception as e:
123
- logger.error(
124
- f"Zep session creation error: {e}"
125
- ) # Use logger.error
126
- await self.zep.memory.add(session_id=user_id, messages=zep_messages)
127
- except Exception as e:
128
- logger.error(f"Zep memory addition error: {e}") # Use logger.error
129
- return
130
-
131
- async def retrieve(self, user_id: str) -> str:
132
- """Retrieve memory context from Zep."""
133
- try:
134
- memories = ""
135
- if self.zep:
136
- memory = await self.zep.memory.get(session_id=user_id)
137
- if memory and memory.context:
138
- memories = memory.context
139
-
140
- return memories
141
-
142
- except Exception as e:
143
- logger.error(f"Error retrieving memories: {e}") # Use logger.error
144
- return ""
145
-
146
- async def delete(self, user_id: str) -> None:
147
- """Delete memory from both systems."""
148
- if self.mongo:
149
- try:
150
- self.mongo.delete_all(self.collection, {"user_id": user_id})
151
- except Exception as e:
152
- logger.error(f"MongoDB deletion error: {e}") # Use logger.error
153
-
154
- if not self.zep:
155
- return
156
-
157
- try:
158
- await self.zep.memory.delete(session_id=user_id)
159
- except Exception as e:
160
- logger.error(f"Zep memory deletion error: {e}") # Use logger.error
161
-
162
- try:
163
- await self.zep.user.delete(user_id=user_id)
164
- except Exception as e:
165
- logger.error(f"Zep user deletion error: {e}") # Use logger.error
166
-
167
- def find(
168
- self,
169
- collection: str,
170
- query: Dict,
171
- sort: Optional[List[Tuple]] = None,
172
- limit: int = 0,
173
- skip: int = 0,
174
- ) -> List[Dict]: # pragma: no cover
175
- """Find documents in MongoDB."""
176
- if not self.mongo:
177
- return []
178
-
179
- try:
180
- return self.mongo.find(collection, query, sort=sort, limit=limit, skip=skip)
181
- except Exception as e:
182
- logger.error(f"MongoDB find error: {e}") # Use logger.error
183
- return []
184
-
185
- def count_documents(self, collection: str, query: Dict) -> int:
186
- """Count documents in MongoDB."""
187
- if not self.mongo:
188
- return 0
189
- return self.mongo.count_documents(collection, query)
190
-
191
- def _truncate(self, text: str, limit: int = 2500) -> str:
192
- """Truncate text to be within limits."""
193
- if text is None:
194
- raise AttributeError("Cannot truncate None text")
195
-
196
- if not text:
197
- return ""
198
-
199
- if len(text) <= limit:
200
- return text
201
-
202
- # Try to truncate at last period before limit
203
- last_period = text.rfind(".", 0, limit)
204
- if last_period > 0:
205
- return text[: last_period + 1]
206
-
207
- # If no period found, truncate at limit and add ellipsis
208
- return text[: limit - 3] + "..."
File without changes