snowflake-ml-python 1.9.2__tar.gz → 1.11.0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (450) hide show
  1. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/CHANGELOG.md +522 -490
  2. {snowflake_ml_python-1.9.2/snowflake_ml_python.egg-info → snowflake_ml_python-1.11.0}/PKG-INFO +523 -491
  3. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/_internal/utils/service_logger.py +31 -17
  4. snowflake_ml_python-1.11.0/snowflake/ml/experiment/callback/keras.py +63 -0
  5. snowflake_ml_python-1.11.0/snowflake/ml/experiment/callback/lightgbm.py +59 -0
  6. snowflake_ml_python-1.11.0/snowflake/ml/experiment/callback/xgboost.py +67 -0
  7. snowflake_ml_python-1.11.0/snowflake/ml/experiment/utils.py +14 -0
  8. snowflake_ml_python-1.11.0/snowflake/ml/jobs/_utils/__init__.py +0 -0
  9. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/jobs/_utils/constants.py +4 -1
  10. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/jobs/_utils/payload_utils.py +55 -21
  11. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/jobs/_utils/query_helper.py +5 -1
  12. snowflake_ml_python-1.11.0/snowflake/ml/jobs/_utils/runtime_env_utils.py +63 -0
  13. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/jobs/_utils/scripts/get_instance_ip.py +2 -2
  14. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/jobs/_utils/scripts/mljob_launcher.py +5 -5
  15. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/jobs/_utils/spec_utils.py +41 -8
  16. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/jobs/_utils/stage_utils.py +22 -9
  17. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/jobs/_utils/types.py +5 -7
  18. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/jobs/job.py +1 -1
  19. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/jobs/manager.py +1 -13
  20. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/model/_client/model/model_version_impl.py +219 -55
  21. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/model/_client/ops/service_ops.py +230 -30
  22. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/model/_client/service/model_deployment_spec.py +103 -27
  23. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/model/_client/service/model_deployment_spec_schema.py +11 -5
  24. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/model/_model_composer/model_composer.py +1 -70
  25. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +2 -43
  26. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/model/event_handler.py +87 -18
  27. snowflake_ml_python-1.11.0/snowflake/ml/model/inference_engine.py +5 -0
  28. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/model/models/huggingface_pipeline.py +74 -51
  29. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/model/type_hints.py +26 -1
  30. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/registry/_manager/model_manager.py +37 -70
  31. snowflake_ml_python-1.11.0/snowflake/ml/registry/_manager/model_parameter_reconciler.py +294 -0
  32. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/registry/registry.py +0 -19
  33. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/version.py +1 -1
  34. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0/snowflake_ml_python.egg-info}/PKG-INFO +523 -491
  35. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake_ml_python.egg-info/SOURCES.txt +8 -1
  36. snowflake_ml_python-1.9.2/snowflake/ml/experiment/callback.py +0 -121
  37. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/LICENSE.txt +0 -0
  38. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/README.md +0 -0
  39. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/pyproject.toml +0 -0
  40. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/setup.cfg +0 -0
  41. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/cortex/__init__.py +0 -0
  42. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/cortex/_classify_text.py +0 -0
  43. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/cortex/_complete.py +0 -0
  44. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/cortex/_embed_text_1024.py +0 -0
  45. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/cortex/_embed_text_768.py +0 -0
  46. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/cortex/_extract_answer.py +0 -0
  47. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/cortex/_finetune.py +0 -0
  48. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/cortex/_sentiment.py +0 -0
  49. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/cortex/_sse_client.py +0 -0
  50. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/cortex/_summarize.py +0 -0
  51. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/cortex/_translate.py +0 -0
  52. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/cortex/_util.py +0 -0
  53. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/_internal/env.py +0 -0
  54. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/_internal/env_utils.py +0 -0
  55. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/_internal/exceptions/dataset_error_messages.py +0 -0
  56. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/_internal/exceptions/dataset_errors.py +0 -0
  57. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/_internal/exceptions/error_codes.py +0 -0
  58. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/_internal/exceptions/error_messages.py +0 -0
  59. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/_internal/exceptions/exceptions.py +0 -0
  60. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/_internal/exceptions/fileset_error_messages.py +0 -0
  61. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/_internal/exceptions/fileset_errors.py +0 -0
  62. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/_internal/exceptions/modeling_error_messages.py +0 -0
  63. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/_internal/exceptions/sql_error_codes.py +0 -0
  64. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/_internal/file_utils.py +0 -0
  65. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/_internal/human_readable_id/adjectives.txt +0 -0
  66. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/_internal/human_readable_id/animals.txt +0 -0
  67. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/_internal/human_readable_id/hrid_generator.py +0 -0
  68. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +0 -0
  69. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/_internal/init_utils.py +0 -0
  70. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/_internal/lineage/lineage_utils.py +0 -0
  71. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/_internal/migrator_utils.py +0 -0
  72. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/_internal/platform_capabilities.py +0 -0
  73. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/_internal/relax_version_strategy.py +0 -0
  74. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/_internal/telemetry.py +0 -0
  75. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/_internal/type_utils.py +0 -0
  76. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/_internal/utils/connection_params.py +0 -0
  77. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/_internal/utils/db_utils.py +0 -0
  78. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/_internal/utils/formatting.py +0 -0
  79. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/_internal/utils/identifier.py +0 -0
  80. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/_internal/utils/import_utils.py +0 -0
  81. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/_internal/utils/jwt_generator.py +0 -0
  82. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/_internal/utils/mixins.py +0 -0
  83. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/_internal/utils/parallelize.py +0 -0
  84. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/_internal/utils/pkg_version_utils.py +0 -0
  85. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/_internal/utils/query_result_checker.py +0 -0
  86. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/_internal/utils/result.py +0 -0
  87. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/_internal/utils/snowflake_env.py +0 -0
  88. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/_internal/utils/snowpark_dataframe_utils.py +0 -0
  89. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/_internal/utils/sql_identifier.py +0 -0
  90. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/_internal/utils/table_manager.py +0 -0
  91. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/_internal/utils/temp_file_utils.py +0 -0
  92. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/data/__init__.py +0 -0
  93. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/data/_internal/arrow_ingestor.py +0 -0
  94. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/data/data_connector.py +0 -0
  95. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/data/data_ingestor.py +0 -0
  96. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/data/data_source.py +0 -0
  97. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/data/ingestor_utils.py +0 -0
  98. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/data/torch_utils.py +0 -0
  99. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/dataset/__init__.py +0 -0
  100. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/dataset/dataset.py +0 -0
  101. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/dataset/dataset_factory.py +0 -0
  102. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/dataset/dataset_metadata.py +0 -0
  103. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/dataset/dataset_reader.py +0 -0
  104. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/experiment/__init__.py +0 -0
  105. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/experiment/_client/experiment_tracking_sql_client.py +0 -0
  106. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/experiment/_entities/__init__.py +0 -0
  107. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/experiment/_entities/experiment.py +0 -0
  108. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/experiment/_entities/run.py +0 -0
  109. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/experiment/_entities/run_metadata.py +0 -0
  110. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/experiment/_experiment_info.py +0 -0
  111. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/experiment/experiment_tracking.py +0 -0
  112. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/feature_store/__init__.py +0 -0
  113. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/feature_store/access_manager.py +0 -0
  114. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/feature_store/entity.py +0 -0
  115. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/feature_store/examples/airline_features/entities.py +0 -0
  116. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/feature_store/examples/airline_features/features/plane_features.py +0 -0
  117. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/feature_store/examples/airline_features/features/weather_features.py +0 -0
  118. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/feature_store/examples/airline_features/source.yaml +0 -0
  119. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/feature_store/examples/citibike_trip_features/entities.py +0 -0
  120. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/feature_store/examples/citibike_trip_features/features/station_feature.py +0 -0
  121. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/feature_store/examples/citibike_trip_features/features/trip_feature.py +0 -0
  122. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/feature_store/examples/citibike_trip_features/source.yaml +0 -0
  123. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/feature_store/examples/example_helper.py +0 -0
  124. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/feature_store/examples/new_york_taxi_features/entities.py +0 -0
  125. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/feature_store/examples/new_york_taxi_features/features/location_features.py +0 -0
  126. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/feature_store/examples/new_york_taxi_features/features/trip_features.py +0 -0
  127. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/feature_store/examples/new_york_taxi_features/source.yaml +0 -0
  128. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/feature_store/examples/source_data/airline.yaml +0 -0
  129. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/feature_store/examples/source_data/citibike_trips.yaml +0 -0
  130. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/feature_store/examples/source_data/fraud_transactions.yaml +0 -0
  131. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/feature_store/examples/source_data/nyc_yellow_trips.yaml +0 -0
  132. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/feature_store/examples/source_data/winequality_red.yaml +0 -0
  133. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/feature_store/examples/wine_quality_features/entities.py +0 -0
  134. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/feature_store/examples/wine_quality_features/features/managed_wine_features.py +0 -0
  135. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/feature_store/examples/wine_quality_features/features/static_wine_features.py +0 -0
  136. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/feature_store/examples/wine_quality_features/source.yaml +0 -0
  137. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/feature_store/feature_store.py +0 -0
  138. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/feature_store/feature_view.py +0 -0
  139. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/fileset/embedded_stage_fs.py +0 -0
  140. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/fileset/fileset.py +0 -0
  141. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/fileset/sfcfs.py +0 -0
  142. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/fileset/snowfs.py +0 -0
  143. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/fileset/stage_fs.py +0 -0
  144. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/jobs/__init__.py +0 -0
  145. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/jobs/_utils/function_payload_utils.py +0 -0
  146. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/jobs/_utils/interop_utils.py +0 -0
  147. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/jobs/_utils/scripts/constants.py +0 -0
  148. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/jobs/_utils/scripts/signal_workers.py +0 -0
  149. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/jobs/_utils/scripts/worker_shutdown_listener.py +0 -0
  150. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/jobs/decorators.py +0 -0
  151. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/lineage/__init__.py +0 -0
  152. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/lineage/lineage_node.py +0 -0
  153. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/model/__init__.py +0 -0
  154. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/model/_client/model/model_impl.py +0 -0
  155. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/model/_client/ops/metadata_ops.py +0 -0
  156. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/model/_client/ops/model_ops.py +0 -0
  157. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/model/_client/sql/_base.py +0 -0
  158. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/model/_client/sql/model.py +0 -0
  159. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/model/_client/sql/model_version.py +0 -0
  160. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/model/_client/sql/service.py +0 -0
  161. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/model/_client/sql/stage.py +0 -0
  162. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/model/_client/sql/tag.py +0 -0
  163. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +0 -0
  164. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/model/_model_composer/model_method/constants.py +0 -0
  165. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/model/_model_composer/model_method/function_generator.py +0 -0
  166. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/model/_model_composer/model_method/infer_function.py_template +0 -0
  167. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/model/_model_composer/model_method/infer_partitioned.py_template +0 -0
  168. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +0 -0
  169. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/model/_model_composer/model_method/model_method.py +0 -0
  170. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/model/_model_composer/model_user_file/model_user_file.py +0 -0
  171. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/model/_packager/model_env/model_env.py +0 -0
  172. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/model/_packager/model_handler.py +0 -0
  173. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/model/_packager/model_handlers/_base.py +0 -0
  174. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/model/_packager/model_handlers/_utils.py +0 -0
  175. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/model/_packager/model_handlers/catboost.py +0 -0
  176. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/model/_packager/model_handlers/custom.py +0 -0
  177. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +0 -0
  178. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/model/_packager/model_handlers/keras.py +0 -0
  179. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/model/_packager/model_handlers/lightgbm.py +0 -0
  180. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/model/_packager/model_handlers/mlflow.py +0 -0
  181. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/model/_packager/model_handlers/pytorch.py +0 -0
  182. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/model/_packager/model_handlers/sentence_transformers.py +0 -0
  183. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/model/_packager/model_handlers/sklearn.py +0 -0
  184. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +0 -0
  185. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/model/_packager/model_handlers/tensorflow.py +0 -0
  186. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/model/_packager/model_handlers/torchscript.py +0 -0
  187. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/model/_packager/model_handlers/xgboost.py +0 -0
  188. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/model/_packager/model_handlers_migrator/base_migrator.py +0 -0
  189. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/model/_packager/model_handlers_migrator/pytorch_migrator_2023_12_01.py +0 -0
  190. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/model/_packager/model_handlers_migrator/tensorflow_migrator_2023_12_01.py +0 -0
  191. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/model/_packager/model_handlers_migrator/tensorflow_migrator_2025_01_01.py +0 -0
  192. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/model/_packager/model_handlers_migrator/torchscript_migrator_2023_12_01.py +0 -0
  193. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/model/_packager/model_meta/model_blob_meta.py +0 -0
  194. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/model/_packager/model_meta/model_meta.py +0 -0
  195. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/model/_packager/model_meta/model_meta_schema.py +0 -0
  196. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/model/_packager/model_meta_migrator/base_migrator.py +0 -0
  197. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +0 -0
  198. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/model/_packager/model_meta_migrator/migrator_v1.py +0 -0
  199. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/model/_packager/model_packager.py +0 -0
  200. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py +0 -0
  201. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/model/_packager/model_runtime/model_runtime.py +0 -0
  202. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/model/_packager/model_task/model_task_utils.py +0 -0
  203. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/model/_signatures/base_handler.py +0 -0
  204. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/model/_signatures/builtins_handler.py +0 -0
  205. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/model/_signatures/core.py +0 -0
  206. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/model/_signatures/dmatrix_handler.py +0 -0
  207. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/model/_signatures/numpy_handler.py +0 -0
  208. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/model/_signatures/pandas_handler.py +0 -0
  209. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/model/_signatures/pytorch_handler.py +0 -0
  210. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/model/_signatures/snowpark_handler.py +0 -0
  211. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/model/_signatures/tensorflow_handler.py +0 -0
  212. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/model/_signatures/utils.py +0 -0
  213. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/model/custom_model.py +0 -0
  214. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/model/model_signature.py +0 -0
  215. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/model/target_platform.py +0 -0
  216. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/model/task.py +0 -0
  217. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/_internal/estimator_utils.py +0 -0
  218. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +0 -0
  219. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +0 -0
  220. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/_internal/model_specifications.py +0 -0
  221. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/_internal/model_trainer.py +0 -0
  222. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/_internal/model_trainer_builder.py +0 -0
  223. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/_internal/model_transformer_builder.py +0 -0
  224. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +0 -0
  225. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/_internal/snowpark_implementations/distributed_search_udf_file.py +0 -0
  226. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +0 -0
  227. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +0 -0
  228. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/_internal/snowpark_implementations/xgboost_external_memory_trainer.py +0 -0
  229. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/_internal/transformer_protocols.py +0 -0
  230. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/calibration/__init__.py +0 -0
  231. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +0 -0
  232. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/cluster/__init__.py +0 -0
  233. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/cluster/affinity_propagation.py +0 -0
  234. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/cluster/agglomerative_clustering.py +0 -0
  235. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/cluster/birch.py +0 -0
  236. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/cluster/bisecting_k_means.py +0 -0
  237. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/cluster/dbscan.py +0 -0
  238. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/cluster/feature_agglomeration.py +0 -0
  239. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/cluster/k_means.py +0 -0
  240. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/cluster/mean_shift.py +0 -0
  241. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/cluster/mini_batch_k_means.py +0 -0
  242. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/cluster/optics.py +0 -0
  243. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/cluster/spectral_biclustering.py +0 -0
  244. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/cluster/spectral_clustering.py +0 -0
  245. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/cluster/spectral_coclustering.py +0 -0
  246. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/compose/__init__.py +0 -0
  247. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/compose/column_transformer.py +0 -0
  248. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/compose/transformed_target_regressor.py +0 -0
  249. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/covariance/__init__.py +0 -0
  250. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/covariance/elliptic_envelope.py +0 -0
  251. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/covariance/empirical_covariance.py +0 -0
  252. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/covariance/graphical_lasso.py +0 -0
  253. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/covariance/graphical_lasso_cv.py +0 -0
  254. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/covariance/ledoit_wolf.py +0 -0
  255. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/covariance/min_cov_det.py +0 -0
  256. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/covariance/oas.py +0 -0
  257. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/covariance/shrunk_covariance.py +0 -0
  258. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/decomposition/__init__.py +0 -0
  259. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/decomposition/dictionary_learning.py +0 -0
  260. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/decomposition/factor_analysis.py +0 -0
  261. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/decomposition/fast_ica.py +0 -0
  262. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/decomposition/incremental_pca.py +0 -0
  263. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/decomposition/kernel_pca.py +0 -0
  264. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +0 -0
  265. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +0 -0
  266. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/decomposition/pca.py +0 -0
  267. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/decomposition/sparse_pca.py +0 -0
  268. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/decomposition/truncated_svd.py +0 -0
  269. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/discriminant_analysis/__init__.py +0 -0
  270. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +0 -0
  271. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +0 -0
  272. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/ensemble/__init__.py +0 -0
  273. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/ensemble/ada_boost_classifier.py +0 -0
  274. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/ensemble/ada_boost_regressor.py +0 -0
  275. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/ensemble/bagging_classifier.py +0 -0
  276. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/ensemble/bagging_regressor.py +0 -0
  277. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/ensemble/extra_trees_classifier.py +0 -0
  278. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/ensemble/extra_trees_regressor.py +0 -0
  279. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +0 -0
  280. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +0 -0
  281. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +0 -0
  282. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +0 -0
  283. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/ensemble/isolation_forest.py +0 -0
  284. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/ensemble/random_forest_classifier.py +0 -0
  285. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/ensemble/random_forest_regressor.py +0 -0
  286. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/ensemble/stacking_regressor.py +0 -0
  287. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/ensemble/voting_classifier.py +0 -0
  288. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/ensemble/voting_regressor.py +0 -0
  289. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/feature_selection/__init__.py +0 -0
  290. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/feature_selection/generic_univariate_select.py +0 -0
  291. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/feature_selection/select_fdr.py +0 -0
  292. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/feature_selection/select_fpr.py +0 -0
  293. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/feature_selection/select_fwe.py +0 -0
  294. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/feature_selection/select_k_best.py +0 -0
  295. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/feature_selection/select_percentile.py +0 -0
  296. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +0 -0
  297. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/feature_selection/variance_threshold.py +0 -0
  298. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/framework/_utils.py +0 -0
  299. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/framework/base.py +0 -0
  300. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/gaussian_process/__init__.py +0 -0
  301. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +0 -0
  302. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +0 -0
  303. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/impute/__init__.py +0 -0
  304. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/impute/iterative_imputer.py +0 -0
  305. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/impute/knn_imputer.py +0 -0
  306. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/impute/missing_indicator.py +0 -0
  307. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/impute/simple_imputer.py +0 -0
  308. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/kernel_approximation/__init__.py +0 -0
  309. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +0 -0
  310. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/kernel_approximation/nystroem.py +0 -0
  311. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +0 -0
  312. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +0 -0
  313. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +0 -0
  314. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/kernel_ridge/__init__.py +0 -0
  315. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +0 -0
  316. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/lightgbm/__init__.py +0 -0
  317. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/lightgbm/lgbm_classifier.py +0 -0
  318. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/lightgbm/lgbm_regressor.py +0 -0
  319. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/linear_model/__init__.py +0 -0
  320. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/linear_model/ard_regression.py +0 -0
  321. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/linear_model/bayesian_ridge.py +0 -0
  322. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/linear_model/elastic_net.py +0 -0
  323. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/linear_model/elastic_net_cv.py +0 -0
  324. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/linear_model/gamma_regressor.py +0 -0
  325. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/linear_model/huber_regressor.py +0 -0
  326. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/linear_model/lars.py +0 -0
  327. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/linear_model/lars_cv.py +0 -0
  328. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/linear_model/lasso.py +0 -0
  329. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/linear_model/lasso_cv.py +0 -0
  330. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/linear_model/lasso_lars.py +0 -0
  331. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/linear_model/lasso_lars_cv.py +0 -0
  332. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/linear_model/lasso_lars_ic.py +0 -0
  333. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/linear_model/linear_regression.py +0 -0
  334. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/linear_model/logistic_regression.py +0 -0
  335. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/linear_model/logistic_regression_cv.py +0 -0
  336. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +0 -0
  337. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +0 -0
  338. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/linear_model/multi_task_lasso.py +0 -0
  339. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +0 -0
  340. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +0 -0
  341. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +0 -0
  342. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +0 -0
  343. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/linear_model/perceptron.py +0 -0
  344. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/linear_model/poisson_regressor.py +0 -0
  345. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/linear_model/ransac_regressor.py +0 -0
  346. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/linear_model/ridge.py +0 -0
  347. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/linear_model/ridge_classifier.py +0 -0
  348. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +0 -0
  349. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/linear_model/ridge_cv.py +0 -0
  350. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/linear_model/sgd_classifier.py +0 -0
  351. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +0 -0
  352. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/linear_model/sgd_regressor.py +0 -0
  353. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/linear_model/theil_sen_regressor.py +0 -0
  354. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/linear_model/tweedie_regressor.py +0 -0
  355. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/manifold/__init__.py +0 -0
  356. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/manifold/isomap.py +0 -0
  357. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/manifold/mds.py +0 -0
  358. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/manifold/spectral_embedding.py +0 -0
  359. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/manifold/tsne.py +0 -0
  360. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/metrics/__init__.py +0 -0
  361. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/metrics/classification.py +0 -0
  362. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/metrics/correlation.py +0 -0
  363. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/metrics/covariance.py +0 -0
  364. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/metrics/metrics_utils.py +0 -0
  365. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/metrics/ranking.py +0 -0
  366. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/metrics/regression.py +0 -0
  367. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/mixture/__init__.py +0 -0
  368. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +0 -0
  369. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/mixture/gaussian_mixture.py +0 -0
  370. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/model_selection/__init__.py +0 -0
  371. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/model_selection/grid_search_cv.py +0 -0
  372. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/model_selection/randomized_search_cv.py +0 -0
  373. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/multiclass/__init__.py +0 -0
  374. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +0 -0
  375. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +0 -0
  376. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/multiclass/output_code_classifier.py +0 -0
  377. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/naive_bayes/__init__.py +0 -0
  378. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +0 -0
  379. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/naive_bayes/categorical_nb.py +0 -0
  380. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/naive_bayes/complement_nb.py +0 -0
  381. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/naive_bayes/gaussian_nb.py +0 -0
  382. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/naive_bayes/multinomial_nb.py +0 -0
  383. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/neighbors/__init__.py +0 -0
  384. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +0 -0
  385. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +0 -0
  386. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/neighbors/kernel_density.py +0 -0
  387. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/neighbors/local_outlier_factor.py +0 -0
  388. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/neighbors/nearest_centroid.py +0 -0
  389. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/neighbors/nearest_neighbors.py +0 -0
  390. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +0 -0
  391. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +0 -0
  392. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +0 -0
  393. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/neural_network/__init__.py +0 -0
  394. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/neural_network/bernoulli_rbm.py +0 -0
  395. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/neural_network/mlp_classifier.py +0 -0
  396. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/neural_network/mlp_regressor.py +0 -0
  397. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/parameters/disable_distributed_hpo.py +0 -0
  398. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/parameters/disable_model_tracer.py +0 -0
  399. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/parameters/enable_anonymous_sproc.py +0 -0
  400. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/pipeline/__init__.py +0 -0
  401. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/pipeline/pipeline.py +0 -0
  402. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/preprocessing/__init__.py +0 -0
  403. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/preprocessing/binarizer.py +0 -0
  404. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -0
  405. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/preprocessing/label_encoder.py +0 -0
  406. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/preprocessing/max_abs_scaler.py +0 -0
  407. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/preprocessing/min_max_scaler.py +0 -0
  408. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/preprocessing/normalizer.py +0 -0
  409. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/preprocessing/one_hot_encoder.py +0 -0
  410. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/preprocessing/ordinal_encoder.py +0 -0
  411. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/preprocessing/polynomial_features.py +0 -0
  412. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/preprocessing/robust_scaler.py +0 -0
  413. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/preprocessing/standard_scaler.py +0 -0
  414. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/semi_supervised/__init__.py +0 -0
  415. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/semi_supervised/label_propagation.py +0 -0
  416. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/semi_supervised/label_spreading.py +0 -0
  417. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/svm/__init__.py +0 -0
  418. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/svm/linear_svc.py +0 -0
  419. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/svm/linear_svr.py +0 -0
  420. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/svm/nu_svc.py +0 -0
  421. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/svm/nu_svr.py +0 -0
  422. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/svm/svc.py +0 -0
  423. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/svm/svr.py +0 -0
  424. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/tree/__init__.py +0 -0
  425. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/tree/decision_tree_classifier.py +0 -0
  426. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/tree/decision_tree_regressor.py +0 -0
  427. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/tree/extra_tree_classifier.py +0 -0
  428. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/tree/extra_tree_regressor.py +0 -0
  429. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/xgboost/__init__.py +0 -0
  430. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/xgboost/xgb_classifier.py +0 -0
  431. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/xgboost/xgb_regressor.py +0 -0
  432. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/xgboost/xgbrf_classifier.py +0 -0
  433. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/modeling/xgboost/xgbrf_regressor.py +0 -0
  434. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/monitoring/_client/model_monitor_sql_client.py +0 -0
  435. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/monitoring/_client/queries/record_count.ssql +0 -0
  436. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/monitoring/_client/queries/rmse.ssql +0 -0
  437. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/monitoring/_manager/model_monitor_manager.py +0 -0
  438. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/monitoring/entities/model_monitor_config.py +0 -0
  439. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/monitoring/explain_visualize.py +0 -0
  440. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/monitoring/model_monitor.py +0 -0
  441. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/monitoring/shap.py +0 -0
  442. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/registry/__init__.py +0 -0
  443. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/utils/authentication.py +0 -0
  444. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/utils/connection_params.py +0 -0
  445. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/utils/html_utils.py +0 -0
  446. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/utils/sparse.py +0 -0
  447. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake/ml/utils/sql_client.py +0 -0
  448. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake_ml_python.egg-info/dependency_links.txt +0 -0
  449. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake_ml_python.egg-info/requires.txt +0 -0
  450. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.11.0}/snowflake_ml_python.egg-info/top_level.txt +0 -0
@@ -1,15 +1,47 @@
1
1
  # Release History
2
2
 
3
+ ## 1.11.0
4
+
5
+ ### Bug Fixes
6
+
7
+ * ML Job: Fix `Error: Unable to retrieve head IP address` if not all instances start within the timeout.
8
+ * ML Job: Fix `TypeError: SnowflakeCursor.execute() got an unexpected keyword argument '_force_qmark_paramstyle'`
9
+ when running inside Stored Procedures.
10
+
11
+ ### Behavior Changes
12
+
13
+ ### New Features
14
+
15
+ * `ModelVersion.create_service()`: Made `image_repo` argument optional. By
16
+ default it will use a default image repo, which is
17
+ being rolled out in server version 9.22+.
18
+ * Experiment Tracking (PrPr): Automatically log the model, metrics, and parameters while training Keras models with
19
+ `snowflake.ml.experiment.callback.keras.SnowflakeKerasCallback`.
20
+
21
+ ## 1.10.0
22
+
23
+ ### Behavior Changes
24
+
25
+ * Experiment Tracking (PrPr): The import paths for the auto-logging callbacks have changed to
26
+ `snowflake.ml.experiment.callback.xgboost.SnowflakeXgboostCallback` and
27
+ `snowflake.ml.experiment.callback.lightgbm.SnowflakeLightgbmCallback`.
28
+
29
+ ### New Features
30
+
31
+ * Registry: add progress bars for `ModelVersion.create_service` and `ModelVersion.log_model`.
32
+ * ModelRegistry: Logs emitted during `ModelVersion.create_service` will be written to a file. The file location
33
+ will be shown in the console.
34
+
3
35
  ## 1.9.2
4
36
 
5
37
  ### Bug Fixes
6
38
 
7
- - DataConnector: Fix `self._session` related errors inside Container Runtime.
8
- - Registry: Fix a bug when trying to pass `None` to array (`pd.dtype('O')`) in signature and pandas data handler.
39
+ * DataConnector: Fix `self._session` related errors inside Container Runtime.
40
+ * Registry: Fix a bug when trying to pass `None` to array (`pd.dtype('O')`) in signature and pandas data handler.
9
41
 
10
42
  ### New Features
11
43
 
12
- - Experiment Tracking (PrPr): Automatically log the model, metrics, and parameters while training
44
+ * Experiment Tracking (PrPr): Automatically log the model, metrics, and parameters while training
13
45
  XGBoost and LightGBM models.
14
46
 
15
47
  ```python
@@ -41,14 +73,14 @@ with exp.start_run():
41
73
 
42
74
  ### Bug Fixes
43
75
 
44
- - Registry: Fix a bug when trying to set the PAD token the HuggingFace `text-generation` model had multiple EOS tokens.
76
+ * Registry: Fix a bug when trying to set the PAD token the HuggingFace `text-generation` model had multiple EOS tokens.
45
77
  The handler picks the first EOS token as PAD token now.
46
78
 
47
79
  ### New Features
48
80
 
49
- - DataConnector: DataConnector objects can now be pickled
50
- - Dataset: Dataset objects can now be pickled
51
- - Registry (PrPr): Introducing `create_service` function in `snowflake/ml/model/models/huggingface_pipeline.py`
81
+ * DataConnector: DataConnector objects can now be pickled
82
+ * Dataset: Dataset objects can now be pickled
83
+ * Registry (PrPr): Introducing `create_service` function in `snowflake/ml/model/models/huggingface_pipeline.py`
52
84
  which creates a service to log a HF model and upon successful logging, an inference service is created.
53
85
 
54
86
  ```python
@@ -69,7 +101,7 @@ hf_model_ref.create_service(
69
101
  )
70
102
  ```
71
103
 
72
- - Experiment Tracking (PrPr): New module for managing and tracking ML experiments in Snowflake.
104
+ * Experiment Tracking (PrPr): New module for managing and tracking ML experiments in Snowflake.
73
105
 
74
106
  ```python
75
107
  from snowflake.ml.experiment import ExperimentTracking
@@ -84,16 +116,16 @@ with exp.start_run():
84
116
  exp.log_model(my_model, model_name="MY_MODEL")
85
117
  ```
86
118
 
87
- - Registry: Added support for wide input (500+ features) for inference done using SPCS
119
+ * Registry: Added support for wide input (500+ features) for inference done using SPCS
88
120
 
89
121
  ## 1.9.0
90
122
 
91
123
  ### Bug Fixes
92
124
 
93
- - Registry: Fixed bug causing snowpark to pandas dataframe conversion to fail when `QUOTED_IDENTIFIERS_IGNORE_CASE`
125
+ * Registry: Fixed bug causing snowpark to pandas dataframe conversion to fail when `QUOTED_IDENTIFIERS_IGNORE_CASE`
94
126
  parameter is enabled
95
- - Registry: Fixed duplicate UserWarning logs during model packaging
96
- - Registry: If the huggingface pipeline text-generation model doesn't contain a default chat template, a ChatML template
127
+ * Registry: Fixed duplicate UserWarning logs during model packaging
128
+ * Registry: If the huggingface pipeline text-generation model doesn't contain a default chat template, a ChatML template
97
129
  is assigned to the tokenizer.
98
130
 
99
131
  ```shell
@@ -105,40 +137,40 @@ with exp.start_run():
105
137
  {% endif %}"
106
138
  ```
107
139
 
108
- - Registry: Fixed SQL queries during registry initialization that were forcing warehouse requirement
140
+ * Registry: Fixed SQL queries during registry initialization that were forcing warehouse requirement
109
141
 
110
142
  ### Behavior Changes
111
143
 
112
- - ML Job: The `list_jobs()` API has been modified. The `scope` parameter has been removed,
144
+ * ML Job: The `list_jobs()` API has been modified. The `scope` parameter has been removed,
113
145
  optional `database` and `schema` parameters have been added, the return type has changed
114
146
  from `snowpark.DataFrame` to `pandas.DataFrame`, and the returned columns have been updated
115
147
  to `name`, `status`, `message`, `database_name`, `schema_name`, `owner`, `compute_pool`,
116
148
  `target_instances`, `created_time`, and `completed_time`.
117
- - Registry: Set `relax_version` to false when pip_requirements are specified while logging model
118
- - Registry: UserWarning will now be raised based on specified target_platforms (addresses spurious warnings)
149
+ * Registry: Set `relax_version` to false when pip_requirements are specified while logging model
150
+ * Registry: UserWarning will now be raised based on specified target_platforms (addresses spurious warnings)
119
151
 
120
152
  ### New Features
121
153
 
122
- - Registry: `target_platforms` supports `TargetPlatformMode`: `WAREHOUSE_ONLY`, `SNOWPARK_CONTAINER_SERVICES_ONLY`,
154
+ * Registry: `target_platforms` supports `TargetPlatformMode`: `WAREHOUSE_ONLY`, `SNOWPARK_CONTAINER_SERVICES_ONLY`,
123
155
  or `BOTH_WAREHOUSE_AND_SNOWPARK_CONTAINER_SERVICES`.
124
- - Registry: Introduce `snowflake.ml.model.target_platform.TargetPlatform`, target platform constants, and
156
+ * Registry: Introduce `snowflake.ml.model.target_platform.TargetPlatform`, target platform constants, and
125
157
  `snowflake.ml.model.task.Task`.
126
- - ML Job: Single-node ML Jobs are now in GA. Multi-node support is now in PuPr
127
- - Moved less frequently used job submission parameters to `**kwargs`
128
- - Platform metrics are now enabled by default
129
- - `list_jobs()` behavior changed, see [Behavior Changes](#behavior-changes) for more info
158
+ * ML Job: Single-node ML Jobs are now in GA. Multi-node support is now in PuPr
159
+ * Moved less frequently used job submission parameters to `**kwargs`
160
+ * Platform metrics are now enabled by default
161
+ * `list_jobs()` behavior changed, see [Behavior Changes](#behavior-changes) for more info
130
162
 
131
163
  ## 1.8.6
132
164
 
133
165
  ### Bug Fixes
134
166
 
135
- - Fixed fatal errors from internal telemetry wrappers.
167
+ * Fixed fatal errors from internal telemetry wrappers.
136
168
 
137
169
  ### New Features
138
170
 
139
- - Registry: Add service container info to logs.
140
- - ML Job (PuPr): Add new `submit_from_stage()` API for submitting a payload from an existing stage path.
141
- - ML Job (PuPr): Add support for `snowpark.Session` objects in the argument list of
171
+ * Registry: Add service container info to logs.
172
+ * ML Job (PuPr): Add new `submit_from_stage()` API for submitting a payload from an existing stage path.
173
+ * ML Job (PuPr): Add support for `snowpark.Session` objects in the argument list of
142
174
  `@remote` decorated functions. `Session` object will be injected from context in
143
175
  the job execution environment.
144
176
 
@@ -146,75 +178,75 @@ with exp.start_run():
146
178
 
147
179
  ### Bug Fixes
148
180
 
149
- - Registry: Fixed a bug when listing and deleting container services.
150
- - Registry: Fixed explainability issue with scikit-learn pipelines, skipping explain function creation.
151
- - Explainability: bump minimum streamlit version down to 1.30
152
- - Modeling: Make XGBoost a required dependency (xgboost is not a required dependency in snowflake-ml-python 1.8.4).
181
+ * Registry: Fixed a bug when listing and deleting container services.
182
+ * Registry: Fixed explainability issue with scikit-learn pipelines, skipping explain function creation.
183
+ * Explainability: bump minimum streamlit version down to 1.30
184
+ * Modeling: Make XGBoost a required dependency (xgboost is not a required dependency in snowflake-ml-python 1.8.4).
153
185
 
154
186
  ### Behavior Changes
155
187
 
156
- - ML Job (Multi-node PrPr): Rename argument `num_instances` to `target_instances` in job submission APIs and
188
+ * ML Job (Multi-node PrPr): Rename argument `num_instances` to `target_instances` in job submission APIs and
157
189
  change type from `Optional[int]` to `int`
158
190
 
159
191
  ### New Features
160
192
 
161
- - Registry: No longer checks if the snowflake-ml-python version is available in the Snowflake Conda channel when logging
193
+ * Registry: No longer checks if the snowflake-ml-python version is available in the Snowflake Conda channel when logging
162
194
  an SPCS-only model.
163
- - ML Job (PuPr): Add `min_instances` argument to the job decorator to allow waiting for workers to be ready.
164
- - ML Job (PuPr): Adjust polling behavior to reduce number of SQL calls.
195
+ * ML Job (PuPr): Add `min_instances` argument to the job decorator to allow waiting for workers to be ready.
196
+ * ML Job (PuPr): Adjust polling behavior to reduce number of SQL calls.
165
197
 
166
198
  ### Deprecations
167
199
 
168
- - `SnowflakeLoginOptions` is deprecated and will be removed in a future release.
200
+ * `SnowflakeLoginOptions` is deprecated and will be removed in a future release.
169
201
 
170
202
  ## 1.8.4 (2025-05-12)
171
203
 
172
204
  ### Bug Fixes
173
205
 
174
- - Registry: Default `enable_explainability` to True when the model can be deployed to Warehouse.
175
- - Registry: Add `custom_model.partitioned_api` decorator and deprecate `partitioned_inference_api`.
176
- - Registry: Fixed a bug when logging pytroch and tensorflow models that caused
206
+ * Registry: Default `enable_explainability` to True when the model can be deployed to Warehouse.
207
+ * Registry: Add `custom_model.partitioned_api` decorator and deprecate `partitioned_inference_api`.
208
+ * Registry: Fixed a bug when logging pytroch and tensorflow models that caused
177
209
  `UnboundLocalError: local variable 'multiple_inputs' referenced before assignment`.
178
210
 
179
211
  ### Behavior Changes
180
212
 
181
- - ML Job (PuPr) Updated property `id` to be fully qualified name; Introduced new property `name`
213
+ * ML Job (PuPr) Updated property `id` to be fully qualified name; Introduced new property `name`
182
214
  to represent the ML Job name
183
- - ML Job (PuPr) Modified `list_jobs()` to return ML Job `name` instead of `id`
184
- - Registry: Error in `log_model` if `enable_explainability` is True and model is only deployed to
215
+ * ML Job (PuPr) Modified `list_jobs()` to return ML Job `name` instead of `id`
216
+ * Registry: Error in `log_model` if `enable_explainability` is True and model is only deployed to
185
217
  Snowpark Container Services, instead of just user warning.
186
218
 
187
219
  ### New Features
188
220
 
189
- - ML Job (PuPr): Extend `@remote` function decorator, `submit_file()` and `submit_directory()` to accept `database` and
221
+ * ML Job (PuPr): Extend `@remote` function decorator, `submit_file()` and `submit_directory()` to accept `database` and
190
222
  `schema` parameters
191
- - ML Job (PuPr): Support querying by fully qualified name in `get_job()`
192
- - Explainability: Added visualization functions to `snowflake.ml.monitoring` to plot explanations in notebooks.
193
- - Explainability: Support explain for categorical transforms for sklearn pipeline
194
- - Support categorical type for `xgboost.DMatrix` inputs.
223
+ * ML Job (PuPr): Support querying by fully qualified name in `get_job()`
224
+ * Explainability: Added visualization functions to `snowflake.ml.monitoring` to plot explanations in notebooks.
225
+ * Explainability: Support explain for categorical transforms for sklearn pipeline
226
+ * Support categorical type for `xgboost.DMatrix` inputs.
195
227
 
196
228
  ## 1.8.3
197
229
 
198
230
  ### New Features
199
231
 
200
- - Registry: Default to the runtime cuda version if available when logging a GPU model in Container Runtime.
201
- - ML Job (PuPr): Added `as_list` argument to `MLJob.get_logs()` to enable retrieving logs
232
+ * Registry: Default to the runtime cuda version if available when logging a GPU model in Container Runtime.
233
+ * ML Job (PuPr): Added `as_list` argument to `MLJob.get_logs()` to enable retrieving logs
202
234
  as a list of strings
203
- - Registry: Support `ModelVersion.run_job` to run inference with a single-node Snowpark Container Services job.
204
- - DataConnector: Removed PrPr decorators
205
- - Registry: Default the target platform to warehouse when logging a partitioned model.
235
+ * Registry: Support `ModelVersion.run_job` to run inference with a single-node Snowpark Container Services job.
236
+ * DataConnector: Removed PrPr decorators
237
+ * Registry: Default the target platform to warehouse when logging a partitioned model.
206
238
 
207
239
  ## 1.8.2
208
240
 
209
241
  ### New Features
210
242
 
211
- - ML Job now available as a PuPr feature
212
- - Add ability to retrieve results for `@remote` decorated functions using
243
+ * ML Job now available as a PuPr feature
244
+ * Add ability to retrieve results for `@remote` decorated functions using
213
245
  new `MLJobWithResult.result()` API, which will return the unpickled result
214
246
  or raise an exception if the job execution failed.
215
- - Pre-created Snowpark Session is now available inside job payloads using
247
+ * Pre-created Snowpark Session is now available inside job payloads using
216
248
  `snowflake.snowpark.context.get_active_session()`
217
- - Registry: Introducing `save_location` to `log_model` using the `options` argument.
249
+ * Registry: Introducing `save_location` to `log_model` using the `options` argument.
218
250
  Users can use the `save_location` option to specify a local directory where the model files and configuration are written.
219
251
  This is useful when the default temporary directory has space limitations.
220
252
 
@@ -228,44 +260,44 @@ reg.log_model(
228
260
  )
229
261
  ```
230
262
 
231
- - Registry: Include model dependencies in pip requirements by default when logging in Container Runtime.
232
- - Multi-node ML Job (PrPr): Add `instance_id` argument to `get_logs` and `show_logs` method to support multi node log retrieval
233
- - Multi-node ML Job (PrPr): Add `job.get_instance_status(instance_id=...)` API to support multi node status retrieval
263
+ * Registry: Include model dependencies in pip requirements by default when logging in Container Runtime.
264
+ * Multi-node ML Job (PrPr): Add `instance_id` argument to `get_logs` and `show_logs` method to support multi node log retrieval
265
+ * Multi-node ML Job (PrPr): Add `job.get_instance_status(instance_id=...)` API to support multi node status retrieval
234
266
 
235
267
  ## 1.8.1 (03-26-2025)
236
268
 
237
269
  ### Bug Fixes
238
270
 
239
- - Registry: Fix a bug that caused `unsupported model type` error while logging a sklearn model with `score_samples`
271
+ * Registry: Fix a bug that caused `unsupported model type` error while logging a sklearn model with `score_samples`
240
272
  inference method.
241
- - Registry: Fix a bug that model inference service creation fails on an existing and suspended service.
273
+ * Registry: Fix a bug that model inference service creation fails on an existing and suspended service.
242
274
 
243
275
  ### New Features
244
276
 
245
- - ML Job (PrPr): Update Container Runtime image version to `1.0.1`
246
- - ML Job (PrPr): Add `enable_metrics` argument to job submission APIs to enable publishing service metrics to Event Table.
277
+ * ML Job (PrPr): Update Container Runtime image version to `1.0.1`
278
+ * ML Job (PrPr): Add `enable_metrics` argument to job submission APIs to enable publishing service metrics to Event Table.
247
279
  See [Accessing Event Table service metrics](https://docs.snowflake.com/en/developer-guide/snowpark-container-services/monitoring-services#accessing-event-table-service-metrics)
248
280
  for retrieving published metrics
249
281
  and [Costs of telemetry data collection](https://docs.snowflake.com/en/developer-guide/logging-tracing/logging-tracing-billing)
250
282
  for cost implications.
251
- - Registry: When creating a copy of a `ModelVersion` with `log_model`, raise an exception if unsupported arguments are provided.
283
+ * Registry: When creating a copy of a `ModelVersion` with `log_model`, raise an exception if unsupported arguments are provided.
252
284
 
253
285
  ## 1.8.0 (03-20-2025)
254
286
 
255
287
  ### Bug Fixes
256
288
 
257
- - Modeling: Fix a bug in some metrics that allowed an unsupported version of numpy to be installed
289
+ * Modeling: Fix a bug in some metrics that allowed an unsupported version of numpy to be installed
258
290
  automatically in the stored procedure, resulting in a numpy error on execution
259
- - Registry: Fix a bug that leads to incorrect `Model is does not have _is_inference_api` error message when assigning
291
+ * Registry: Fix a bug that leads to incorrect `Model is does not have _is_inference_api` error message when assigning
260
292
  a supported model as a property of a CustomModel.
261
- - Registry: Fix a bug that inference is not working when models with more than 500 input features
293
+ * Registry: Fix a bug that inference is not working when models with more than 500 input features
262
294
  are deployed to SPCS.
263
295
 
264
296
  ### Behavior Change
265
297
 
266
- - Registry: With FeatureGroupSpec support, auto inferred model signature for `transformers.Pipeline` models have been
298
+ * Registry: With FeatureGroupSpec support, auto inferred model signature for `transformers.Pipeline` models have been
267
299
  updated, including:
268
- - Signature for fill-mask task has been changed from
300
+ * Signature for fill-mask task has been changed from
269
301
 
270
302
  ```python
271
303
  ModelSignature(
@@ -300,7 +332,7 @@ reg.log_model(
300
332
  )
301
333
  ```
302
334
 
303
- - Signature for token-classification task has been changed from
335
+ * Signature for token-classification task has been changed from
304
336
 
305
337
  ```python
306
338
  ModelSignature(
@@ -335,7 +367,7 @@ reg.log_model(
335
367
  )
336
368
  ```
337
369
 
338
- - Signature for question-answering task when top_k is larger than 1 has been changed from
370
+ * Signature for question-answering task when top_k is larger than 1 has been changed from
339
371
 
340
372
  ```python
341
373
  ModelSignature(
@@ -372,7 +404,7 @@ reg.log_model(
372
404
  )
373
405
  ```
374
406
 
375
- - Signature for text-classification task when top_k is `None` has been changed from
407
+ * Signature for text-classification task when top_k is `None` has been changed from
376
408
 
377
409
  ```python
378
410
  ModelSignature(
@@ -401,7 +433,7 @@ reg.log_model(
401
433
  )
402
434
  ```
403
435
 
404
- - Signature for text-classification task when top_k is not `None` has been changed from
436
+ * Signature for text-classification task when top_k is not `None` has been changed from
405
437
 
406
438
  ```python
407
439
  ModelSignature(
@@ -435,7 +467,7 @@ reg.log_model(
435
467
  )
436
468
  ```
437
469
 
438
- - Signature for text-generation task has been changed from
470
+ * Signature for text-generation task has been changed from
439
471
 
440
472
  ```python
441
473
  ModelSignature(
@@ -472,7 +504,7 @@ reg.log_model(
472
504
  )
473
505
  ```
474
506
 
475
- - Registry: PyTorch and TensorFlow models now expect a single tensor input/output by default when logging to Model
507
+ * Registry: PyTorch and TensorFlow models now expect a single tensor input/output by default when logging to Model
476
508
  Registry. To use multiple tensors (previous behavior), set `options={"multiple_inputs": True}`.
477
509
 
478
510
  Example with single tensor input:
@@ -518,130 +550,130 @@ reg.log_model(
518
550
  )
519
551
  ```
520
552
 
521
- - Registry: Default `enable_explainability` to False when the model can be deployed to Snowpark Container Services.
553
+ * Registry: Default `enable_explainability` to False when the model can be deployed to Snowpark Container Services.
522
554
 
523
555
  ### New Features
524
556
 
525
- - Registry: Added support to single `torch.Tensor`, `tensorflow.Tensor` and `tensorflow.Variable` as input or output
557
+ * Registry: Added support to single `torch.Tensor`, `tensorflow.Tensor` and `tensorflow.Variable` as input or output
526
558
  data.
527
- - Registry: Support [`xgboost.DMatrix`](https://xgboost.readthedocs.io/en/stable/python/python_api.html#xgboost.DMatrix)
559
+ * Registry: Support [`xgboost.DMatrix`](https://xgboost.readthedocs.io/en/stable/python/python_api.html#xgboost.DMatrix)
528
560
  datatype for XGBoost models.
529
561
 
530
562
  ## 1.7.5 (03-06-2025)
531
563
 
532
- - Support Python 3.12.
533
- - Explainability: Support native and snowflake.ml.modeling sklearn pipeline
564
+ * Support Python 3.12.
565
+ * Explainability: Support native and snowflake.ml.modeling sklearn pipeline
534
566
 
535
567
  ### Bug Fixes
536
568
 
537
- - Registry: Fixed a compatibility issue when using `snowflake-ml-python` 1.7.0 or greater to save a `tensorflow.keras`
569
+ * Registry: Fixed a compatibility issue when using `snowflake-ml-python` 1.7.0 or greater to save a `tensorflow.keras`
538
570
  model with `keras` 2.x, if `relax_version` is set or default to True, and newer version of `snowflake-ml-python`
539
571
  is available in Snowflake Anaconda Channel, model could not be run in Snowflake. If you have such model, you could
540
572
  use the latest version of `snowflake-ml-python` and call `ModelVersion.load` to load it back, and re-log it.
541
573
  Alternatively, you can prevent this issue by setting `relax_version=False` when saving the model.
542
- - Registry: Removed the validation that disallows data that does not have non-null values being passed to
574
+ * Registry: Removed the validation that disallows data that does not have non-null values being passed to
543
575
  `ModelVersion.run`.
544
- - ML Job (PrPr): No longer require CREATE STAGE privilege if `stage_name` points to an existing stage
545
- - ML Job (PrPr): Fixed a bug causing some payload source and entrypoint path
576
+ * ML Job (PrPr): No longer require CREATE STAGE privilege if `stage_name` points to an existing stage
577
+ * ML Job (PrPr): Fixed a bug causing some payload source and entrypoint path
546
578
  combinations to be erroneously rejected with
547
579
  `ValueError(f"{self.entrypoint} must be a subpath of {self.source}")`
548
- - ML Job (PrPr): Fixed a bug in Ray cluster startup config which caused certain Runtime APIs to fail
580
+ * ML Job (PrPr): Fixed a bug in Ray cluster startup config which caused certain Runtime APIs to fail
549
581
 
550
582
  ### New Features
551
583
 
552
- - Registry: Added support for handling Hugging Face model configurations with auto-mapping functionality.
553
- - Registry: Added support for `keras` 3.x model with `tensorflow` and `pytorch` backend
584
+ * Registry: Added support for handling Hugging Face model configurations with auto-mapping functionality.
585
+ * Registry: Added support for `keras` 3.x model with `tensorflow` and `pytorch` backend
554
586
 
555
587
  ## 1.7.4 (01-28-2025)
556
588
 
557
- - FileSet: The `snowflake.ml.fileset.FileSet` has been deprecated and will be removed in a future version.
589
+ * FileSet: The `snowflake.ml.fileset.FileSet` has been deprecated and will be removed in a future version.
558
590
  Use [snowflake.ml.dataset.Dataset](https://docs.snowflake.com/en/developer-guide/snowflake-ml/dataset) and
559
591
  [snowflake.ml.data.DataConnector](https://docs.snowflake.com/en/developer-guide/snowpark-ml/reference/latest/api/data/snowflake.ml.data.data_connector.DataConnector)
560
592
  instead.
561
- - Registry: `ModelVersion.run` on a service would require redeploying the service once account opts into nested function.
593
+ * Registry: `ModelVersion.run` on a service would require redeploying the service once account opts into nested function.
562
594
 
563
595
  ### Bug Fixes
564
596
 
565
- - Registry: Fixed an issue that the hugging face pipeline is loaded using incorrect dtype.
566
- - Registry: Fixed an issue that only 1 row is used when infer the model signature in the modeling model.
597
+ * Registry: Fixed an issue that the hugging face pipeline is loaded using incorrect dtype.
598
+ * Registry: Fixed an issue that only 1 row is used when infer the model signature in the modeling model.
567
599
 
568
600
  ### New Features
569
601
 
570
- - Add new `snowflake.ml.jobs` preview API for running headless workloads on SPCS using
602
+ * Add new `snowflake.ml.jobs` preview API for running headless workloads on SPCS using
571
603
  [Container Runtime for ML](https://docs.snowflake.com/en/developer-guide/snowflake-ml/container-runtime-ml)
572
- - Added `guardrails` option to Cortex `complete` function, enabling
604
+ * Added `guardrails` option to Cortex `complete` function, enabling
573
605
  [Cortex Guard](https://docs.snowflake.com/en/user-guide/snowflake-cortex/llm-functions#cortex-guard) support
574
- - Model Monitoring: Expose Model Monitoring Python API by default.
606
+ * Model Monitoring: Expose Model Monitoring Python API by default.
575
607
 
576
608
  ## 1.7.3 (2025-01-08)
577
609
 
578
- - Added lowercase versions of Cortex functions, added deprecation warning to Capitalized versions.
579
- - Bumped the requirements of `fsspec` and `s3fs` to `>=2024.6.1,<2026`
580
- - Bumped the requirement of `mlflow` to `>=2.16.0, <3`
581
- - Registry: Support 500+ features for model registry
582
- - Feature Store: Add support for `cluster_by` for feature views.
610
+ * Added lowercase versions of Cortex functions, added deprecation warning to Capitalized versions.
611
+ * Bumped the requirements of `fsspec` and `s3fs` to `>=2024.6.1,<2026`
612
+ * Bumped the requirement of `mlflow` to `>=2.16.0, <3`
613
+ * Registry: Support 500+ features for model registry
614
+ * Feature Store: Add support for `cluster_by` for feature views.
583
615
 
584
616
  ### Bug Fixes
585
617
 
586
- - Registry: Fixed a bug when providing non-range index pandas DataFrame as the input to a `ModelVersion.run`.
587
- - Registry: Improved random model version name generation to prevent collisions.
588
- - Registry: Fix an issue when inferring signature or running inference with Snowpark data that has a column whose type
618
+ * Registry: Fixed a bug when providing non-range index pandas DataFrame as the input to a `ModelVersion.run`.
619
+ * Registry: Improved random model version name generation to prevent collisions.
620
+ * Registry: Fix an issue when inferring signature or running inference with Snowpark data that has a column whose type
589
621
  is `ARRAY` and contains `NULL` value.
590
- - Registry: `ModelVersion.run` now accepts fully qualified service name.
591
- - Monitoring: Fix issue in SDK with creating monitors using fully qualified names.
592
- - Registry: Fix error in log_model for any sklearn models with only data pre-processing including pre-processing only
622
+ * Registry: `ModelVersion.run` now accepts fully qualified service name.
623
+ * Monitoring: Fix issue in SDK with creating monitors using fully qualified names.
624
+ * Registry: Fix error in log_model for any sklearn models with only data pre-processing including pre-processing only
593
625
  pipeline models due to default explainability enablement.
594
626
 
595
627
  ### New Features
596
628
 
597
- - Added `user_files` argument to `Registry.log_model` for including images or any extra file with the model.
598
- - Registry: Added support for handling Hugging Face model configurations with auto-mapping functionality
599
- - DataConnector: Add new `DataConnector.from_sql()` constructor
600
- - Registry: Provided new arguments to `snowflake.ml.model.model_signature.infer_signature` method to specify rows limit
629
+ * Added `user_files` argument to `Registry.log_model` for including images or any extra file with the model.
630
+ * Registry: Added support for handling Hugging Face model configurations with auto-mapping functionality
631
+ * DataConnector: Add new `DataConnector.from_sql()` constructor
632
+ * Registry: Provided new arguments to `snowflake.ml.model.model_signature.infer_signature` method to specify rows limit
601
633
  to be used when inferring the signature.
602
634
 
603
635
  ## 1.7.2 (2024-11-21)
604
636
 
605
637
  ### Bug Fixes
606
638
 
607
- - Model Explainability: Fix issue that explain is enabled for scikit-learn pipeline
639
+ * Model Explainability: Fix issue that explain is enabled for scikit-learn pipeline
608
640
  whose task is UNKNOWN and fails later when invoked.
609
641
 
610
642
  ### New Features
611
643
 
612
- - Registry: Support asynchronous model inference service creation with the `block` option
644
+ * Registry: Support asynchronous model inference service creation with the `block` option
613
645
  in `ModelVersion.create_service()` set to True by default.
614
- - Registry: Allow specify `batch_size` when inferencing using sentence-transformers model.
646
+ * Registry: Allow specify `batch_size` when inferencing using sentence-transformers model.
615
647
 
616
648
  ## 1.7.1 (2024-11-05)
617
649
 
618
650
  ### Bug Fixes
619
651
 
620
- - Registry: Null value is now allowed in the dataframe used in model signature inference. Null values will be ignored
652
+ * Registry: Null value is now allowed in the dataframe used in model signature inference. Null values will be ignored
621
653
  and others will be used to infer the signature.
622
- - Registry: Pandas Extension DTypes (`pandas.StringDType()`, `pandas.BooleanDType()`, etc.) are now supported in model
654
+ * Registry: Pandas Extension DTypes (`pandas.StringDType()`, `pandas.BooleanDType()`, etc.) are now supported in model
623
655
  signature inference.
624
- - Registry: Null value is now allowed in the dataframe used to predict.
625
- - Data: Fix missing `snowflake.ml.data.*` module exports in wheel
626
- - Dataset: Fix missing `snowflake.ml.dataset.*` module exports in wheel.
627
- - Registry: Fix the issue that `tf_keras.Model` is not recognized as keras model when logging.
656
+ * Registry: Null value is now allowed in the dataframe used to predict.
657
+ * Data: Fix missing `snowflake.ml.data.*` module exports in wheel
658
+ * Dataset: Fix missing `snowflake.ml.dataset.*` module exports in wheel.
659
+ * Registry: Fix the issue that `tf_keras.Model` is not recognized as keras model when logging.
628
660
 
629
661
  ### New Features
630
662
 
631
- - Registry: Option to `enable_monitoring` set to False by default. This will gate access to preview features of Model Monitoring.
632
- - Model Monitoring: `show_model_monitors` Registry method. This feature is still in Private Preview.
633
- - Registry: Support `pd.Series` in input and output data.
634
- - Model Monitoring: `add_monitor` Registry method. This feature is still in Private Preview.
635
- - Model Monitoring: `resume` and `suspend` ModelMonitor. This feature is still in Private Preview.
636
- - Model Monitoring: `get_monitor` Registry method. This feature is still in Private Preview.
637
- - Model Monitoring: `delete_monitor` Registry method. This feature is still in Private Preview.
663
+ * Registry: Option to `enable_monitoring` set to False by default. This will gate access to preview features of Model Monitoring.
664
+ * Model Monitoring: `show_model_monitors` Registry method. This feature is still in Private Preview.
665
+ * Registry: Support `pd.Series` in input and output data.
666
+ * Model Monitoring: `add_monitor` Registry method. This feature is still in Private Preview.
667
+ * Model Monitoring: `resume` and `suspend` ModelMonitor. This feature is still in Private Preview.
668
+ * Model Monitoring: `get_monitor` Registry method. This feature is still in Private Preview.
669
+ * Model Monitoring: `delete_monitor` Registry method. This feature is still in Private Preview.
638
670
 
639
671
  ## 1.7.0 (10-22-2024)
640
672
 
641
673
  ### Behavior Change
642
674
 
643
- - Generic: Require python >= 3.9.
644
- - Data Connector: Update `to_torch_dataset` and `to_torch_datapipe` to add a dimension for scalar data.
675
+ * Generic: Require python >= 3.9.
676
+ * Data Connector: Update `to_torch_dataset` and `to_torch_datapipe` to add a dimension for scalar data.
645
677
  This allows for more seamless integration with PyTorch `DataLoader`, which creates batches by stacking inputs of each batch.
646
678
 
647
679
  Examples:
@@ -650,30 +682,30 @@ Examples:
650
682
  ds = connector.to_torch_dataset(shuffle=False, batch_size=3)
651
683
  ```
652
684
 
653
- - Input: "col1": [10, 11, 12]
654
- - Previous batch: array([10., 11., 12.]) with shape (3,)
655
- - New batch: array([[10.], [11.], [12.]]) with shape (3, 1)
685
+ * Input: "col1": [10, 11, 12]
686
+ * Previous batch: array([10., 11., 12.]) with shape (3,)
687
+ * New batch: array([[10.], [11.], [12.]]) with shape (3, 1)
656
688
 
657
- - Input: "col2": [[0, 100], [1, 110], [2, 200]]
658
- - Previous batch: array([[ 0, 100], [ 1, 110], [ 2, 200]]) with shape (3,2)
659
- - New batch: No change
689
+ * Input: "col2": [[0, 100], [1, 110], [2, 200]]
690
+ * Previous batch: array([[ 0, 100], [ 1, 110], [ 2, 200]]) with shape (3,2)
691
+ * New batch: No change
660
692
 
661
- - Model Registry: External access integrations are optional when creating a model inference service in
693
+ * Model Registry: External access integrations are optional when creating a model inference service in
662
694
  Snowflake >= 8.40.0.
663
- - Model Registry: Deprecate `build_external_access_integration` with `build_external_access_integrations` in
695
+ * Model Registry: Deprecate `build_external_access_integration` with `build_external_access_integrations` in
664
696
  `ModelVersion.create_service()`.
665
697
 
666
698
  ### Bug Fixes
667
699
 
668
- - Registry: Updated `log_model` API to accept both signature and sample_input_data parameters.
669
- - Feature Store: ExampleHelper uses fully qualified path for table name. change weather features aggregation from 1d to 1h.
670
- - Data Connector: Return numpy array with appropriate object type instead of list for multi-dimensional
700
+ * Registry: Updated `log_model` API to accept both signature and sample_input_data parameters.
701
+ * Feature Store: ExampleHelper uses fully qualified path for table name. change weather features aggregation from 1d to 1h.
702
+ * Data Connector: Return numpy array with appropriate object type instead of list for multi-dimensional
671
703
  data from `to_torch_dataset` and `to_torch_datapipe`
672
- - Model explainability: Incompatibility between SHAP 0.42.1 and XGB 2.1.1 resolved by using latest SHAP 0.46.0.
704
+ * Model explainability: Incompatibility between SHAP 0.42.1 and XGB 2.1.1 resolved by using latest SHAP 0.46.0.
673
705
 
674
706
  ### New Features
675
707
 
676
- - Registry: Provide pass keyworded variable length of arguments to class ModelContext. Example usage:
708
+ * Registry: Provide pass keyworded variable length of arguments to class ModelContext. Example usage:
677
709
 
678
710
  ```python
679
711
  mc = custom_model.ModelContext(
@@ -693,106 +725,106 @@ class ExamplePipelineModel(custom_model.CustomModel):
693
725
  return pd.DataFrame({'output': model_output + self.bias})
694
726
  ```
695
727
 
696
- - Model Development: Upgrade scikit-learn in UDTF backend for log_loss metric. As a result, `eps` argument is now ignored.
697
- - Data Connector: Add the option of passing a `None` sized batch to `to_torch_dataset` for better
728
+ * Model Development: Upgrade scikit-learn in UDTF backend for log_loss metric. As a result, `eps` argument is now ignored.
729
+ * Data Connector: Add the option of passing a `None` sized batch to `to_torch_dataset` for better
698
730
  interoperability with PyTorch DataLoader.
699
- - Model Registry: Support [pandas.CategoricalDtype](https://pandas.pydata.org/docs/reference/api/pandas.CategoricalDtype.html#pandas-categoricaldtype)
700
- - Limitations:
701
- - The native categorical data handling handling by XGBoost using `enable_categorical=True` is not supported.
731
+ * Model Registry: Support [pandas.CategoricalDtype](https://pandas.pydata.org/docs/reference/api/pandas.CategoricalDtype.html#pandas-categoricaldtype)
732
+ * Limitations:
733
+ * The native categorical data handling handling by XGBoost using `enable_categorical=True` is not supported.
702
734
  Instead please use [`sklearn.pipeline`](https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html)
703
735
  to preprocess the categorical datatype and log the pipeline with the XGBoost model.
704
- - Registry: It is now possible to pass `signatures` and `sample_input_data` at the same time to capture background
736
+ * Registry: It is now possible to pass `signatures` and `sample_input_data` at the same time to capture background
705
737
  data from explainablity and data lineage.
706
738
 
707
739
  ## 1.6.4 (2024-10-17)
708
740
 
709
741
  ### Bug Fixes
710
742
 
711
- - Registry: Fix an issue that leads to incident when using `ModelVersion.run` with service.
743
+ * Registry: Fix an issue that leads to incident when using `ModelVersion.run` with service.
712
744
 
713
745
  ## 1.6.3 (2024-10-07)
714
746
 
715
- - Model Registry (PrPr) has been removed.
747
+ * Model Registry (PrPr) has been removed.
716
748
 
717
749
  ### Bug Fixes
718
750
 
719
- - Registry: Fix a bug that when package whose name does not follow PEP-508 is provided when logging the model,
751
+ * Registry: Fix a bug that when package whose name does not follow PEP-508 is provided when logging the model,
720
752
  an unexpected normalization is happening.
721
- - Registry: Fix `not a valid remote uri` error when logging mlflow models.
722
- - Registry: Fix a bug that `ModelVersion.run` is called in a nested way.
723
- - Registry: Fix an issue that leads to `log_model` failure when local package version contains parts other than
753
+ * Registry: Fix `not a valid remote uri` error when logging mlflow models.
754
+ * Registry: Fix a bug that `ModelVersion.run` is called in a nested way.
755
+ * Registry: Fix an issue that leads to `log_model` failure when local package version contains parts other than
724
756
  base version.
725
- - Fix issue where `sample_weights` were not being applied to search estimators.
726
- - Model explainability: Fix bug which creates explain as a function instead of table function when enabling by default.
727
- - Model explainability: Update lightgbm binary classification to return non-json values, from customer feedback.
757
+ * Fix issue where `sample_weights` were not being applied to search estimators.
758
+ * Model explainability: Fix bug which creates explain as a function instead of table function when enabling by default.
759
+ * Model explainability: Update lightgbm binary classification to return non-json values, from customer feedback.
728
760
 
729
761
  ### New Features
730
762
 
731
- - Data: Improve `DataConnector.to_pandas()` performance when loading from Snowpark DataFrames.
732
- - Model Registry: Allow users to set a model task while using `log_model`.
733
- - Feature Store: FeatureView supports ON_CREATE or ON_SCHEDULE initialize mode.
763
+ * Data: Improve `DataConnector.to_pandas()` performance when loading from Snowpark DataFrames.
764
+ * Model Registry: Allow users to set a model task while using `log_model`.
765
+ * Feature Store: FeatureView supports ON_CREATE or ON_SCHEDULE initialize mode.
734
766
 
735
767
  ## 1.6.2 (2024-09-04)
736
768
 
737
769
  ### Bug Fixes
738
770
 
739
- - Modeling: Support XGBoost version that is larger than 2.
771
+ * Modeling: Support XGBoost version that is larger than 2.
740
772
 
741
- - Data: Fix multiple epoch iteration over `DataConnector.to_torch_datapipe()` DataPipes.
742
- - Generic: Fix a bug that when an invalid name is provided to argument where fully qualified name is expected, it will
773
+ * Data: Fix multiple epoch iteration over `DataConnector.to_torch_datapipe()` DataPipes.
774
+ * Generic: Fix a bug that when an invalid name is provided to argument where fully qualified name is expected, it will
743
775
  be parsed wrongly. Now it raises an exception correctly.
744
- - Model Explainability: Handle explanations for multiclass XGBoost classification models
745
- - Model Explainability: Workarounds and better error handling for XGB>2.1.0 not working with SHAP==0.42.1
776
+ * Model Explainability: Handle explanations for multiclass XGBoost classification models
777
+ * Model Explainability: Workarounds and better error handling for XGB>2.1.0 not working with SHAP==0.42.1
746
778
 
747
779
  ### New Features
748
780
 
749
- - Data: Add top-level exports for `DataConnector` and `DataSource` to `snowflake.ml.data`.
750
- - Data: Add native batching support via `batch_size` and `drop_last_batch` arguments to `DataConnector.to_torch_dataset()`
751
- - Feature Store: update_feature_view() supports taking feature view object as argument.
781
+ * Data: Add top-level exports for `DataConnector` and `DataSource` to `snowflake.ml.data`.
782
+ * Data: Add native batching support via `batch_size` and `drop_last_batch` arguments to `DataConnector.to_torch_dataset()`
783
+ * Feature Store: update_feature_view() supports taking feature view object as argument.
752
784
 
753
785
  ## 1.6.1 (2024-08-12)
754
786
 
755
787
  ### Bug Fixes
756
788
 
757
- - Feature Store: Support large metadata blob when generating dataset
758
- - Feature Store: Added a hidden knob in FeatureView as kargs for setting customized
789
+ * Feature Store: Support large metadata blob when generating dataset
790
+ * Feature Store: Added a hidden knob in FeatureView as kargs for setting customized
759
791
  refresh_mode
760
- - Registry: Fix an error message in Model Version `run` when `function_name` is not mentioned and model has multiple
792
+ * Registry: Fix an error message in Model Version `run` when `function_name` is not mentioned and model has multiple
761
793
  target methods.
762
- - Cortex inference: snowflake.cortex.Complete now only uses the REST API for streaming and the use_rest_api_experimental
794
+ * Cortex inference: snowflake.cortex.Complete now only uses the REST API for streaming and the use_rest_api_experimental
763
795
  is no longer needed.
764
- - Feature Store: Add a new API: FeatureView.list_columns() which list all column information.
765
- - Data: Fix `DataFrame` ingestion with `ArrowIngestor`.
796
+ * Feature Store: Add a new API: FeatureView.list_columns() which list all column information.
797
+ * Data: Fix `DataFrame` ingestion with `ArrowIngestor`.
766
798
 
767
799
  ### New Features
768
800
 
769
- - Enable `set_params` to set the parameters of the underlying sklearn estimator, if the snowflake-ml model has been fit.
770
- - Data: Add `snowflake.ml.data.ingestor_utils` module with utility functions helpful for `DataIngestor` implementations.
771
- - Data: Add new `to_torch_dataset()` connector to `DataConnector` to replace deprecated DataPipe.
772
- - Registry: Option to `enable_explainability` set to True by default for XGBoost, LightGBM and CatBoost as PuPr feature.
773
- - Registry: Option to `enable_explainability` when registering SHAP supported sklearn models.
801
+ * Enable `set_params` to set the parameters of the underlying sklearn estimator, if the snowflake-ml model has been fit.
802
+ * Data: Add `snowflake.ml.data.ingestor_utils` module with utility functions helpful for `DataIngestor` implementations.
803
+ * Data: Add new `to_torch_dataset()` connector to `DataConnector` to replace deprecated DataPipe.
804
+ * Registry: Option to `enable_explainability` set to True by default for XGBoost, LightGBM and CatBoost as PuPr feature.
805
+ * Registry: Option to `enable_explainability` when registering SHAP supported sklearn models.
774
806
 
775
807
  ## 1.6.0 (2024-07-29)
776
808
 
777
809
  ### Bug Fixes
778
810
 
779
- - Modeling: `SimpleImputer` can impute integer columns with integer values.
780
- - Registry: Fix an issue when providing a pandas Dataframe whose index is not starting from 0 as the input to
811
+ * Modeling: `SimpleImputer` can impute integer columns with integer values.
812
+ * Registry: Fix an issue when providing a pandas Dataframe whose index is not starting from 0 as the input to
781
813
  the `ModelVersion.run`.
782
814
 
783
815
  ### New Features
784
816
 
785
- - Feature Store: Add overloads to APIs accept both object and name/version. Impacted APIs include read_feature_view(),
817
+ * Feature Store: Add overloads to APIs accept both object and name/version. Impacted APIs include read_feature_view(),
786
818
  refresh_feature_view(), get_refresh_history(), resume_feature_view(), suspend_feature_view(), delete_feature_view().
787
- - Feature Store: Add docstring inline examples for all public APIs.
788
- - Feature Store: Add new utility class `ExampleHelper` to help with load source data to simplify public notebooks.
789
- - Registry: Option to `enable_explainability` when registering XGBoost models as a pre-PuPr feature.
790
- - Feature Store: add new API `update_entity()`.
791
- - Registry: Option to `enable_explainability` when registering Catboost models as a pre-PuPr feature.
792
- - Feature Store: Add new argument warehouse to FeatureView constructor to overwrite the default warehouse. Also add
819
+ * Feature Store: Add docstring inline examples for all public APIs.
820
+ * Feature Store: Add new utility class `ExampleHelper` to help with load source data to simplify public notebooks.
821
+ * Registry: Option to `enable_explainability` when registering XGBoost models as a pre-PuPr feature.
822
+ * Feature Store: add new API `update_entity()`.
823
+ * Registry: Option to `enable_explainability` when registering Catboost models as a pre-PuPr feature.
824
+ * Feature Store: Add new argument warehouse to FeatureView constructor to overwrite the default warehouse. Also add
793
825
  a new column 'warehouse' to the output of list_feature_views().
794
- - Registry: Add support for logging model from a model version.
795
- - Modeling: Distributed Hyperparameter Optimization now announce GA refresh version. The latest memory efficient version
826
+ * Registry: Add support for logging model from a model version.
827
+ * Modeling: Distributed Hyperparameter Optimization now announce GA refresh version. The latest memory efficient version
796
828
  will not have the 10GB training limitation for dataset any more. To turn off, please run
797
829
  `
798
830
  from snowflake.ml.modeling._internal.snowpark_implementations import (
@@ -800,106 +832,106 @@ data from explainablity and data lineage.
800
832
  )
801
833
  distributed_hpo_trainer.ENABLE_EFFICIENT_MEMORY_USAGE = False
802
834
  `
803
- - Registry: Option to `enable_explainability` when registering LightGBM models as a pre-PuPr feature.
804
- - Data: Add new `snowflake.ml.data` preview module which contains data reading utilities like `DataConnector`
805
- - `DataConnector` provides efficient connectors from Snowpark `DataFrame`
835
+ * Registry: Option to `enable_explainability` when registering LightGBM models as a pre-PuPr feature.
836
+ * Data: Add new `snowflake.ml.data` preview module which contains data reading utilities like `DataConnector`
837
+ * `DataConnector` provides efficient connectors from Snowpark `DataFrame`
806
838
  and Snowpark ML `Dataset` to external frameworks like PyTorch, TensorFlow, and Pandas. Create `DataConnector`
807
839
  instances using the classmethod constructors `DataConnector.from_dataset()` and `DataConnector.from_dataframe()`.
808
- - Data: Add new `DataConnector.from_sources()` classmethod constructor for constructing from `DataSource` objects.
809
- - Data: Add new `ingestor_class` arg to `DataConnector` classmethod constructors for easier `DataIngestor` injection.
810
- - Dataset: `DatasetReader` now subclasses new `DataConnector` class.
811
- - Add optional `limit` arg to `DatasetReader.to_pandas()`
840
+ * Data: Add new `DataConnector.from_sources()` classmethod constructor for constructing from `DataSource` objects.
841
+ * Data: Add new `ingestor_class` arg to `DataConnector` classmethod constructors for easier `DataIngestor` injection.
842
+ * Dataset: `DatasetReader` now subclasses new `DataConnector` class.
843
+ * Add optional `limit` arg to `DatasetReader.to_pandas()`
812
844
 
813
845
  ### Behavior Changes
814
846
 
815
- - Feature Store: change some positional parameters to keyword arguments in following APIs:
816
- - Entity(): desc.
817
- - FeatureView(): timestamp_col, refresh_freq, desc.
818
- - FeatureStore(): creation_mode.
819
- - update_entity(): desc.
820
- - register_feature_view(): block, overwrite.
821
- - list_feature_views(): entity_name, feature_view_name.
822
- - get_refresh_history(): verbose.
823
- - retrieve_feature_values(): spine_timestamp_col, exclude_columns, include_feature_view_timestamp_col.
824
- - generate_training_set(): save_as, spine_timestamp_col, spine_label_cols, exclude_columns,
847
+ * Feature Store: change some positional parameters to keyword arguments in following APIs:
848
+ * Entity(): desc.
849
+ * FeatureView(): timestamp_col, refresh_freq, desc.
850
+ * FeatureStore(): creation_mode.
851
+ * update_entity(): desc.
852
+ * register_feature_view(): block, overwrite.
853
+ * list_feature_views(): entity_name, feature_view_name.
854
+ * get_refresh_history(): verbose.
855
+ * retrieve_feature_values(): spine_timestamp_col, exclude_columns, include_feature_view_timestamp_col.
856
+ * generate_training_set(): save_as, spine_timestamp_col, spine_label_cols, exclude_columns,
825
857
  include_feature_view_timestamp_col.
826
- - generate_dataset(): version, spine_timestamp_col, spine_label_cols, exclude_columns,
858
+ * generate_dataset(): version, spine_timestamp_col, spine_label_cols, exclude_columns,
827
859
  include_feature_view_timestamp_col, desc, output_type.
828
860
 
829
861
  ## 1.5.4 (2024-07-11)
830
862
 
831
863
  ### Bug Fixes
832
864
 
833
- - Model Registry (PrPr): Fix 401 Unauthorized issue when deploying model to SPCS.
834
- - Feature Store: Downgrades exceptions to warnings for few property setters in feature view. Now you can set
865
+ * Model Registry (PrPr): Fix 401 Unauthorized issue when deploying model to SPCS.
866
+ * Feature Store: Downgrades exceptions to warnings for few property setters in feature view. Now you can set
835
867
  desc, refresh_freq and warehouse for draft feature views.
836
- - Modeling: Fix an issue with calling `OrdinalEncoder` with `categories` as a dictionary and a pandas DataFrame
837
- - Modeling: Fix an issue with calling `OneHotEncoder` with `categories` as a dictionary and a pandas DataFrame
868
+ * Modeling: Fix an issue with calling `OrdinalEncoder` with `categories` as a dictionary and a pandas DataFrame
869
+ * Modeling: Fix an issue with calling `OneHotEncoder` with `categories` as a dictionary and a pandas DataFrame
838
870
 
839
871
  ### New Features
840
872
 
841
- - Registry: Allow overriding `device_map` and `device` when loading huggingface pipeline models.
842
- - Registry: Add `set_alias` method to `ModelVersion` instance to set an alias to model version.
843
- - Registry: Add `unset_alias` method to `ModelVersion` instance to unset an alias to model version.
844
- - Registry: Add `partitioned_inference_api` allowing users to create partitioned inference functions in registered
873
+ * Registry: Allow overriding `device_map` and `device` when loading huggingface pipeline models.
874
+ * Registry: Add `set_alias` method to `ModelVersion` instance to set an alias to model version.
875
+ * Registry: Add `unset_alias` method to `ModelVersion` instance to unset an alias to model version.
876
+ * Registry: Add `partitioned_inference_api` allowing users to create partitioned inference functions in registered
845
877
  models. Enable model inference methods with table functions with vectorized process methods in registered models.
846
- - Feature Store: add 3 more columns: refresh_freq, refresh_mode and scheduling_state to the result of
878
+ * Feature Store: add 3 more columns: refresh_freq, refresh_mode and scheduling_state to the result of
847
879
  `list_feature_views()`.
848
- - Feature Store: `update_feature_view()` supports updating description.
849
- - Feature Store: add new API `refresh_feature_view()`.
850
- - Feature Store: add new API `get_refresh_history()`.
851
- - Feature Store: Add `generate_training_set()` API for generating table-backed feature snapshots.
852
- - Feature Store: Add `DeprecationWarning` for `generate_dataset(..., output_type="table")`.
853
- - Feature Store: `update_feature_view()` supports updating description.
854
- - Feature Store: add new API `refresh_feature_view()`.
855
- - Feature Store: add new API `get_refresh_history()`.
856
- - Model Development: OrdinalEncoder supports a list of array-likes for `categories` argument.
857
- - Model Development: OneHotEncoder supports a list of array-likes for `categories` argument.
880
+ * Feature Store: `update_feature_view()` supports updating description.
881
+ * Feature Store: add new API `refresh_feature_view()`.
882
+ * Feature Store: add new API `get_refresh_history()`.
883
+ * Feature Store: Add `generate_training_set()` API for generating table-backed feature snapshots.
884
+ * Feature Store: Add `DeprecationWarning` for `generate_dataset(..., output_type="table")`.
885
+ * Feature Store: `update_feature_view()` supports updating description.
886
+ * Feature Store: add new API `refresh_feature_view()`.
887
+ * Feature Store: add new API `get_refresh_history()`.
888
+ * Model Development: OrdinalEncoder supports a list of array-likes for `categories` argument.
889
+ * Model Development: OneHotEncoder supports a list of array-likes for `categories` argument.
858
890
 
859
891
  ## 1.5.3 (06-17-2024)
860
892
 
861
893
  ### Bug Fixes
862
894
 
863
- - Modeling: Fix an issue causing lineage information to be missing for
895
+ * Modeling: Fix an issue causing lineage information to be missing for
864
896
  `Pipeline`, `GridSearchCV` , `SimpleImputer`, and `RandomizedSearchCV`
865
- - Registry: Fix an issue that leads to incorrect result when using pandas Dataframe with over 100, 000 rows as the input
897
+ * Registry: Fix an issue that leads to incorrect result when using pandas Dataframe with over 100, 000 rows as the input
866
898
  of `ModelVersion.run` method in Stored Procedure.
867
899
 
868
900
  ### New Features
869
901
 
870
- - Registry: Add support for TIMESTAMP_NTZ model signature data type, allowing timestamp input and output.
871
- - Dataset: Add `DatasetVersion.label_cols` and `DatasetVersion.exclude_cols` properties.
902
+ * Registry: Add support for TIMESTAMP_NTZ model signature data type, allowing timestamp input and output.
903
+ * Dataset: Add `DatasetVersion.label_cols` and `DatasetVersion.exclude_cols` properties.
872
904
 
873
905
  ## 1.5.2 (06-10-2024)
874
906
 
875
907
  ### Bug Fixes
876
908
 
877
- - Registry: Fix an issue that leads to unable to log model in store procedure.
878
- - Modeling: Quick fix `import snowflake.ml.modeling.parameters.enable_anonymous_sproc` cannot be imported due to package
909
+ * Registry: Fix an issue that leads to unable to log model in store procedure.
910
+ * Modeling: Quick fix `import snowflake.ml.modeling.parameters.enable_anonymous_sproc` cannot be imported due to package
879
911
  dependency error.
880
912
 
881
913
  ## 1.5.1 (05-22-2024)
882
914
 
883
915
  ### Bug Fixes
884
916
 
885
- - Dataset: Fix `snowflake.connector.errors.DataError: Query Result did not match expected number of rows` when accessing
917
+ * Dataset: Fix `snowflake.connector.errors.DataError: Query Result did not match expected number of rows` when accessing
886
918
  DatasetVersion properties when case insensitive `SHOW VERSIONS IN DATASET` check matches multiple version names.
887
- - Dataset: Fix bug in SnowFS bulk file read when used with DuckDB
888
- - Registry: Fixed a bug when loading old models.
889
- - Lineage: Fix Dataset source lineage propagation through `snowpark.DataFrame` transformations
919
+ * Dataset: Fix bug in SnowFS bulk file read when used with DuckDB
920
+ * Registry: Fixed a bug when loading old models.
921
+ * Lineage: Fix Dataset source lineage propagation through `snowpark.DataFrame` transformations
890
922
 
891
923
  ### Behavior Changes
892
924
 
893
- - Feature Store: convert clear() into a private function. Also make it deletes feature views and entities only.
894
- - Feature Store: Use NULL as default value for timestamp tag value.
925
+ * Feature Store: convert clear() into a private function. Also make it deletes feature views and entities only.
926
+ * Feature Store: Use NULL as default value for timestamp tag value.
895
927
 
896
928
  ### New Features
897
929
 
898
- - Feature Store: Added new `snowflake.ml.feature_store.setup_feature_store()` API to assist Feature Store RBAC setup.
899
- - Feature Store: Add `output_type` argument to `FeatureStore.generate_dataset()` to allow generating data snapshots
930
+ * Feature Store: Added new `snowflake.ml.feature_store.setup_feature_store()` API to assist Feature Store RBAC setup.
931
+ * Feature Store: Add `output_type` argument to `FeatureStore.generate_dataset()` to allow generating data snapshots
900
932
  as Datasets or Tables.
901
- - Registry: `log_model`, `get_model`, `delete_model` now supports fully qualified name.
902
- - Modeling: Supports anonymous stored procedure during fit calls so that modeling would not require sufficient
933
+ * Registry: `log_model`, `get_model`, `delete_model` now supports fully qualified name.
934
+ * Modeling: Supports anonymous stored procedure during fit calls so that modeling would not require sufficient
903
935
  permissions to operate on schema. Please call
904
936
  `import snowflake.ml.modeling.parameters.enable_anonymous_sproc # noqa: F401`
905
937
 
@@ -907,11 +939,11 @@ data from explainablity and data lineage.
907
939
 
908
940
  ### Bug Fixes
909
941
 
910
- - Registry: Fix invalid parameter 'SHOW_MODEL_DETAILS_IN_SHOW_VERSIONS_IN_MODEL' error.
942
+ * Registry: Fix invalid parameter 'SHOW_MODEL_DETAILS_IN_SHOW_VERSIONS_IN_MODEL' error.
911
943
 
912
944
  ### Behavior Changes
913
945
 
914
- - Model Development: The behavior of `fit_transform` for all estimators is changed.
946
+ * Model Development: The behavior of `fit_transform` for all estimators is changed.
915
947
  Firstly, it will cover all the estimator that contains this function,
916
948
  secondly, the output would be the union of pandas DataFrame and snowpark DataFrame.
917
949
 
@@ -919,167 +951,167 @@ data from explainablity and data lineage.
919
951
 
920
952
  `snowflake.ml.registry.artifact` and related `snowflake.ml.model_registry.ModelRegistry` APIs have been removed.
921
953
 
922
- - Removed `snowflake.ml.registry.artifact` module.
923
- - Removed `ModelRegistry.log_artifact()`, `ModelRegistry.list_artifacts()`, `ModelRegistry.get_artifact()`
924
- - Removed `artifacts` argument from `ModelRegistry.log_model()`
954
+ * Removed `snowflake.ml.registry.artifact` module.
955
+ * Removed `ModelRegistry.log_artifact()`, `ModelRegistry.list_artifacts()`, `ModelRegistry.get_artifact()`
956
+ * Removed `artifacts` argument from `ModelRegistry.log_model()`
925
957
 
926
958
  #### Dataset (PrPr)
927
959
 
928
960
  `snowflake.ml.dataset.Dataset` has been redesigned to be backed by Snowflake Dataset entities.
929
961
 
930
- - New `Dataset`s can be created with `Dataset.create()` and existing `Dataset`s may be loaded
962
+ * New `Dataset`s can be created with `Dataset.create()` and existing `Dataset`s may be loaded
931
963
  with `Dataset.load()`.
932
- - `Dataset`s now maintain an immutable `selected_version` state. The `Dataset.create_version()` and
964
+ * `Dataset`s now maintain an immutable `selected_version` state. The `Dataset.create_version()` and
933
965
  `Dataset.load_version()` APIs return new `Dataset` objects with the requested `selected_version` state.
934
- - Added `dataset.create_from_dataframe()` and `dataset.load_dataset()` convenience APIs as a shortcut
966
+ * Added `dataset.create_from_dataframe()` and `dataset.load_dataset()` convenience APIs as a shortcut
935
967
  to creating and loading `Dataset`s with a pre-selected version.
936
- - `Dataset.materialized_table` and `Dataset.snapshot_table` no longer exist with `Dataset.fully_qualified_name`
968
+ * `Dataset.materialized_table` and `Dataset.snapshot_table` no longer exist with `Dataset.fully_qualified_name`
937
969
  as the closest equivalent.
938
- - `Dataset.df` no longer exists. Instead, use `DatasetReader.read.to_snowpark_dataframe()`.
939
- - `Dataset.owner` has been moved to `Dataset.selected_version.owner`
940
- - `Dataset.desc` has been moved to `DatasetVersion.selected_version.comment`
941
- - `Dataset.timestamp_col`, `Dataset.label_cols`, `Dataset.feature_store_metadata`, and
970
+ * `Dataset.df` no longer exists. Instead, use `DatasetReader.read.to_snowpark_dataframe()`.
971
+ * `Dataset.owner` has been moved to `Dataset.selected_version.owner`
972
+ * `Dataset.desc` has been moved to `DatasetVersion.selected_version.comment`
973
+ * `Dataset.timestamp_col`, `Dataset.label_cols`, `Dataset.feature_store_metadata`, and
942
974
  `Dataset.schema_version` have been removed.
943
975
 
944
976
  #### Feature Store (PrPr)
945
977
 
946
- - `FeatureStore.generate_dataset` argument list has been changed to match the new
978
+ * `FeatureStore.generate_dataset` argument list has been changed to match the new
947
979
  `snowflake.ml.dataset.Dataset` definition
948
980
 
949
- - `materialized_table` has been removed and replaced with `name` and `version`.
950
- - `name` moved to first positional argument
951
- - `save_mode` has been removed as `merge` behavior is no longer supported. The new behavior is always `errorifexists`.
981
+ * `materialized_table` has been removed and replaced with `name` and `version`.
982
+ * `name` moved to first positional argument
983
+ * `save_mode` has been removed as `merge` behavior is no longer supported. The new behavior is always `errorifexists`.
952
984
 
953
- - Change feature view version type from str to `FeatureViewVersion`. It is a restricted string literal.
985
+ * Change feature view version type from str to `FeatureViewVersion`. It is a restricted string literal.
954
986
 
955
- - Remove as_dataframe arg from FeatureStore.list_feature_views(), now always returns result as DataFrame.
987
+ * Remove as_dataframe arg from FeatureStore.list_feature_views(), now always returns result as DataFrame.
956
988
 
957
- - Combines few metadata tags into a new tag: SNOWML_FEATURE_VIEW_METADATA. This will make previously created feature views
989
+ * Combines few metadata tags into a new tag: SNOWML_FEATURE_VIEW_METADATA. This will make previously created feature views
958
990
  not readable by new SDK.
959
991
 
960
992
  ### New Features
961
993
 
962
- - Registry: Add `export` method to `ModelVersion` instance to export model files.
963
- - Registry: Add `load` method to `ModelVersion` instance to load the underlying object from the model.
964
- - Registry: Add `Model.rename` method to `Model` instance to rename or move a model.
994
+ * Registry: Add `export` method to `ModelVersion` instance to export model files.
995
+ * Registry: Add `load` method to `ModelVersion` instance to load the underlying object from the model.
996
+ * Registry: Add `Model.rename` method to `Model` instance to rename or move a model.
965
997
 
966
998
  #### Dataset (PrPr)
967
999
 
968
- - Added Snowpark DataFrame integration using `Dataset.read.to_snowpark_dataframe()`
969
- - Added Pandas DataFrame integration using `Dataset.read.to_pandas()`
970
- - Added PyTorch and TensorFlow integrations using `Dataset.read.to_torch_datapipe()`
1000
+ * Added Snowpark DataFrame integration using `Dataset.read.to_snowpark_dataframe()`
1001
+ * Added Pandas DataFrame integration using `Dataset.read.to_pandas()`
1002
+ * Added PyTorch and TensorFlow integrations using `Dataset.read.to_torch_datapipe()`
971
1003
  and `Dataset.read.to_tf_dataset()` respectively.
972
- - Added `fsspec` style file integration using `Dataset.read.files()` and `Dataset.read.filesystem()`
1004
+ * Added `fsspec` style file integration using `Dataset.read.files()` and `Dataset.read.filesystem()`
973
1005
 
974
1006
  #### Feature Store
975
1007
 
976
- - use new tag_reference_internal to speed up metadata lookup.
1008
+ * use new tag_reference_internal to speed up metadata lookup.
977
1009
 
978
1010
  ## 1.4.1 (2024-04-18)
979
1011
 
980
1012
  ### New Features
981
1013
 
982
- - Registry: Add support for `catboost` model (`catboost.CatBoostClassifier`, `catboost.CatBoostRegressor`).
983
- - Registry: Add support for `lightgbm` model (`lightgbm.Booster`, `lightgbm.LightGBMClassifier`, `lightgbm.LightGBMRegressor`).
1014
+ * Registry: Add support for `catboost` model (`catboost.CatBoostClassifier`, `catboost.CatBoostRegressor`).
1015
+ * Registry: Add support for `lightgbm` model (`lightgbm.Booster`, `lightgbm.LightGBMClassifier`, `lightgbm.LightGBMRegressor`).
984
1016
 
985
1017
  ### Bug Fixes
986
1018
 
987
- - Registry: Fix a bug that leads to relax_version option is not working.
1019
+ * Registry: Fix a bug that leads to relax_version option is not working.
988
1020
 
989
1021
  ### Behavior changes
990
1022
 
991
- - Feature Store: update_feature_view takes refresh_freq and warehouse as argument.
1023
+ * Feature Store: update_feature_view takes refresh_freq and warehouse as argument.
992
1024
 
993
1025
  ## 1.4.0 (2024-04-08)
994
1026
 
995
1027
  ### Bug Fixes
996
1028
 
997
- - Registry: Fix a bug when multiple models are being called from the same query, models other than the first one will
1029
+ * Registry: Fix a bug when multiple models are being called from the same query, models other than the first one will
998
1030
  have incorrect result. This fix only works for newly logged model.
999
- - Modeling: When registering a model, only method(s) that is mentioned in `save_model` would be added to model signature
1031
+ * Modeling: When registering a model, only method(s) that is mentioned in `save_model` would be added to model signature
1000
1032
  in SnowML models.
1001
- - Modeling: Fix a bug that when n_jobs is not 1, model cannot execute methods such as
1033
+ * Modeling: Fix a bug that when n_jobs is not 1, model cannot execute methods such as
1002
1034
  predict, predict_log_proba, and other batch inference methods. The n_jobs would automatically
1003
1035
  set to 1 because vectorized udf currently doesn't support joblib parallel backend.
1004
- - Modeling: Fix a bug that batch inference methods cannot infer the datatype when the first row of data contains NULL.
1005
- - Modeling: Matches Distributed HPO output column names with the snowflake identifier.
1006
- - Modeling: Relax package versions for all Distributed HPO methods if the installed version
1036
+ * Modeling: Fix a bug that batch inference methods cannot infer the datatype when the first row of data contains NULL.
1037
+ * Modeling: Matches Distributed HPO output column names with the snowflake identifier.
1038
+ * Modeling: Relax package versions for all Distributed HPO methods if the installed version
1007
1039
  is not available in the Snowflake conda channel
1008
- - Modeling: Add sklearn as required dependency for LightGBM package.
1040
+ * Modeling: Add sklearn as required dependency for LightGBM package.
1009
1041
 
1010
1042
  ### Behavior Changes
1011
1043
 
1012
- - Registry: `apply` method is no longer by default logged when logging a xgboost model. If that is required, it could
1044
+ * Registry: `apply` method is no longer by default logged when logging a xgboost model. If that is required, it could
1013
1045
  be specified manually when logging the model by `log_model(..., options={"target_methods": ["apply", ...]})`.
1014
- - Feature Store: register_entity returns an entity object.
1015
- - Feature Store: register_feature_view `block=true` becomes default.
1046
+ * Feature Store: register_entity returns an entity object.
1047
+ * Feature Store: register_feature_view `block=true` becomes default.
1016
1048
 
1017
1049
  ### New Features
1018
1050
 
1019
- - Registry: Add support for `sentence-transformers` model (`sentence_transformers.SentenceTransformer`).
1020
- - Registry: Now version name is no longer required when logging a model. If not provided, a random human readable ID
1051
+ * Registry: Add support for `sentence-transformers` model (`sentence_transformers.SentenceTransformer`).
1052
+ * Registry: Now version name is no longer required when logging a model. If not provided, a random human readable ID
1021
1053
  will be generated.
1022
1054
 
1023
1055
  ## 1.3.1 (2024-03-21)
1024
1056
 
1025
1057
  ### New Features
1026
1058
 
1027
- - FileSet: `snowflake.ml.fileset.sfcfs.SFFileSystem` can now be used in UDFs and stored procedures.
1059
+ * FileSet: `snowflake.ml.fileset.sfcfs.SFFileSystem` can now be used in UDFs and stored procedures.
1028
1060
 
1029
1061
  ## 1.3.0 (2024-03-12)
1030
1062
 
1031
1063
  ### Bug Fixes
1032
1064
 
1033
- - Registry: Fix a bug that leads to module in `code_paths` when `log_model` cannot be correctly imported.
1034
- - Registry: Fix incorrect error message when validating input Snowpark DataFrame with array feature.
1035
- - Model Registry: Fix an issue when deploying a model to SPCS that some files do not have proper permission.
1036
- - Model Development: Relax package versions for all inference methods if the installed version
1065
+ * Registry: Fix a bug that leads to module in `code_paths` when `log_model` cannot be correctly imported.
1066
+ * Registry: Fix incorrect error message when validating input Snowpark DataFrame with array feature.
1067
+ * Model Registry: Fix an issue when deploying a model to SPCS that some files do not have proper permission.
1068
+ * Model Development: Relax package versions for all inference methods if the installed version
1037
1069
  is not available in the Snowflake conda channel
1038
1070
 
1039
1071
  ### Behavior Changes
1040
1072
 
1041
- - Registry: When running the method of a model, the value range based input validation to avoid input from overflowing
1073
+ * Registry: When running the method of a model, the value range based input validation to avoid input from overflowing
1042
1074
  is now optional rather than enforced, this should improve the performance and should not lead to problem for most
1043
1075
  kinds of model. If you want to enable this check as previous, specify `strict_input_validation=True` when
1044
1076
  calling `run`.
1045
- - Registry: By default `relax_version=True` when logging a model instead of using the specific local dependency versions.
1077
+ * Registry: By default `relax_version=True` when logging a model instead of using the specific local dependency versions.
1046
1078
  This improves dependency versioning by using versions available in Snowflake. To switch back to the previous behavior
1047
1079
  and use specific local dependency versions, specify `relax_version=False` when calling `log_model`.
1048
- - Model Development: The behavior of `fit_predict` for all estimators is changed.
1080
+ * Model Development: The behavior of `fit_predict` for all estimators is changed.
1049
1081
  Firstly, it will cover all the estimator that contains this function,
1050
1082
  secondly, the output would be the union of pandas DataFrame and snowpark DataFrame.
1051
1083
 
1052
1084
  ### New Features
1053
1085
 
1054
- - FileSet: `snowflake.ml.fileset.sfcfs.SFFileSystem` can now be serialized with `pickle`.
1086
+ * FileSet: `snowflake.ml.fileset.sfcfs.SFFileSystem` can now be serialized with `pickle`.
1055
1087
 
1056
1088
  ## 1.2.3 (2024-02-26)
1057
1089
 
1058
1090
  ### Bug Fixes
1059
1091
 
1060
- - Registry: Now when providing Decimal Type column to a DOUBLE or FLOAT feature will not error out but auto cast with
1092
+ * Registry: Now when providing Decimal Type column to a DOUBLE or FLOAT feature will not error out but auto cast with
1061
1093
  warnings.
1062
- - Registry: Improve the error message when specifying currently unsupported `pip_requirements` argument.
1063
- - Model Development: Fix precision_recall_fscore_support incorrect results when `average="samples"`.
1064
- - Model Registry: Fix an issue that leads to description, metrics or tags are not correctly returned in newly created
1094
+ * Registry: Improve the error message when specifying currently unsupported `pip_requirements` argument.
1095
+ * Model Development: Fix precision_recall_fscore_support incorrect results when `average="samples"`.
1096
+ * Model Registry: Fix an issue that leads to description, metrics or tags are not correctly returned in newly created
1065
1097
  Model Registry (PrPr) due to Snowflake BCR [2024_01](https://docs.snowflake.com/en/release-notes/bcr-bundles/2024_01/bcr-1483)
1066
1098
 
1067
1099
  ### Behavior Changes
1068
1100
 
1069
- - Feature Store: `FeatureStore.suspend_feature_view` and `FeatureStore.resume_feature_view` doesn't mutate input feature
1101
+ * Feature Store: `FeatureStore.suspend_feature_view` and `FeatureStore.resume_feature_view` doesn't mutate input feature
1070
1102
  view argument any more. The updated status only reflected in the returned feature view object.
1071
1103
 
1072
1104
  ### New Features
1073
1105
 
1074
- - Model Development: support `score_samples` method for all the classes, including Pipeline,
1106
+ * Model Development: support `score_samples` method for all the classes, including Pipeline,
1075
1107
  GridSearchCV, RandomizedSearchCV, PCA, IsolationForest, ...
1076
- - Registry: Support deleting a version of a model.
1108
+ * Registry: Support deleting a version of a model.
1077
1109
 
1078
1110
  ## 1.2.2 (2024-02-13)
1079
1111
 
1080
1112
  ### New Features
1081
1113
 
1082
- - Model Registry: Support providing external access integrations when deploying a model to SPCS. This will help and be
1114
+ * Model Registry: Support providing external access integrations when deploying a model to SPCS. This will help and be
1083
1115
  required to make sure the deploying process work as long as SPCS will by default deny all network connections. The
1084
1116
  following endpoints must be allowed to make deployment work: docker.com:80, docker.com:443, anaconda.com:80,
1085
1117
  anaconda.com:443, anaconda.org:80, anaconda.org:443, pypi.org:80, pypi.org:443. If you are using
@@ -1090,30 +1122,30 @@ not readable by new SDK.
1090
1122
 
1091
1123
  ### New Features
1092
1124
 
1093
- - Model Development: Infers output column data type for transformers when possible.
1094
- - Registry: `relax_version` option is available in the `options` argument when logging the model.
1125
+ * Model Development: Infers output column data type for transformers when possible.
1126
+ * Registry: `relax_version` option is available in the `options` argument when logging the model.
1095
1127
 
1096
1128
  ## 1.2.0 (2024-01-11)
1097
1129
 
1098
1130
  ### Bug Fixes
1099
1131
 
1100
- - Model Registry: Fix "XGBoost version not compiled with GPU support" error when running CPU inference against open-source
1132
+ * Model Registry: Fix "XGBoost version not compiled with GPU support" error when running CPU inference against open-source
1101
1133
  XGBoost models deployed to SPCS.
1102
- - Model Registry: Fix model deployment to SPCS on Windows machines.
1134
+ * Model Registry: Fix model deployment to SPCS on Windows machines.
1103
1135
 
1104
1136
  ### New Features
1105
1137
 
1106
- - Model Development: Introduced XGBoost external memory training feature. This feature enables training XGBoost models
1138
+ * Model Development: Introduced XGBoost external memory training feature. This feature enables training XGBoost models
1107
1139
  on large datasets that don't fit into memory.
1108
- - Registry: New Registry class named `snowflake.ml.registry.Registry` providing similar APIs as the old one but works
1140
+ * Registry: New Registry class named `snowflake.ml.registry.Registry` providing similar APIs as the old one but works
1109
1141
  with new MODEL object in Snowflake SQL. Also, we are providing`snowflake.ml.model.Model` and
1110
1142
  `snowflake.ml.model.ModelVersion` to represent a model and a specific version of a model.
1111
- - Model Development: Add support for `fit_predict` method in `AgglomerativeClustering`, `DBSCAN`, and `OPTICS` classes;
1112
- - Model Development: Add support for `fit_transform` method in `MDS`, `SpectralEmbedding` and `TSNE` class.
1143
+ * Model Development: Add support for `fit_predict` method in `AgglomerativeClustering`, `DBSCAN`, and `OPTICS` classes;
1144
+ * Model Development: Add support for `fit_transform` method in `MDS`, `SpectralEmbedding` and `TSNE` class.
1113
1145
 
1114
1146
  ### Additional Notes
1115
1147
 
1116
- - Model Registry: The `snowflake.ml.registry.model_registry.ModelRegistry` has been deprecated starting from version
1148
+ * Model Registry: The `snowflake.ml.registry.model_registry.ModelRegistry` has been deprecated starting from version
1117
1149
  1.2.0. It will stay in the Private Preview phase. For future implementations, kindly utilize
1118
1150
  `snowflake.ml.registry.Registry`, except when specifically required. The old model registry will be removed once all
1119
1151
  its primary functionalities are fully integrated into the new registry.
@@ -1122,30 +1154,30 @@ not readable by new SDK.
1122
1154
 
1123
1155
  ### Bug Fixes
1124
1156
 
1125
- - Generic: Fix the issue that stack trace is hidden by telemetry unexpectedly.
1126
- - Model Development: Execute model signature inference without materializing full dataframe in memory.
1127
- - Model Registry: Fix occasional 'snowflake-ml-python library does not exist' error when deploying to SPCS.
1157
+ * Generic: Fix the issue that stack trace is hidden by telemetry unexpectedly.
1158
+ * Model Development: Execute model signature inference without materializing full dataframe in memory.
1159
+ * Model Registry: Fix occasional 'snowflake-ml-python library does not exist' error when deploying to SPCS.
1128
1160
 
1129
1161
  ### Behavior Changes
1130
1162
 
1131
- - Model Registry: When calling `predict` with Snowpark DataFrame, both inferred or normalized column names are accepted.
1132
- - Model Registry: When logging a Snowpark ML Modeling Model, sample input data or manually provided signature will be
1163
+ * Model Registry: When calling `predict` with Snowpark DataFrame, both inferred or normalized column names are accepted.
1164
+ * Model Registry: When logging a Snowpark ML Modeling Model, sample input data or manually provided signature will be
1133
1165
  ignored since they are not necessary.
1134
1166
 
1135
1167
  ### New Features
1136
1168
 
1137
- - Model Development: SQL implementation of binary `precision_score` metric.
1169
+ * Model Development: SQL implementation of binary `precision_score` metric.
1138
1170
 
1139
1171
  ## 1.1.1 (2023-12-05)
1140
1172
 
1141
1173
  ### Bug Fixes
1142
1174
 
1143
- - Model Registry: The `predict` target method on registered models is now compatible with unsupervised estimators.
1144
- - Model Development: Fix confusion_matrix incorrect results when the row number cannot be divided by the batch size.
1175
+ * Model Registry: The `predict` target method on registered models is now compatible with unsupervised estimators.
1176
+ * Model Development: Fix confusion_matrix incorrect results when the row number cannot be divided by the batch size.
1145
1177
 
1146
1178
  ### New Features
1147
1179
 
1148
- - Introduced passthrough_col param in Modeling API. This new param is helpful in scenarios
1180
+ * Introduced passthrough_col param in Modeling API. This new param is helpful in scenarios
1149
1181
  requiring automatic input_cols inference, but need to avoid using specific
1150
1182
  columns, like index columns, during training or inference.
1151
1183
 
@@ -1153,165 +1185,165 @@ not readable by new SDK.
1153
1185
 
1154
1186
  ### Bug Fixes
1155
1187
 
1156
- - Model Registry: Fix panda dataframe input not handling first row properly.
1157
- - Model Development: OrdinalEncoder and LabelEncoder output_columns do not need to be valid snowflake identifiers. They
1188
+ * Model Registry: Fix panda dataframe input not handling first row properly.
1189
+ * Model Development: OrdinalEncoder and LabelEncoder output_columns do not need to be valid snowflake identifiers. They
1158
1190
  would previously be excluded if the normalized name did not match the name specified in output_columns.
1159
1191
 
1160
1192
  ### New Features
1161
1193
 
1162
- - Model Registry: Add support for invoking public endpoint on SPCS service, by providing a "enable_ingress" SPCS
1194
+ * Model Registry: Add support for invoking public endpoint on SPCS service, by providing a "enable_ingress" SPCS
1163
1195
  deployment option.
1164
- - Model Development: Add support for distributed HPO - GridSearchCV and RandomizedSearchCV execution will be
1196
+ * Model Development: Add support for distributed HPO - GridSearchCV and RandomizedSearchCV execution will be
1165
1197
  distributed on multi-node warehouses.
1166
1198
 
1167
1199
  ## 1.0.12 (2023-11-13)
1168
1200
 
1169
1201
  ### Bug Fixes
1170
1202
 
1171
- - Model Registry: Fix regression issue that container logging is not shown during model deployment to SPCS.
1172
- - Model Development: Enhance the column capacity of OrdinalEncoder.
1173
- - Model Registry: Fix unbound `batch_size` error when deploying a model other than Hugging Face Pipeline
1203
+ * Model Registry: Fix regression issue that container logging is not shown during model deployment to SPCS.
1204
+ * Model Development: Enhance the column capacity of OrdinalEncoder.
1205
+ * Model Registry: Fix unbound `batch_size` error when deploying a model other than Hugging Face Pipeline
1174
1206
  and LLM with GPU on SPCS.
1175
1207
 
1176
1208
  ### Behavior Changes
1177
1209
 
1178
- - Model Registry: Raise early error when deploying to SPCS with db/schema that starts with underscore.
1179
- - Model Registry: `conda-forge` channel is now automatically added to channel lists when deploying to SPCS.
1180
- - Model Registry: `relax_version` will not strip all version specifier, instead it will relax `==x.y.z` specifier to
1210
+ * Model Registry: Raise early error when deploying to SPCS with db/schema that starts with underscore.
1211
+ * Model Registry: `conda-forge` channel is now automatically added to channel lists when deploying to SPCS.
1212
+ * Model Registry: `relax_version` will not strip all version specifier, instead it will relax `==x.y.z` specifier to
1181
1213
  `>=x.y,<(x+1)`.
1182
- - Model Registry: Python with different patchlevel but the same major and minor will not result a warning when loading
1214
+ * Model Registry: Python with different patchlevel but the same major and minor will not result a warning when loading
1183
1215
  the model via Model Registry and would be considered to use when deploying to SPCS.
1184
- - Model Registry: When logging a `snowflake.ml.model.models.huggingface_pipeline.HuggingFacePipelineModel` object,
1216
+ * Model Registry: When logging a `snowflake.ml.model.models.huggingface_pipeline.HuggingFacePipelineModel` object,
1185
1217
  versions of local installed libraries won't be picked as dependencies of models, instead it will pick up some pre-
1186
1218
  defined dependencies to improve user experience.
1187
1219
 
1188
1220
  ### New Features
1189
1221
 
1190
- - Model Registry: Enable best-effort SPCS job/service log streaming when logging level is set to INFO.
1222
+ * Model Registry: Enable best-effort SPCS job/service log streaming when logging level is set to INFO.
1191
1223
 
1192
1224
  ## 1.0.11 (2023-10-27)
1193
1225
 
1194
1226
  ### New Features
1195
1227
 
1196
- - Model Registry: Add log_artifact() public method.
1197
- - Model Development: Add support for `kneighbors`.
1228
+ * Model Registry: Add log_artifact() public method.
1229
+ * Model Development: Add support for `kneighbors`.
1198
1230
 
1199
1231
  ### Behavior Changes
1200
1232
 
1201
- - Model Registry: Change log_model() argument from TrainingDataset to List of Artifact.
1202
- - Model Registry: Change get_training_dataset() to get_artifact().
1233
+ * Model Registry: Change log_model() argument from TrainingDataset to List of Artifact.
1234
+ * Model Registry: Change get_training_dataset() to get_artifact().
1203
1235
 
1204
1236
  ### Bug Fixes
1205
1237
 
1206
- - Model Development: Fix support for XGBoost and LightGBM models using SKLearn Grid Search and Randomized Search model selectors.
1207
- - Model Development: DecimalType is now supported as a DataType.
1208
- - Model Development: Fix metrics compatibility with Snowpark Dataframes that use Snowflake identifiers
1209
- - Model Registry: Resolve 'delete_deployment' not deleting the SPCS service in certain cases.
1238
+ * Model Development: Fix support for XGBoost and LightGBM models using SKLearn Grid Search and Randomized Search model selectors.
1239
+ * Model Development: DecimalType is now supported as a DataType.
1240
+ * Model Development: Fix metrics compatibility with Snowpark Dataframes that use Snowflake identifiers
1241
+ * Model Registry: Resolve 'delete_deployment' not deleting the SPCS service in certain cases.
1210
1242
 
1211
1243
  ## 1.0.10 (2023-10-13)
1212
1244
 
1213
1245
  ### Behavior Changes
1214
1246
 
1215
- - Model Development: precision_score, recall_score, f1_score, fbeta_score, precision_recall_fscore_support,
1247
+ * Model Development: precision_score, recall_score, f1_score, fbeta_score, precision_recall_fscore_support,
1216
1248
  mean_absolute_error, mean_squared_error, and mean_absolute_percentage_error metric calculations are now distributed.
1217
- - Model Registry: `deploy` will now return `Deployment` for deployment information.
1249
+ * Model Registry: `deploy` will now return `Deployment` for deployment information.
1218
1250
 
1219
1251
  ### New Features
1220
1252
 
1221
- - Model Registry: When the model signature is auto-inferred, it will be printed to the log for reference.
1222
- - Model Registry: For SPCS deployment, `Deployment` details will contains `image_name`, `service_spec` and `service_function_sql`.
1253
+ * Model Registry: When the model signature is auto-inferred, it will be printed to the log for reference.
1254
+ * Model Registry: For SPCS deployment, `Deployment` details will contains `image_name`, `service_spec` and `service_function_sql`.
1223
1255
 
1224
1256
  ### Bug Fixes
1225
1257
 
1226
- - Model Development: Fix an issue that leading to UTF-8 decoding errors when using modeling modules on Windows.
1227
- - Model Development: Fix an issue that alias definitions cause `SnowparkSQLUnexpectedAliasException` in inference.
1228
- - Model Registry: Fix an issue that signature inference could be incorrect when using Snowpark DataFrame as sample input.
1229
- - Model Registry: Fix too strict data type validation when predicting. Now, for example, if you have a INT8
1258
+ * Model Development: Fix an issue that leading to UTF-8 decoding errors when using modeling modules on Windows.
1259
+ * Model Development: Fix an issue that alias definitions cause `SnowparkSQLUnexpectedAliasException` in inference.
1260
+ * Model Registry: Fix an issue that signature inference could be incorrect when using Snowpark DataFrame as sample input.
1261
+ * Model Registry: Fix too strict data type validation when predicting. Now, for example, if you have a INT8
1230
1262
  type feature in the signature, if providing a INT64 dataframe but all values are within the range, it would not fail.
1231
1263
 
1232
1264
  ## 1.0.9 (2023-09-28)
1233
1265
 
1234
1266
  ### Behavior Changes
1235
1267
 
1236
- - Model Development: log_loss metric calculation is now distributed.
1268
+ * Model Development: log_loss metric calculation is now distributed.
1237
1269
 
1238
1270
  ### Bug Fixes
1239
1271
 
1240
- - Model Registry: Fix an issue that building images fails with specific docker setup.
1241
- - Model Registry: Fix an issue that unable to embed local ML library when the library is imported by `zipimport`.
1242
- - Model Registry: Fix out-of-date doc about `platform` argument in the `deploy` function.
1243
- - Model Registry: Fix an issue that unable to deploy a GPU-trained PyTorch model to a platform where GPU is not available.
1272
+ * Model Registry: Fix an issue that building images fails with specific docker setup.
1273
+ * Model Registry: Fix an issue that unable to embed local ML library when the library is imported by `zipimport`.
1274
+ * Model Registry: Fix out-of-date doc about `platform` argument in the `deploy` function.
1275
+ * Model Registry: Fix an issue that unable to deploy a GPU-trained PyTorch model to a platform where GPU is not available.
1244
1276
 
1245
1277
  ## 1.0.8 (2023-09-15)
1246
1278
 
1247
1279
  ### Bug Fixes
1248
1280
 
1249
- - Model Development: Ordinal encoder can be used with mixed input column types.
1250
- - Model Development: Fix an issue when the sklearn default value is `np.nan`.
1251
- - Model Registry: Fix an issue that incorrect docker executable is used when building images.
1252
- - Model Registry: Fix an issue that specifying `token` argument when using
1281
+ * Model Development: Ordinal encoder can be used with mixed input column types.
1282
+ * Model Development: Fix an issue when the sklearn default value is `np.nan`.
1283
+ * Model Registry: Fix an issue that incorrect docker executable is used when building images.
1284
+ * Model Registry: Fix an issue that specifying `token` argument when using
1253
1285
  `snowflake.ml.model.models.huggingface_pipeline.HuggingFacePipelineModel` with `transformers < 4.32.0` is not effective.
1254
- - Model Registry: Fix an issue that incorrect system function call is used when deploying to SPCS.
1255
- - Model Registry: Fix an issue when using a `transformers.pipeline` that does not have a `tokenizer`.
1256
- - Model Registry: Fix incorrectly-inferred image repository name during model deployment to SPCS.
1257
- - Model Registry: Fix GPU resource retention issue caused by failed or stuck previous deployments in SPCS.
1286
+ * Model Registry: Fix an issue that incorrect system function call is used when deploying to SPCS.
1287
+ * Model Registry: Fix an issue when using a `transformers.pipeline` that does not have a `tokenizer`.
1288
+ * Model Registry: Fix incorrectly-inferred image repository name during model deployment to SPCS.
1289
+ * Model Registry: Fix GPU resource retention issue caused by failed or stuck previous deployments in SPCS.
1258
1290
 
1259
1291
  ## 1.0.7 (2023-09-05)
1260
1292
 
1261
1293
  ### Bug Fixes
1262
1294
 
1263
- - Model Development & Model Registry: Fix an error related to `pandas.io.json.json_normalize`.
1264
- - Allow disabling telemetry.
1295
+ * Model Development & Model Registry: Fix an error related to `pandas.io.json.json_normalize`.
1296
+ * Allow disabling telemetry.
1265
1297
 
1266
1298
  ## 1.0.6 (2023-09-01)
1267
1299
 
1268
1300
  ### New Features
1269
1301
 
1270
- - Model Registry: add `create_if_not_exists` parameter in constructor.
1271
- - Model Registry: Added get_or_create_model_registry API.
1272
- - Model Registry: Added support for using GPU inference when deploying XGBoost (`xgboost.XGBModel` and `xgboost.Booster`
1302
+ * Model Registry: add `create_if_not_exists` parameter in constructor.
1303
+ * Model Registry: Added get_or_create_model_registry API.
1304
+ * Model Registry: Added support for using GPU inference when deploying XGBoost (`xgboost.XGBModel` and `xgboost.Booster`
1273
1305
  ), PyTorch (`torch.nn.Module` and `torch.jit.ScriptModule`) and TensorFlow (`tensorflow.Module` and
1274
1306
  `tensorflow.keras.Model`) models to Snowpark Container Services.
1275
- - Model Registry: When inferring model signature, `Sequence` of built-in types, `Sequence` of `numpy.ndarray`,
1307
+ * Model Registry: When inferring model signature, `Sequence` of built-in types, `Sequence` of `numpy.ndarray`,
1276
1308
  `Sequence` of `torch.Tensor`, `Sequence` of `tensorflow.Tensor` and `Sequence` of `tensorflow.Tensor` can be used
1277
1309
  instead of only `List` of them.
1278
- - Model Registry: Added `get_training_dataset` API.
1279
- - Model Development: Size of metrics result can exceed previous 8MB limit.
1280
- - Model Registry: Added support save/load/deploy HuggingFace pipeline object (`transformers.Pipeline`) and our wrapper
1310
+ * Model Registry: Added `get_training_dataset` API.
1311
+ * Model Development: Size of metrics result can exceed previous 8MB limit.
1312
+ * Model Registry: Added support save/load/deploy HuggingFace pipeline object (`transformers.Pipeline`) and our wrapper
1281
1313
  (`snowflake.ml.model.models.huggingface_pipeline.HuggingFacePipelineModel`) to it. Using the wrapper to specify
1282
1314
  configurations and the model for the pipeline will be loaded dynamically when deploying. Currently, following tasks
1283
1315
  are supported to log without manually specifying model signatures:
1284
- - "conversational"
1285
- - "fill-mask"
1286
- - "question-answering"
1287
- - "summarization"
1288
- - "table-question-answering"
1289
- - "text2text-generation"
1290
- - "text-classification" (alias "sentiment-analysis" available)
1291
- - "text-generation"
1292
- - "token-classification" (alias "ner" available)
1293
- - "translation"
1294
- - "translation_xx_to_yy"
1295
- - "zero-shot-classification"
1316
+ * "conversational"
1317
+ * "fill-mask"
1318
+ * "question-answering"
1319
+ * "summarization"
1320
+ * "table-question-answering"
1321
+ * "text2text-generation"
1322
+ * "text-classification" (alias "sentiment-analysis" available)
1323
+ * "text-generation"
1324
+ * "token-classification" (alias "ner" available)
1325
+ * "translation"
1326
+ * "translation_xx_to_yy"
1327
+ * "zero-shot-classification"
1296
1328
 
1297
1329
  ### Bug Fixes
1298
1330
 
1299
- - Model Development: Fixed a bug when using simple imputer with numpy >= 1.25.
1300
- - Model Development: Fixed a bug when inferring the type of label columns.
1331
+ * Model Development: Fixed a bug when using simple imputer with numpy >= 1.25.
1332
+ * Model Development: Fixed a bug when inferring the type of label columns.
1301
1333
 
1302
1334
  ### Behavior Changes
1303
1335
 
1304
- - Model Registry: `log_model()` now return a `ModelReference` object instead of a model ID.
1305
- - Model Registry: When deploying a model with 1 `target method` only, the `target_method` argument can be omitted.
1306
- - Model Registry: When using the snowflake-ml-python with version newer than what is available in Snowflake Anaconda
1336
+ * Model Registry: `log_model()` now return a `ModelReference` object instead of a model ID.
1337
+ * Model Registry: When deploying a model with 1 `target method` only, the `target_method` argument can be omitted.
1338
+ * Model Registry: When using the snowflake-ml-python with version newer than what is available in Snowflake Anaconda
1307
1339
  Channel, `embed_local_ml_library` option will be set as `True` automatically if not.
1308
- - Model Registry: When deploying a model to Snowpark Container Services and using GPU, the default value of num_workers
1340
+ * Model Registry: When deploying a model to Snowpark Container Services and using GPU, the default value of num_workers
1309
1341
  will be 1.
1310
- - Model Registry: `keep_order` and `output_with_input_features` in the deploy options have been removed. Now the
1342
+ * Model Registry: `keep_order` and `output_with_input_features` in the deploy options have been removed. Now the
1311
1343
  behavior is controlled by the type of the input when calling `model.predict()`. If the input is a `pandas.DataFrame`,
1312
1344
  the behavior will be the same as `keep_order=True` and `output_with_input_features=False` before. If the input is a
1313
1345
  `snowpark.DataFrame`, the behavior will be the same as `keep_order=False` and `output_with_input_features=True` before.
1314
- - Model Registry: When logging and deploying PyTorch (`torch.nn.Module` and `torch.jit.ScriptModule`) and TensorFlow
1346
+ * Model Registry: When logging and deploying PyTorch (`torch.nn.Module` and `torch.jit.ScriptModule`) and TensorFlow
1315
1347
  (`tensorflow.Module` and `tensorflow.keras.Model`) models, we no longer accept models whose input is a list of tensor
1316
1348
  and output is a list of tensors. Instead, now we accept models whose input is 1 or more tensors as positional arguments,
1317
1349
  and output is a tensor or a tuple of tensors. The input and output dataframe when predicting keep the same as before,
@@ -1321,53 +1353,53 @@ not readable by new SDK.
1321
1353
 
1322
1354
  ### New Features
1323
1355
 
1324
- - Model Registry: Added support save/load/deploy xgboost Booster model.
1325
- - Model Registry: Added support to get the model name and the model version from model references.
1356
+ * Model Registry: Added support save/load/deploy xgboost Booster model.
1357
+ * Model Registry: Added support to get the model name and the model version from model references.
1326
1358
 
1327
1359
  ### Bug Fixes
1328
1360
 
1329
- - Model Registry: Restore the db/schema back to the session after `create_model_registry()`.
1330
- - Model Registry: Fixed an issue that the UDF name created when deploying a model is not identical to what is provided
1361
+ * Model Registry: Restore the db/schema back to the session after `create_model_registry()`.
1362
+ * Model Registry: Fixed an issue that the UDF name created when deploying a model is not identical to what is provided
1331
1363
  and cannot be correctly dropped when deployment getting dropped.
1332
- - connection_params.SnowflakeLoginOptions(): Added support for `private_key_path`.
1364
+ * connection_params.SnowflakeLoginOptions(): Added support for `private_key_path`.
1333
1365
 
1334
1366
  ## 1.0.4 (2023-07-28)
1335
1367
 
1336
1368
  ### New Features
1337
1369
 
1338
- - Model Registry: Added support save/load/deploy Tensorflow models (`tensorflow.Module`).
1339
- - Model Registry: Added support save/load/deploy MLFlow PyFunc models (`mlflow.pyfunc.PyFuncModel`).
1340
- - Model Development: Input dataframes can now be joined against data loaded from staged files.
1341
- - Model Development: Added support for non-English languages.
1370
+ * Model Registry: Added support save/load/deploy Tensorflow models (`tensorflow.Module`).
1371
+ * Model Registry: Added support save/load/deploy MLFlow PyFunc models (`mlflow.pyfunc.PyFuncModel`).
1372
+ * Model Development: Input dataframes can now be joined against data loaded from staged files.
1373
+ * Model Development: Added support for non-English languages.
1342
1374
 
1343
1375
  ### Bug Fixes
1344
1376
 
1345
- - Model Registry: Fix an issue that model dependencies are incorrectly reported as unresolvable on certain platforms.
1377
+ * Model Registry: Fix an issue that model dependencies are incorrectly reported as unresolvable on certain platforms.
1346
1378
 
1347
1379
  ## 1.0.3 (2023-07-14)
1348
1380
 
1349
1381
  ### Behavior Changes
1350
1382
 
1351
- - Model Registry: When predicting a model whose output is a list of NumPy ndarray, the output would not be flattened,
1383
+ * Model Registry: When predicting a model whose output is a list of NumPy ndarray, the output would not be flattened,
1352
1384
  instead, every ndarray will act as a feature(column) in the output.
1353
1385
 
1354
1386
  ### New Features
1355
1387
 
1356
- - Model Registry: Added support save/load/deploy PyTorch models (`torch.nn.Module` and `torch.jit.ScriptModule`).
1388
+ * Model Registry: Added support save/load/deploy PyTorch models (`torch.nn.Module` and `torch.jit.ScriptModule`).
1357
1389
 
1358
1390
  ### Bug Fixes
1359
1391
 
1360
- - Model Registry: Fix an issue that when database or schema name provided to `create_model_registry` contains special
1392
+ * Model Registry: Fix an issue that when database or schema name provided to `create_model_registry` contains special
1361
1393
  characters, the model registry cannot be created.
1362
- - Model Registry: Fix an issue that `get_model_description` returns with additional quotes.
1363
- - Model Registry: Fix incorrect error message when attempting to remove a unset tag of a model.
1364
- - Model Registry: Fix a typo in the default deployment table name.
1365
- - Model Registry: Snowpark dataframe for sample input or input for `predict` method that contains a column with
1394
+ * Model Registry: Fix an issue that `get_model_description` returns with additional quotes.
1395
+ * Model Registry: Fix incorrect error message when attempting to remove a unset tag of a model.
1396
+ * Model Registry: Fix a typo in the default deployment table name.
1397
+ * Model Registry: Snowpark dataframe for sample input or input for `predict` method that contains a column with
1366
1398
  Snowflake `NUMBER(precision, scale)` data type where `scale = 0` will not lead to error, and will now correctly
1367
1399
  recognized as `INT64` data type in model signature.
1368
- - Model Registry: Fix an issue that prevent model logged in the system whose default encoding is not UTF-8 compatible
1400
+ * Model Registry: Fix an issue that prevent model logged in the system whose default encoding is not UTF-8 compatible
1369
1401
  from deploying.
1370
- - Model Registry: Added earlier and better error message when any file name in the model or the file name of model
1402
+ * Model Registry: Added earlier and better error message when any file name in the model or the file name of model
1371
1403
  itself contains characters that are unable to be encoded using ASCII. It is currently not supported to deploy such a
1372
1404
  model.
1373
1405
 
@@ -1375,181 +1407,181 @@ not readable by new SDK.
1375
1407
 
1376
1408
  ### Behavior Changes
1377
1409
 
1378
- - Model Registry: Prohibit non-snowflake-native models from being logged.
1379
- - Model Registry: `_use_local_snowml` parameter in options of `deploy()` has been removed.
1380
- - Model Registry: A default `False` `embed_local_ml_library` parameter has been added to the options of `log_model()`.
1410
+ * Model Registry: Prohibit non-snowflake-native models from being logged.
1411
+ * Model Registry: `_use_local_snowml` parameter in options of `deploy()` has been removed.
1412
+ * Model Registry: A default `False` `embed_local_ml_library` parameter has been added to the options of `log_model()`.
1381
1413
  With this set to `False` (default), the version of the local snowflake-ml-python library will be recorded and used when
1382
1414
  deploying the model. With this set to `True`, local snowflake-ml-python library will be embedded into the logged model,
1383
1415
  and will be used when you load or deploy the model.
1384
1416
 
1385
1417
  ### New Features
1386
1418
 
1387
- - Model Registry: A new optional argument named `code_paths` has been added to the arguments of `log_model()` for users
1419
+ * Model Registry: A new optional argument named `code_paths` has been added to the arguments of `log_model()` for users
1388
1420
  to specify additional code paths to be imported when loading and deploying the model.
1389
- - Model Registry: A new optional argument named `options` has been added to the arguments of `log_model()` to specify
1421
+ * Model Registry: A new optional argument named `options` has been added to the arguments of `log_model()` to specify
1390
1422
  any additional options when saving the model.
1391
- - Model Development: Added metrics:
1392
- - d2_absolute_error_score
1393
- - d2_pinball_score
1394
- - explained_variance_score
1395
- - mean_absolute_error
1396
- - mean_absolute_percentage_error
1397
- - mean_squared_error
1423
+ * Model Development: Added metrics:
1424
+ * d2_absolute_error_score
1425
+ * d2_pinball_score
1426
+ * explained_variance_score
1427
+ * mean_absolute_error
1428
+ * mean_absolute_percentage_error
1429
+ * mean_squared_error
1398
1430
 
1399
1431
  ### Bug Fixes
1400
1432
 
1401
- - Model Development: `accuracy_score()` now works when given label column names are lists of a single value.
1433
+ * Model Development: `accuracy_score()` now works when given label column names are lists of a single value.
1402
1434
 
1403
1435
  ## 1.0.1 (2023-06-16)
1404
1436
 
1405
1437
  ### Behavior Changes
1406
1438
 
1407
- - Model Development: Changed Metrics APIs to imitate sklearn metrics modules:
1408
- - `accuracy_score()`, `confusion_matrix()`, `precision_recall_fscore_support()`, `precision_score()` methods move from
1439
+ * Model Development: Changed Metrics APIs to imitate sklearn metrics modules:
1440
+ * `accuracy_score()`, `confusion_matrix()`, `precision_recall_fscore_support()`, `precision_score()` methods move from
1409
1441
  respective modules to `metrics.classification`.
1410
- - Model Registry: The default table/stage created by the Registry now uses "_SYSTEM_" as a prefix.
1411
- - Model Registry: `get_model_history()` method as been enhanced to include the history of model deployment.
1442
+ * Model Registry: The default table/stage created by the Registry now uses "_SYSTEM_" as a prefix.
1443
+ * Model Registry: `get_model_history()` method as been enhanced to include the history of model deployment.
1412
1444
 
1413
1445
  ### New Features
1414
1446
 
1415
- - Model Registry: A default `False` flag named `replace_udf` has been added to the options of `deploy()`. Setting this
1447
+ * Model Registry: A default `False` flag named `replace_udf` has been added to the options of `deploy()`. Setting this
1416
1448
  to `True` will allow overwrite existing UDF with the same name when deploying.
1417
- - Model Development: Added metrics:
1418
- - f1_score
1419
- - fbeta_score
1420
- - recall_score
1421
- - roc_auc_score
1422
- - roc_curve
1423
- - log_loss
1424
- - precision_recall_curve
1425
- - Model Registry: A new argument named `permanent` has been added to the argument of `deploy()`. Setting this to `True`
1449
+ * Model Development: Added metrics:
1450
+ * f1_score
1451
+ * fbeta_score
1452
+ * recall_score
1453
+ * roc_auc_score
1454
+ * roc_curve
1455
+ * log_loss
1456
+ * precision_recall_curve
1457
+ * Model Registry: A new argument named `permanent` has been added to the argument of `deploy()`. Setting this to `True`
1426
1458
  allows the creation of a permanent deployment without needing to specify the UDF location.
1427
- - Model Registry: A new method `list_deployments()` has been added to enumerate all permanent deployments originating
1459
+ * Model Registry: A new method `list_deployments()` has been added to enumerate all permanent deployments originating
1428
1460
  from a specific model.
1429
- - Model Registry: A new method `get_deployment()` has been added to fetch a deployment by its deployment name.
1430
- - Model Registry: A new method `delete_deployment()` has been added to remove an existing permanent deployment.
1461
+ * Model Registry: A new method `get_deployment()` has been added to fetch a deployment by its deployment name.
1462
+ * Model Registry: A new method `delete_deployment()` has been added to remove an existing permanent deployment.
1431
1463
 
1432
1464
  ## 1.0.0 (2023-06-09)
1433
1465
 
1434
1466
  ### Behavior Changes
1435
1467
 
1436
- - Model Registry: `predict()` method moves from Registry to ModelReference.
1437
- - Model Registry: `_snowml_wheel_path` parameter in options of `deploy()`, is replaced with `_use_local_snowml` with
1468
+ * Model Registry: `predict()` method moves from Registry to ModelReference.
1469
+ * Model Registry: `_snowml_wheel_path` parameter in options of `deploy()`, is replaced with `_use_local_snowml` with
1438
1470
  default value of `False`. Setting this to `True` will have the same effect of uploading local SnowML code when executing
1439
1471
  model in the warehouse.
1440
- - Model Registry: Removed `id` field from `ModelReference` constructor.
1441
- - Model Development: Preprocessing and Metrics move to the modeling package: `snowflake.ml.modeling.preprocessing` and
1472
+ * Model Registry: Removed `id` field from `ModelReference` constructor.
1473
+ * Model Development: Preprocessing and Metrics move to the modeling package: `snowflake.ml.modeling.preprocessing` and
1442
1474
  `snowflake.ml.modeling.metrics`.
1443
- - Model Development: `get_sklearn_object()` method is renamed to `to_sklearn()`, `to_xgboost()`, and `to_lightgbm()` for
1475
+ * Model Development: `get_sklearn_object()` method is renamed to `to_sklearn()`, `to_xgboost()`, and `to_lightgbm()` for
1444
1476
  respective native models.
1445
1477
 
1446
1478
  ### New Features
1447
1479
 
1448
- - Added PolynomialFeatures transformer to the snowflake.ml.modeling.preprocessing module.
1449
- - Added metrics:
1450
- - accuracy_score
1451
- - confusion_matrix
1452
- - precision_recall_fscore_support
1453
- - precision_score
1480
+ * Added PolynomialFeatures transformer to the snowflake.ml.modeling.preprocessing module.
1481
+ * Added metrics:
1482
+ * accuracy_score
1483
+ * confusion_matrix
1484
+ * precision_recall_fscore_support
1485
+ * precision_score
1454
1486
 
1455
1487
  ### Bug Fixes
1456
1488
 
1457
- - Model Registry: Model version can now be any string (not required to be a valid identifier)
1458
- - Model Deployment: `deploy()` & `predict()` methods now correctly escapes identifiers
1489
+ * Model Registry: Model version can now be any string (not required to be a valid identifier)
1490
+ * Model Deployment: `deploy()` & `predict()` methods now correctly escapes identifiers
1459
1491
 
1460
1492
  ## 0.3.2 (2023-05-23)
1461
1493
 
1462
1494
  ### Behavior Changes
1463
1495
 
1464
- - Use cloudpickle to serialize and deserialize models throughout the codebase and removed dependency on joblib.
1496
+ * Use cloudpickle to serialize and deserialize models throughout the codebase and removed dependency on joblib.
1465
1497
 
1466
1498
  ### New Features
1467
1499
 
1468
- - Model Deployment: Added support for snowflake.ml models.
1500
+ * Model Deployment: Added support for snowflake.ml models.
1469
1501
 
1470
1502
  ## 0.3.1 (2023-05-18)
1471
1503
 
1472
1504
  ### Behavior Changes
1473
1505
 
1474
- - Standardized registry API with following
1475
- - Create & open registry taking same set of arguments
1476
- - Create & Open can choose schema to use
1477
- - Set_tag, set_metric, etc now explicitly calls out arg name as metric_name, tag_name, metric_name, etc.
1506
+ * Standardized registry API with following
1507
+ * Create & open registry taking same set of arguments
1508
+ * Create & Open can choose schema to use
1509
+ * Set_tag, set_metric, etc now explicitly calls out arg name as metric_name, tag_name, metric_name, etc.
1478
1510
 
1479
1511
  ### New Features
1480
1512
 
1481
- - Changes to support python 3.9, 3.10
1482
- - Added kBinsDiscretizer
1483
- - Support for deployment of XGBoost models & int8 types of data
1513
+ * Changes to support python 3.9, 3.10
1514
+ * Added kBinsDiscretizer
1515
+ * Support for deployment of XGBoost models & int8 types of data
1484
1516
 
1485
1517
  ## 0.3.0 (2023-05-11)
1486
1518
 
1487
1519
  ### Behavior Changes
1488
1520
 
1489
- - Big Model Registry Refresh
1490
- - Fixed API discrepancies between register_model & log_model.
1491
- - Model can be referred by Name + Version (no opaque internal id is required)
1521
+ * Big Model Registry Refresh
1522
+ * Fixed API discrepancies between register_model & log_model.
1523
+ * Model can be referred by Name + Version (no opaque internal id is required)
1492
1524
 
1493
1525
  ### New Features
1494
1526
 
1495
- - Model Registry: Added support save/load/deploy SKL & XGB Models
1527
+ * Model Registry: Added support save/load/deploy SKL & XGB Models
1496
1528
 
1497
1529
  ## 0.2.3 (2023-04-27)
1498
1530
 
1499
1531
  ### Bug Fixes
1500
1532
 
1501
- - Allow using OneHotEncoder along with sklearn style estimators in a pipeline.
1533
+ * Allow using OneHotEncoder along with sklearn style estimators in a pipeline.
1502
1534
 
1503
1535
  ### New Features
1504
1536
 
1505
- - Model Registry: Added support for delete_model. Use delete_artifact = False to not delete the underlying model data
1537
+ * Model Registry: Added support for delete_model. Use delete_artifact = False to not delete the underlying model data
1506
1538
  but just unregister.
1507
1539
 
1508
1540
  ## 0.2.2 (2023-04-11)
1509
1541
 
1510
1542
  ### New Features
1511
1543
 
1512
- - Initial version of snowflake-ml modeling package.
1513
- - Provide support for training most of scikit-learn and xgboost estimators and transformers.
1544
+ * Initial version of snowflake-ml modeling package.
1545
+ * Provide support for training most of scikit-learn and xgboost estimators and transformers.
1514
1546
 
1515
1547
  ### Bug Fixes
1516
1548
 
1517
- - Minor fixes in preprocessing package.
1549
+ * Minor fixes in preprocessing package.
1518
1550
 
1519
1551
  ## 0.2.1 (2023-03-23)
1520
1552
 
1521
1553
  ### New Features
1522
1554
 
1523
- - New in Preprocessing:
1524
- - SimpleImputer
1525
- - Covariance Matrix
1526
- - Optimization of Ordinal Encoder client computations.
1555
+ * New in Preprocessing:
1556
+ * SimpleImputer
1557
+ * Covariance Matrix
1558
+ * Optimization of Ordinal Encoder client computations.
1527
1559
 
1528
1560
  ### Bug Fixes
1529
1561
 
1530
- - Minor fixes in OneHotEncoder.
1562
+ * Minor fixes in OneHotEncoder.
1531
1563
 
1532
1564
  ## 0.2.0 (2023-02-27)
1533
1565
 
1534
1566
  ### New Features
1535
1567
 
1536
- - Model Registry
1537
- - PyTorch & Tensorflow connector file generic FileSet API
1538
- - New to Preprocessing:
1539
- - Binarizer
1540
- - Normalizer
1541
- - Pearson correlation Matrix
1542
- - Optimization in Ordinal Encoder to cache vocabulary in temp tables.
1568
+ * Model Registry
1569
+ * PyTorch & Tensorflow connector file generic FileSet API
1570
+ * New to Preprocessing:
1571
+ * Binarizer
1572
+ * Normalizer
1573
+ * Pearson correlation Matrix
1574
+ * Optimization in Ordinal Encoder to cache vocabulary in temp tables.
1543
1575
 
1544
1576
  ## 0.1.3 (2023-02-02)
1545
1577
 
1546
1578
  ### New Features
1547
1579
 
1548
- - Initial version of transformers including:
1549
- - Label Encoder
1550
- - Max Abs Scaler
1551
- - Min Max Scaler
1552
- - One Hot Encoder
1553
- - Ordinal Encoder
1554
- - Robust Scaler
1555
- - Standard Scaler
1580
+ * Initial version of transformers including:
1581
+ * Label Encoder
1582
+ * Max Abs Scaler
1583
+ * Min Max Scaler
1584
+ * One Hot Encoder
1585
+ * Ordinal Encoder
1586
+ * Robust Scaler
1587
+ * Standard Scaler