snowflake-ml-python 1.9.2__tar.gz → 1.10.0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (446) hide show
  1. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/CHANGELOG.md +504 -491
  2. {snowflake_ml_python-1.9.2/snowflake_ml_python.egg-info → snowflake_ml_python-1.10.0}/PKG-INFO +505 -492
  3. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/utils/service_logger.py +31 -17
  4. snowflake_ml_python-1.10.0/snowflake/ml/experiment/callback/lightgbm.py +55 -0
  5. snowflake_ml_python-1.10.0/snowflake/ml/experiment/callback/xgboost.py +63 -0
  6. snowflake_ml_python-1.10.0/snowflake/ml/experiment/utils.py +14 -0
  7. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/jobs/_utils/payload_utils.py +13 -7
  8. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/jobs/_utils/scripts/mljob_launcher.py +2 -2
  9. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_client/model/model_version_impl.py +56 -48
  10. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_client/ops/service_ops.py +177 -12
  11. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/model/event_handler.py +87 -18
  12. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/model/models/huggingface_pipeline.py +71 -49
  13. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/model/type_hints.py +26 -1
  14. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/registry/_manager/model_manager.py +30 -35
  15. snowflake_ml_python-1.10.0/snowflake/ml/registry/_manager/model_parameter_reconciler.py +105 -0
  16. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/registry/registry.py +0 -19
  17. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/version.py +1 -1
  18. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0/snowflake_ml_python.egg-info}/PKG-INFO +505 -492
  19. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake_ml_python.egg-info/SOURCES.txt +4 -1
  20. snowflake_ml_python-1.9.2/snowflake/ml/experiment/callback.py +0 -121
  21. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/LICENSE.txt +0 -0
  22. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/README.md +0 -0
  23. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/pyproject.toml +0 -0
  24. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/setup.cfg +0 -0
  25. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/cortex/__init__.py +0 -0
  26. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/cortex/_classify_text.py +0 -0
  27. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/cortex/_complete.py +0 -0
  28. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/cortex/_embed_text_1024.py +0 -0
  29. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/cortex/_embed_text_768.py +0 -0
  30. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/cortex/_extract_answer.py +0 -0
  31. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/cortex/_finetune.py +0 -0
  32. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/cortex/_sentiment.py +0 -0
  33. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/cortex/_sse_client.py +0 -0
  34. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/cortex/_summarize.py +0 -0
  35. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/cortex/_translate.py +0 -0
  36. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/cortex/_util.py +0 -0
  37. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/env.py +0 -0
  38. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/env_utils.py +0 -0
  39. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/exceptions/dataset_error_messages.py +0 -0
  40. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/exceptions/dataset_errors.py +0 -0
  41. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/exceptions/error_codes.py +0 -0
  42. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/exceptions/error_messages.py +0 -0
  43. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/exceptions/exceptions.py +0 -0
  44. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/exceptions/fileset_error_messages.py +0 -0
  45. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/exceptions/fileset_errors.py +0 -0
  46. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/exceptions/modeling_error_messages.py +0 -0
  47. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/exceptions/sql_error_codes.py +0 -0
  48. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/file_utils.py +0 -0
  49. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/human_readable_id/adjectives.txt +0 -0
  50. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/human_readable_id/animals.txt +0 -0
  51. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/human_readable_id/hrid_generator.py +0 -0
  52. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +0 -0
  53. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/init_utils.py +0 -0
  54. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/lineage/lineage_utils.py +0 -0
  55. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/migrator_utils.py +0 -0
  56. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/platform_capabilities.py +0 -0
  57. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/relax_version_strategy.py +0 -0
  58. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/telemetry.py +0 -0
  59. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/type_utils.py +0 -0
  60. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/utils/connection_params.py +0 -0
  61. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/utils/db_utils.py +0 -0
  62. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/utils/formatting.py +0 -0
  63. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/utils/identifier.py +0 -0
  64. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/utils/import_utils.py +0 -0
  65. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/utils/jwt_generator.py +0 -0
  66. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/utils/mixins.py +0 -0
  67. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/utils/parallelize.py +0 -0
  68. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/utils/pkg_version_utils.py +0 -0
  69. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/utils/query_result_checker.py +0 -0
  70. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/utils/result.py +0 -0
  71. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/utils/snowflake_env.py +0 -0
  72. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/utils/snowpark_dataframe_utils.py +0 -0
  73. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/utils/sql_identifier.py +0 -0
  74. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/utils/table_manager.py +0 -0
  75. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/utils/temp_file_utils.py +0 -0
  76. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/data/__init__.py +0 -0
  77. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/data/_internal/arrow_ingestor.py +0 -0
  78. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/data/data_connector.py +0 -0
  79. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/data/data_ingestor.py +0 -0
  80. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/data/data_source.py +0 -0
  81. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/data/ingestor_utils.py +0 -0
  82. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/data/torch_utils.py +0 -0
  83. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/dataset/__init__.py +0 -0
  84. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/dataset/dataset.py +0 -0
  85. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/dataset/dataset_factory.py +0 -0
  86. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/dataset/dataset_metadata.py +0 -0
  87. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/dataset/dataset_reader.py +0 -0
  88. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/experiment/__init__.py +0 -0
  89. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/experiment/_client/experiment_tracking_sql_client.py +0 -0
  90. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/experiment/_entities/__init__.py +0 -0
  91. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/experiment/_entities/experiment.py +0 -0
  92. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/experiment/_entities/run.py +0 -0
  93. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/experiment/_entities/run_metadata.py +0 -0
  94. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/experiment/_experiment_info.py +0 -0
  95. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/experiment/experiment_tracking.py +0 -0
  96. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/__init__.py +0 -0
  97. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/access_manager.py +0 -0
  98. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/entity.py +0 -0
  99. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/examples/airline_features/entities.py +0 -0
  100. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/examples/airline_features/features/plane_features.py +0 -0
  101. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/examples/airline_features/features/weather_features.py +0 -0
  102. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/examples/airline_features/source.yaml +0 -0
  103. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/examples/citibike_trip_features/entities.py +0 -0
  104. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/examples/citibike_trip_features/features/station_feature.py +0 -0
  105. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/examples/citibike_trip_features/features/trip_feature.py +0 -0
  106. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/examples/citibike_trip_features/source.yaml +0 -0
  107. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/examples/example_helper.py +0 -0
  108. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/examples/new_york_taxi_features/entities.py +0 -0
  109. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/examples/new_york_taxi_features/features/location_features.py +0 -0
  110. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/examples/new_york_taxi_features/features/trip_features.py +0 -0
  111. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/examples/new_york_taxi_features/source.yaml +0 -0
  112. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/examples/source_data/airline.yaml +0 -0
  113. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/examples/source_data/citibike_trips.yaml +0 -0
  114. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/examples/source_data/fraud_transactions.yaml +0 -0
  115. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/examples/source_data/nyc_yellow_trips.yaml +0 -0
  116. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/examples/source_data/winequality_red.yaml +0 -0
  117. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/examples/wine_quality_features/entities.py +0 -0
  118. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/examples/wine_quality_features/features/managed_wine_features.py +0 -0
  119. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/examples/wine_quality_features/features/static_wine_features.py +0 -0
  120. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/examples/wine_quality_features/source.yaml +0 -0
  121. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/feature_store.py +0 -0
  122. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/feature_view.py +0 -0
  123. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/fileset/embedded_stage_fs.py +0 -0
  124. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/fileset/fileset.py +0 -0
  125. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/fileset/sfcfs.py +0 -0
  126. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/fileset/snowfs.py +0 -0
  127. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/fileset/stage_fs.py +0 -0
  128. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/jobs/__init__.py +0 -0
  129. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/jobs/_utils/constants.py +0 -0
  130. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/jobs/_utils/function_payload_utils.py +0 -0
  131. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/jobs/_utils/interop_utils.py +0 -0
  132. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/jobs/_utils/query_helper.py +0 -0
  133. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/jobs/_utils/scripts/constants.py +0 -0
  134. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/jobs/_utils/scripts/get_instance_ip.py +0 -0
  135. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/jobs/_utils/scripts/signal_workers.py +0 -0
  136. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/jobs/_utils/scripts/worker_shutdown_listener.py +0 -0
  137. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/jobs/_utils/spec_utils.py +0 -0
  138. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/jobs/_utils/stage_utils.py +0 -0
  139. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/jobs/_utils/types.py +0 -0
  140. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/jobs/decorators.py +0 -0
  141. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/jobs/job.py +0 -0
  142. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/jobs/manager.py +0 -0
  143. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/lineage/__init__.py +0 -0
  144. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/lineage/lineage_node.py +0 -0
  145. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/model/__init__.py +0 -0
  146. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_client/model/model_impl.py +0 -0
  147. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_client/ops/metadata_ops.py +0 -0
  148. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_client/ops/model_ops.py +0 -0
  149. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_client/service/model_deployment_spec.py +0 -0
  150. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_client/service/model_deployment_spec_schema.py +0 -0
  151. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_client/sql/_base.py +0 -0
  152. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_client/sql/model.py +0 -0
  153. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_client/sql/model_version.py +0 -0
  154. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_client/sql/service.py +0 -0
  155. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_client/sql/stage.py +0 -0
  156. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_client/sql/tag.py +0 -0
  157. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_model_composer/model_composer.py +0 -0
  158. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +0 -0
  159. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +0 -0
  160. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_model_composer/model_method/constants.py +0 -0
  161. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_model_composer/model_method/function_generator.py +0 -0
  162. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_model_composer/model_method/infer_function.py_template +0 -0
  163. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_model_composer/model_method/infer_partitioned.py_template +0 -0
  164. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +0 -0
  165. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_model_composer/model_method/model_method.py +0 -0
  166. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_model_composer/model_user_file/model_user_file.py +0 -0
  167. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_env/model_env.py +0 -0
  168. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_handler.py +0 -0
  169. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_handlers/_base.py +0 -0
  170. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_handlers/_utils.py +0 -0
  171. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_handlers/catboost.py +0 -0
  172. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_handlers/custom.py +0 -0
  173. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +0 -0
  174. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_handlers/keras.py +0 -0
  175. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_handlers/lightgbm.py +0 -0
  176. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_handlers/mlflow.py +0 -0
  177. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_handlers/pytorch.py +0 -0
  178. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_handlers/sentence_transformers.py +0 -0
  179. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_handlers/sklearn.py +0 -0
  180. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +0 -0
  181. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_handlers/tensorflow.py +0 -0
  182. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_handlers/torchscript.py +0 -0
  183. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_handlers/xgboost.py +0 -0
  184. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_handlers_migrator/base_migrator.py +0 -0
  185. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_handlers_migrator/pytorch_migrator_2023_12_01.py +0 -0
  186. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_handlers_migrator/tensorflow_migrator_2023_12_01.py +0 -0
  187. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_handlers_migrator/tensorflow_migrator_2025_01_01.py +0 -0
  188. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_handlers_migrator/torchscript_migrator_2023_12_01.py +0 -0
  189. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_meta/model_blob_meta.py +0 -0
  190. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_meta/model_meta.py +0 -0
  191. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_meta/model_meta_schema.py +0 -0
  192. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_meta_migrator/base_migrator.py +0 -0
  193. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +0 -0
  194. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_meta_migrator/migrator_v1.py +0 -0
  195. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_packager.py +0 -0
  196. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py +0 -0
  197. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_runtime/model_runtime.py +0 -0
  198. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_task/model_task_utils.py +0 -0
  199. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_signatures/base_handler.py +0 -0
  200. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_signatures/builtins_handler.py +0 -0
  201. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_signatures/core.py +0 -0
  202. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_signatures/dmatrix_handler.py +0 -0
  203. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_signatures/numpy_handler.py +0 -0
  204. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_signatures/pandas_handler.py +0 -0
  205. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_signatures/pytorch_handler.py +0 -0
  206. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_signatures/snowpark_handler.py +0 -0
  207. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_signatures/tensorflow_handler.py +0 -0
  208. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_signatures/utils.py +0 -0
  209. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/model/custom_model.py +0 -0
  210. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/model/model_signature.py +0 -0
  211. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/model/target_platform.py +0 -0
  212. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/model/task.py +0 -0
  213. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/_internal/estimator_utils.py +0 -0
  214. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +0 -0
  215. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +0 -0
  216. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/_internal/model_specifications.py +0 -0
  217. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/_internal/model_trainer.py +0 -0
  218. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/_internal/model_trainer_builder.py +0 -0
  219. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/_internal/model_transformer_builder.py +0 -0
  220. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +0 -0
  221. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/_internal/snowpark_implementations/distributed_search_udf_file.py +0 -0
  222. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +0 -0
  223. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +0 -0
  224. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/_internal/snowpark_implementations/xgboost_external_memory_trainer.py +0 -0
  225. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/_internal/transformer_protocols.py +0 -0
  226. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/calibration/__init__.py +0 -0
  227. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +0 -0
  228. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/cluster/__init__.py +0 -0
  229. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/cluster/affinity_propagation.py +0 -0
  230. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/cluster/agglomerative_clustering.py +0 -0
  231. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/cluster/birch.py +0 -0
  232. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/cluster/bisecting_k_means.py +0 -0
  233. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/cluster/dbscan.py +0 -0
  234. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/cluster/feature_agglomeration.py +0 -0
  235. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/cluster/k_means.py +0 -0
  236. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/cluster/mean_shift.py +0 -0
  237. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/cluster/mini_batch_k_means.py +0 -0
  238. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/cluster/optics.py +0 -0
  239. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/cluster/spectral_biclustering.py +0 -0
  240. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/cluster/spectral_clustering.py +0 -0
  241. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/cluster/spectral_coclustering.py +0 -0
  242. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/compose/__init__.py +0 -0
  243. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/compose/column_transformer.py +0 -0
  244. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/compose/transformed_target_regressor.py +0 -0
  245. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/covariance/__init__.py +0 -0
  246. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/covariance/elliptic_envelope.py +0 -0
  247. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/covariance/empirical_covariance.py +0 -0
  248. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/covariance/graphical_lasso.py +0 -0
  249. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/covariance/graphical_lasso_cv.py +0 -0
  250. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/covariance/ledoit_wolf.py +0 -0
  251. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/covariance/min_cov_det.py +0 -0
  252. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/covariance/oas.py +0 -0
  253. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/covariance/shrunk_covariance.py +0 -0
  254. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/decomposition/__init__.py +0 -0
  255. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/decomposition/dictionary_learning.py +0 -0
  256. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/decomposition/factor_analysis.py +0 -0
  257. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/decomposition/fast_ica.py +0 -0
  258. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/decomposition/incremental_pca.py +0 -0
  259. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/decomposition/kernel_pca.py +0 -0
  260. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +0 -0
  261. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +0 -0
  262. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/decomposition/pca.py +0 -0
  263. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/decomposition/sparse_pca.py +0 -0
  264. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/decomposition/truncated_svd.py +0 -0
  265. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/discriminant_analysis/__init__.py +0 -0
  266. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +0 -0
  267. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +0 -0
  268. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/ensemble/__init__.py +0 -0
  269. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/ensemble/ada_boost_classifier.py +0 -0
  270. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/ensemble/ada_boost_regressor.py +0 -0
  271. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/ensemble/bagging_classifier.py +0 -0
  272. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/ensemble/bagging_regressor.py +0 -0
  273. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/ensemble/extra_trees_classifier.py +0 -0
  274. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/ensemble/extra_trees_regressor.py +0 -0
  275. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +0 -0
  276. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +0 -0
  277. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +0 -0
  278. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +0 -0
  279. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/ensemble/isolation_forest.py +0 -0
  280. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/ensemble/random_forest_classifier.py +0 -0
  281. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/ensemble/random_forest_regressor.py +0 -0
  282. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/ensemble/stacking_regressor.py +0 -0
  283. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/ensemble/voting_classifier.py +0 -0
  284. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/ensemble/voting_regressor.py +0 -0
  285. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/feature_selection/__init__.py +0 -0
  286. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/feature_selection/generic_univariate_select.py +0 -0
  287. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/feature_selection/select_fdr.py +0 -0
  288. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/feature_selection/select_fpr.py +0 -0
  289. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/feature_selection/select_fwe.py +0 -0
  290. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/feature_selection/select_k_best.py +0 -0
  291. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/feature_selection/select_percentile.py +0 -0
  292. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +0 -0
  293. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/feature_selection/variance_threshold.py +0 -0
  294. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/framework/_utils.py +0 -0
  295. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/framework/base.py +0 -0
  296. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/gaussian_process/__init__.py +0 -0
  297. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +0 -0
  298. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +0 -0
  299. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/impute/__init__.py +0 -0
  300. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/impute/iterative_imputer.py +0 -0
  301. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/impute/knn_imputer.py +0 -0
  302. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/impute/missing_indicator.py +0 -0
  303. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/impute/simple_imputer.py +0 -0
  304. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/kernel_approximation/__init__.py +0 -0
  305. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +0 -0
  306. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/kernel_approximation/nystroem.py +0 -0
  307. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +0 -0
  308. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +0 -0
  309. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +0 -0
  310. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/kernel_ridge/__init__.py +0 -0
  311. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +0 -0
  312. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/lightgbm/__init__.py +0 -0
  313. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/lightgbm/lgbm_classifier.py +0 -0
  314. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/lightgbm/lgbm_regressor.py +0 -0
  315. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/__init__.py +0 -0
  316. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/ard_regression.py +0 -0
  317. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/bayesian_ridge.py +0 -0
  318. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/elastic_net.py +0 -0
  319. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/elastic_net_cv.py +0 -0
  320. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/gamma_regressor.py +0 -0
  321. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/huber_regressor.py +0 -0
  322. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/lars.py +0 -0
  323. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/lars_cv.py +0 -0
  324. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/lasso.py +0 -0
  325. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/lasso_cv.py +0 -0
  326. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/lasso_lars.py +0 -0
  327. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/lasso_lars_cv.py +0 -0
  328. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/lasso_lars_ic.py +0 -0
  329. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/linear_regression.py +0 -0
  330. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/logistic_regression.py +0 -0
  331. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/logistic_regression_cv.py +0 -0
  332. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +0 -0
  333. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +0 -0
  334. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/multi_task_lasso.py +0 -0
  335. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +0 -0
  336. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +0 -0
  337. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +0 -0
  338. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +0 -0
  339. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/perceptron.py +0 -0
  340. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/poisson_regressor.py +0 -0
  341. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/ransac_regressor.py +0 -0
  342. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/ridge.py +0 -0
  343. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/ridge_classifier.py +0 -0
  344. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +0 -0
  345. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/ridge_cv.py +0 -0
  346. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/sgd_classifier.py +0 -0
  347. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +0 -0
  348. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/sgd_regressor.py +0 -0
  349. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/theil_sen_regressor.py +0 -0
  350. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/tweedie_regressor.py +0 -0
  351. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/manifold/__init__.py +0 -0
  352. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/manifold/isomap.py +0 -0
  353. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/manifold/mds.py +0 -0
  354. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/manifold/spectral_embedding.py +0 -0
  355. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/manifold/tsne.py +0 -0
  356. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/metrics/__init__.py +0 -0
  357. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/metrics/classification.py +0 -0
  358. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/metrics/correlation.py +0 -0
  359. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/metrics/covariance.py +0 -0
  360. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/metrics/metrics_utils.py +0 -0
  361. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/metrics/ranking.py +0 -0
  362. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/metrics/regression.py +0 -0
  363. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/mixture/__init__.py +0 -0
  364. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +0 -0
  365. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/mixture/gaussian_mixture.py +0 -0
  366. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/model_selection/__init__.py +0 -0
  367. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/model_selection/grid_search_cv.py +0 -0
  368. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/model_selection/randomized_search_cv.py +0 -0
  369. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/multiclass/__init__.py +0 -0
  370. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +0 -0
  371. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +0 -0
  372. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/multiclass/output_code_classifier.py +0 -0
  373. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/naive_bayes/__init__.py +0 -0
  374. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +0 -0
  375. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/naive_bayes/categorical_nb.py +0 -0
  376. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/naive_bayes/complement_nb.py +0 -0
  377. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/naive_bayes/gaussian_nb.py +0 -0
  378. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/naive_bayes/multinomial_nb.py +0 -0
  379. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/neighbors/__init__.py +0 -0
  380. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +0 -0
  381. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +0 -0
  382. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/neighbors/kernel_density.py +0 -0
  383. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/neighbors/local_outlier_factor.py +0 -0
  384. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/neighbors/nearest_centroid.py +0 -0
  385. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/neighbors/nearest_neighbors.py +0 -0
  386. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +0 -0
  387. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +0 -0
  388. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +0 -0
  389. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/neural_network/__init__.py +0 -0
  390. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/neural_network/bernoulli_rbm.py +0 -0
  391. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/neural_network/mlp_classifier.py +0 -0
  392. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/neural_network/mlp_regressor.py +0 -0
  393. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/parameters/disable_distributed_hpo.py +0 -0
  394. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/parameters/disable_model_tracer.py +0 -0
  395. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/parameters/enable_anonymous_sproc.py +0 -0
  396. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/pipeline/__init__.py +0 -0
  397. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/pipeline/pipeline.py +0 -0
  398. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/preprocessing/__init__.py +0 -0
  399. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/preprocessing/binarizer.py +0 -0
  400. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -0
  401. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/preprocessing/label_encoder.py +0 -0
  402. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/preprocessing/max_abs_scaler.py +0 -0
  403. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/preprocessing/min_max_scaler.py +0 -0
  404. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/preprocessing/normalizer.py +0 -0
  405. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/preprocessing/one_hot_encoder.py +0 -0
  406. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/preprocessing/ordinal_encoder.py +0 -0
  407. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/preprocessing/polynomial_features.py +0 -0
  408. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/preprocessing/robust_scaler.py +0 -0
  409. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/preprocessing/standard_scaler.py +0 -0
  410. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/semi_supervised/__init__.py +0 -0
  411. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/semi_supervised/label_propagation.py +0 -0
  412. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/semi_supervised/label_spreading.py +0 -0
  413. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/svm/__init__.py +0 -0
  414. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/svm/linear_svc.py +0 -0
  415. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/svm/linear_svr.py +0 -0
  416. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/svm/nu_svc.py +0 -0
  417. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/svm/nu_svr.py +0 -0
  418. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/svm/svc.py +0 -0
  419. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/svm/svr.py +0 -0
  420. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/tree/__init__.py +0 -0
  421. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/tree/decision_tree_classifier.py +0 -0
  422. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/tree/decision_tree_regressor.py +0 -0
  423. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/tree/extra_tree_classifier.py +0 -0
  424. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/tree/extra_tree_regressor.py +0 -0
  425. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/xgboost/__init__.py +0 -0
  426. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/xgboost/xgb_classifier.py +0 -0
  427. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/xgboost/xgb_regressor.py +0 -0
  428. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/xgboost/xgbrf_classifier.py +0 -0
  429. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/xgboost/xgbrf_regressor.py +0 -0
  430. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/monitoring/_client/model_monitor_sql_client.py +0 -0
  431. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/monitoring/_client/queries/record_count.ssql +0 -0
  432. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/monitoring/_client/queries/rmse.ssql +0 -0
  433. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/monitoring/_manager/model_monitor_manager.py +0 -0
  434. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/monitoring/entities/model_monitor_config.py +0 -0
  435. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/monitoring/explain_visualize.py +0 -0
  436. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/monitoring/model_monitor.py +0 -0
  437. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/monitoring/shap.py +0 -0
  438. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/registry/__init__.py +0 -0
  439. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/utils/authentication.py +0 -0
  440. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/utils/connection_params.py +0 -0
  441. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/utils/html_utils.py +0 -0
  442. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/utils/sparse.py +0 -0
  443. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake/ml/utils/sql_client.py +0 -0
  444. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake_ml_python.egg-info/dependency_links.txt +0 -0
  445. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake_ml_python.egg-info/requires.txt +0 -0
  446. {snowflake_ml_python-1.9.2 → snowflake_ml_python-1.10.0}/snowflake_ml_python.egg-info/top_level.txt +0 -0
@@ -1,26 +1,38 @@
1
1
  # Release History
2
2
 
3
+ ## 1.10.0
4
+
5
+ ### Bug Fixes
6
+
7
+ ### Behavior Changes
8
+
9
+ ### New Features
10
+
11
+ * Registry: add progress bars for `ModelVersion.create_service` and `ModelVersion.log_model`.
12
+ * ModelRegistry: Logs emitted during `ModelVersion.create_service` will be written to a file. The file location
13
+ will be shown in the console.
14
+
3
15
  ## 1.9.2
4
16
 
5
17
  ### Bug Fixes
6
18
 
7
- - DataConnector: Fix `self._session` related errors inside Container Runtime.
8
- - Registry: Fix a bug when trying to pass `None` to array (`pd.dtype('O')`) in signature and pandas data handler.
19
+ * DataConnector: Fix `self._session` related errors inside Container Runtime.
20
+ * Registry: Fix a bug when trying to pass `None` to array (`pd.dtype('O')`) in signature and pandas data handler.
9
21
 
10
22
  ### New Features
11
23
 
12
- - Experiment Tracking (PrPr): Automatically log the model, metrics, and parameters while training
24
+ * Experiment Tracking (PrPr): Automatically log the model, metrics, and parameters while training
13
25
  XGBoost and LightGBM models.
14
26
 
15
27
  ```python
16
28
  from snowflake.ml.experiment import ExperimentTracking
17
- from snowflake.ml.experiment.callback import SnowflakeXgboostCallback, SnowflakeLightgbmCallback
18
29
 
19
30
  exp = ExperimentTracking(session=sp_session, database_name="ML", schema_name="PUBLIC")
20
31
 
21
32
  exp.set_experiment("MY_EXPERIMENT")
22
33
 
23
34
  # XGBoost
35
+ from snowflake.ml.experiment.callback.xgboost import SnowflakeXgboostCallback
24
36
  callback = SnowflakeXgboostCallback(
25
37
  exp, log_model=True, log_metrics=True, log_params=True, model_name="model_name", model_signature=sig
26
38
  )
@@ -29,6 +41,7 @@ with exp.start_run():
29
41
  model.fit(X, y, eval_set=[(X_test, y_test)])
30
42
 
31
43
  # LightGBM
44
+ from snowflake.ml.experiment.callback.lightgbm import SnowflakeLightgbmCallback
32
45
  callback = SnowflakeLightgbmCallback(
33
46
  exp, log_model=True, log_metrics=True, log_params=True, model_name="model_name", model_signature=sig
34
47
  )
@@ -41,14 +54,14 @@ with exp.start_run():
41
54
 
42
55
  ### Bug Fixes
43
56
 
44
- - Registry: Fix a bug when trying to set the PAD token the HuggingFace `text-generation` model had multiple EOS tokens.
57
+ * Registry: Fix a bug when trying to set the PAD token the HuggingFace `text-generation` model had multiple EOS tokens.
45
58
  The handler picks the first EOS token as PAD token now.
46
59
 
47
60
  ### New Features
48
61
 
49
- - DataConnector: DataConnector objects can now be pickled
50
- - Dataset: Dataset objects can now be pickled
51
- - Registry (PrPr): Introducing `create_service` function in `snowflake/ml/model/models/huggingface_pipeline.py`
62
+ * DataConnector: DataConnector objects can now be pickled
63
+ * Dataset: Dataset objects can now be pickled
64
+ * Registry (PrPr): Introducing `create_service` function in `snowflake/ml/model/models/huggingface_pipeline.py`
52
65
  which creates a service to log a HF model and upon successful logging, an inference service is created.
53
66
 
54
67
  ```python
@@ -69,7 +82,7 @@ hf_model_ref.create_service(
69
82
  )
70
83
  ```
71
84
 
72
- - Experiment Tracking (PrPr): New module for managing and tracking ML experiments in Snowflake.
85
+ * Experiment Tracking (PrPr): New module for managing and tracking ML experiments in Snowflake.
73
86
 
74
87
  ```python
75
88
  from snowflake.ml.experiment import ExperimentTracking
@@ -84,16 +97,16 @@ with exp.start_run():
84
97
  exp.log_model(my_model, model_name="MY_MODEL")
85
98
  ```
86
99
 
87
- - Registry: Added support for wide input (500+ features) for inference done using SPCS
100
+ * Registry: Added support for wide input (500+ features) for inference done using SPCS
88
101
 
89
102
  ## 1.9.0
90
103
 
91
104
  ### Bug Fixes
92
105
 
93
- - Registry: Fixed bug causing snowpark to pandas dataframe conversion to fail when `QUOTED_IDENTIFIERS_IGNORE_CASE`
106
+ * Registry: Fixed bug causing snowpark to pandas dataframe conversion to fail when `QUOTED_IDENTIFIERS_IGNORE_CASE`
94
107
  parameter is enabled
95
- - Registry: Fixed duplicate UserWarning logs during model packaging
96
- - Registry: If the huggingface pipeline text-generation model doesn't contain a default chat template, a ChatML template
108
+ * Registry: Fixed duplicate UserWarning logs during model packaging
109
+ * Registry: If the huggingface pipeline text-generation model doesn't contain a default chat template, a ChatML template
97
110
  is assigned to the tokenizer.
98
111
 
99
112
  ```shell
@@ -105,40 +118,40 @@ with exp.start_run():
105
118
  {% endif %}"
106
119
  ```
107
120
 
108
- - Registry: Fixed SQL queries during registry initialization that were forcing warehouse requirement
121
+ * Registry: Fixed SQL queries during registry initialization that were forcing warehouse requirement
109
122
 
110
123
  ### Behavior Changes
111
124
 
112
- - ML Job: The `list_jobs()` API has been modified. The `scope` parameter has been removed,
125
+ * ML Job: The `list_jobs()` API has been modified. The `scope` parameter has been removed,
113
126
  optional `database` and `schema` parameters have been added, the return type has changed
114
127
  from `snowpark.DataFrame` to `pandas.DataFrame`, and the returned columns have been updated
115
128
  to `name`, `status`, `message`, `database_name`, `schema_name`, `owner`, `compute_pool`,
116
129
  `target_instances`, `created_time`, and `completed_time`.
117
- - Registry: Set `relax_version` to false when pip_requirements are specified while logging model
118
- - Registry: UserWarning will now be raised based on specified target_platforms (addresses spurious warnings)
130
+ * Registry: Set `relax_version` to false when pip_requirements are specified while logging model
131
+ * Registry: UserWarning will now be raised based on specified target_platforms (addresses spurious warnings)
119
132
 
120
133
  ### New Features
121
134
 
122
- - Registry: `target_platforms` supports `TargetPlatformMode`: `WAREHOUSE_ONLY`, `SNOWPARK_CONTAINER_SERVICES_ONLY`,
135
+ * Registry: `target_platforms` supports `TargetPlatformMode`: `WAREHOUSE_ONLY`, `SNOWPARK_CONTAINER_SERVICES_ONLY`,
123
136
  or `BOTH_WAREHOUSE_AND_SNOWPARK_CONTAINER_SERVICES`.
124
- - Registry: Introduce `snowflake.ml.model.target_platform.TargetPlatform`, target platform constants, and
137
+ * Registry: Introduce `snowflake.ml.model.target_platform.TargetPlatform`, target platform constants, and
125
138
  `snowflake.ml.model.task.Task`.
126
- - ML Job: Single-node ML Jobs are now in GA. Multi-node support is now in PuPr
127
- - Moved less frequently used job submission parameters to `**kwargs`
128
- - Platform metrics are now enabled by default
129
- - `list_jobs()` behavior changed, see [Behavior Changes](#behavior-changes) for more info
139
+ * ML Job: Single-node ML Jobs are now in GA. Multi-node support is now in PuPr
140
+ * Moved less frequently used job submission parameters to `**kwargs`
141
+ * Platform metrics are now enabled by default
142
+ * `list_jobs()` behavior changed, see [Behavior Changes](#behavior-changes) for more info
130
143
 
131
144
  ## 1.8.6
132
145
 
133
146
  ### Bug Fixes
134
147
 
135
- - Fixed fatal errors from internal telemetry wrappers.
148
+ * Fixed fatal errors from internal telemetry wrappers.
136
149
 
137
150
  ### New Features
138
151
 
139
- - Registry: Add service container info to logs.
140
- - ML Job (PuPr): Add new `submit_from_stage()` API for submitting a payload from an existing stage path.
141
- - ML Job (PuPr): Add support for `snowpark.Session` objects in the argument list of
152
+ * Registry: Add service container info to logs.
153
+ * ML Job (PuPr): Add new `submit_from_stage()` API for submitting a payload from an existing stage path.
154
+ * ML Job (PuPr): Add support for `snowpark.Session` objects in the argument list of
142
155
  `@remote` decorated functions. `Session` object will be injected from context in
143
156
  the job execution environment.
144
157
 
@@ -146,75 +159,75 @@ with exp.start_run():
146
159
 
147
160
  ### Bug Fixes
148
161
 
149
- - Registry: Fixed a bug when listing and deleting container services.
150
- - Registry: Fixed explainability issue with scikit-learn pipelines, skipping explain function creation.
151
- - Explainability: bump minimum streamlit version down to 1.30
152
- - Modeling: Make XGBoost a required dependency (xgboost is not a required dependency in snowflake-ml-python 1.8.4).
162
+ * Registry: Fixed a bug when listing and deleting container services.
163
+ * Registry: Fixed explainability issue with scikit-learn pipelines, skipping explain function creation.
164
+ * Explainability: bump minimum streamlit version down to 1.30
165
+ * Modeling: Make XGBoost a required dependency (xgboost is not a required dependency in snowflake-ml-python 1.8.4).
153
166
 
154
167
  ### Behavior Changes
155
168
 
156
- - ML Job (Multi-node PrPr): Rename argument `num_instances` to `target_instances` in job submission APIs and
169
+ * ML Job (Multi-node PrPr): Rename argument `num_instances` to `target_instances` in job submission APIs and
157
170
  change type from `Optional[int]` to `int`
158
171
 
159
172
  ### New Features
160
173
 
161
- - Registry: No longer checks if the snowflake-ml-python version is available in the Snowflake Conda channel when logging
174
+ * Registry: No longer checks if the snowflake-ml-python version is available in the Snowflake Conda channel when logging
162
175
  an SPCS-only model.
163
- - ML Job (PuPr): Add `min_instances` argument to the job decorator to allow waiting for workers to be ready.
164
- - ML Job (PuPr): Adjust polling behavior to reduce number of SQL calls.
176
+ * ML Job (PuPr): Add `min_instances` argument to the job decorator to allow waiting for workers to be ready.
177
+ * ML Job (PuPr): Adjust polling behavior to reduce number of SQL calls.
165
178
 
166
179
  ### Deprecations
167
180
 
168
- - `SnowflakeLoginOptions` is deprecated and will be removed in a future release.
181
+ * `SnowflakeLoginOptions` is deprecated and will be removed in a future release.
169
182
 
170
183
  ## 1.8.4 (2025-05-12)
171
184
 
172
185
  ### Bug Fixes
173
186
 
174
- - Registry: Default `enable_explainability` to True when the model can be deployed to Warehouse.
175
- - Registry: Add `custom_model.partitioned_api` decorator and deprecate `partitioned_inference_api`.
176
- - Registry: Fixed a bug when logging pytroch and tensorflow models that caused
187
+ * Registry: Default `enable_explainability` to True when the model can be deployed to Warehouse.
188
+ * Registry: Add `custom_model.partitioned_api` decorator and deprecate `partitioned_inference_api`.
189
+ * Registry: Fixed a bug when logging pytroch and tensorflow models that caused
177
190
  `UnboundLocalError: local variable 'multiple_inputs' referenced before assignment`.
178
191
 
179
192
  ### Behavior Changes
180
193
 
181
- - ML Job (PuPr) Updated property `id` to be fully qualified name; Introduced new property `name`
194
+ * ML Job (PuPr) Updated property `id` to be fully qualified name; Introduced new property `name`
182
195
  to represent the ML Job name
183
- - ML Job (PuPr) Modified `list_jobs()` to return ML Job `name` instead of `id`
184
- - Registry: Error in `log_model` if `enable_explainability` is True and model is only deployed to
196
+ * ML Job (PuPr) Modified `list_jobs()` to return ML Job `name` instead of `id`
197
+ * Registry: Error in `log_model` if `enable_explainability` is True and model is only deployed to
185
198
  Snowpark Container Services, instead of just user warning.
186
199
 
187
200
  ### New Features
188
201
 
189
- - ML Job (PuPr): Extend `@remote` function decorator, `submit_file()` and `submit_directory()` to accept `database` and
202
+ * ML Job (PuPr): Extend `@remote` function decorator, `submit_file()` and `submit_directory()` to accept `database` and
190
203
  `schema` parameters
191
- - ML Job (PuPr): Support querying by fully qualified name in `get_job()`
192
- - Explainability: Added visualization functions to `snowflake.ml.monitoring` to plot explanations in notebooks.
193
- - Explainability: Support explain for categorical transforms for sklearn pipeline
194
- - Support categorical type for `xgboost.DMatrix` inputs.
204
+ * ML Job (PuPr): Support querying by fully qualified name in `get_job()`
205
+ * Explainability: Added visualization functions to `snowflake.ml.monitoring` to plot explanations in notebooks.
206
+ * Explainability: Support explain for categorical transforms for sklearn pipeline
207
+ * Support categorical type for `xgboost.DMatrix` inputs.
195
208
 
196
209
  ## 1.8.3
197
210
 
198
211
  ### New Features
199
212
 
200
- - Registry: Default to the runtime cuda version if available when logging a GPU model in Container Runtime.
201
- - ML Job (PuPr): Added `as_list` argument to `MLJob.get_logs()` to enable retrieving logs
213
+ * Registry: Default to the runtime cuda version if available when logging a GPU model in Container Runtime.
214
+ * ML Job (PuPr): Added `as_list` argument to `MLJob.get_logs()` to enable retrieving logs
202
215
  as a list of strings
203
- - Registry: Support `ModelVersion.run_job` to run inference with a single-node Snowpark Container Services job.
204
- - DataConnector: Removed PrPr decorators
205
- - Registry: Default the target platform to warehouse when logging a partitioned model.
216
+ * Registry: Support `ModelVersion.run_job` to run inference with a single-node Snowpark Container Services job.
217
+ * DataConnector: Removed PrPr decorators
218
+ * Registry: Default the target platform to warehouse when logging a partitioned model.
206
219
 
207
220
  ## 1.8.2
208
221
 
209
222
  ### New Features
210
223
 
211
- - ML Job now available as a PuPr feature
212
- - Add ability to retrieve results for `@remote` decorated functions using
224
+ * ML Job now available as a PuPr feature
225
+ * Add ability to retrieve results for `@remote` decorated functions using
213
226
  new `MLJobWithResult.result()` API, which will return the unpickled result
214
227
  or raise an exception if the job execution failed.
215
- - Pre-created Snowpark Session is now available inside job payloads using
228
+ * Pre-created Snowpark Session is now available inside job payloads using
216
229
  `snowflake.snowpark.context.get_active_session()`
217
- - Registry: Introducing `save_location` to `log_model` using the `options` argument.
230
+ * Registry: Introducing `save_location` to `log_model` using the `options` argument.
218
231
  Users can use the `save_location` option to specify a local directory where the model files and configuration are written.
219
232
  This is useful when the default temporary directory has space limitations.
220
233
 
@@ -228,44 +241,44 @@ reg.log_model(
228
241
  )
229
242
  ```
230
243
 
231
- - Registry: Include model dependencies in pip requirements by default when logging in Container Runtime.
232
- - Multi-node ML Job (PrPr): Add `instance_id` argument to `get_logs` and `show_logs` method to support multi node log retrieval
233
- - Multi-node ML Job (PrPr): Add `job.get_instance_status(instance_id=...)` API to support multi node status retrieval
244
+ * Registry: Include model dependencies in pip requirements by default when logging in Container Runtime.
245
+ * Multi-node ML Job (PrPr): Add `instance_id` argument to `get_logs` and `show_logs` method to support multi node log retrieval
246
+ * Multi-node ML Job (PrPr): Add `job.get_instance_status(instance_id=...)` API to support multi node status retrieval
234
247
 
235
248
  ## 1.8.1 (03-26-2025)
236
249
 
237
250
  ### Bug Fixes
238
251
 
239
- - Registry: Fix a bug that caused `unsupported model type` error while logging a sklearn model with `score_samples`
252
+ * Registry: Fix a bug that caused `unsupported model type` error while logging a sklearn model with `score_samples`
240
253
  inference method.
241
- - Registry: Fix a bug that model inference service creation fails on an existing and suspended service.
254
+ * Registry: Fix a bug that model inference service creation fails on an existing and suspended service.
242
255
 
243
256
  ### New Features
244
257
 
245
- - ML Job (PrPr): Update Container Runtime image version to `1.0.1`
246
- - ML Job (PrPr): Add `enable_metrics` argument to job submission APIs to enable publishing service metrics to Event Table.
258
+ * ML Job (PrPr): Update Container Runtime image version to `1.0.1`
259
+ * ML Job (PrPr): Add `enable_metrics` argument to job submission APIs to enable publishing service metrics to Event Table.
247
260
  See [Accessing Event Table service metrics](https://docs.snowflake.com/en/developer-guide/snowpark-container-services/monitoring-services#accessing-event-table-service-metrics)
248
261
  for retrieving published metrics
249
262
  and [Costs of telemetry data collection](https://docs.snowflake.com/en/developer-guide/logging-tracing/logging-tracing-billing)
250
263
  for cost implications.
251
- - Registry: When creating a copy of a `ModelVersion` with `log_model`, raise an exception if unsupported arguments are provided.
264
+ * Registry: When creating a copy of a `ModelVersion` with `log_model`, raise an exception if unsupported arguments are provided.
252
265
 
253
266
  ## 1.8.0 (03-20-2025)
254
267
 
255
268
  ### Bug Fixes
256
269
 
257
- - Modeling: Fix a bug in some metrics that allowed an unsupported version of numpy to be installed
270
+ * Modeling: Fix a bug in some metrics that allowed an unsupported version of numpy to be installed
258
271
  automatically in the stored procedure, resulting in a numpy error on execution
259
- - Registry: Fix a bug that leads to incorrect `Model is does not have _is_inference_api` error message when assigning
272
+ * Registry: Fix a bug that leads to incorrect `Model is does not have _is_inference_api` error message when assigning
260
273
  a supported model as a property of a CustomModel.
261
- - Registry: Fix a bug that inference is not working when models with more than 500 input features
274
+ * Registry: Fix a bug that inference is not working when models with more than 500 input features
262
275
  are deployed to SPCS.
263
276
 
264
277
  ### Behavior Change
265
278
 
266
- - Registry: With FeatureGroupSpec support, auto inferred model signature for `transformers.Pipeline` models have been
279
+ * Registry: With FeatureGroupSpec support, auto inferred model signature for `transformers.Pipeline` models have been
267
280
  updated, including:
268
- - Signature for fill-mask task has been changed from
281
+ * Signature for fill-mask task has been changed from
269
282
 
270
283
  ```python
271
284
  ModelSignature(
@@ -300,7 +313,7 @@ reg.log_model(
300
313
  )
301
314
  ```
302
315
 
303
- - Signature for token-classification task has been changed from
316
+ * Signature for token-classification task has been changed from
304
317
 
305
318
  ```python
306
319
  ModelSignature(
@@ -335,7 +348,7 @@ reg.log_model(
335
348
  )
336
349
  ```
337
350
 
338
- - Signature for question-answering task when top_k is larger than 1 has been changed from
351
+ * Signature for question-answering task when top_k is larger than 1 has been changed from
339
352
 
340
353
  ```python
341
354
  ModelSignature(
@@ -372,7 +385,7 @@ reg.log_model(
372
385
  )
373
386
  ```
374
387
 
375
- - Signature for text-classification task when top_k is `None` has been changed from
388
+ * Signature for text-classification task when top_k is `None` has been changed from
376
389
 
377
390
  ```python
378
391
  ModelSignature(
@@ -401,7 +414,7 @@ reg.log_model(
401
414
  )
402
415
  ```
403
416
 
404
- - Signature for text-classification task when top_k is not `None` has been changed from
417
+ * Signature for text-classification task when top_k is not `None` has been changed from
405
418
 
406
419
  ```python
407
420
  ModelSignature(
@@ -435,7 +448,7 @@ reg.log_model(
435
448
  )
436
449
  ```
437
450
 
438
- - Signature for text-generation task has been changed from
451
+ * Signature for text-generation task has been changed from
439
452
 
440
453
  ```python
441
454
  ModelSignature(
@@ -472,7 +485,7 @@ reg.log_model(
472
485
  )
473
486
  ```
474
487
 
475
- - Registry: PyTorch and TensorFlow models now expect a single tensor input/output by default when logging to Model
488
+ * Registry: PyTorch and TensorFlow models now expect a single tensor input/output by default when logging to Model
476
489
  Registry. To use multiple tensors (previous behavior), set `options={"multiple_inputs": True}`.
477
490
 
478
491
  Example with single tensor input:
@@ -518,130 +531,130 @@ reg.log_model(
518
531
  )
519
532
  ```
520
533
 
521
- - Registry: Default `enable_explainability` to False when the model can be deployed to Snowpark Container Services.
534
+ * Registry: Default `enable_explainability` to False when the model can be deployed to Snowpark Container Services.
522
535
 
523
536
  ### New Features
524
537
 
525
- - Registry: Added support to single `torch.Tensor`, `tensorflow.Tensor` and `tensorflow.Variable` as input or output
538
+ * Registry: Added support to single `torch.Tensor`, `tensorflow.Tensor` and `tensorflow.Variable` as input or output
526
539
  data.
527
- - Registry: Support [`xgboost.DMatrix`](https://xgboost.readthedocs.io/en/stable/python/python_api.html#xgboost.DMatrix)
540
+ * Registry: Support [`xgboost.DMatrix`](https://xgboost.readthedocs.io/en/stable/python/python_api.html#xgboost.DMatrix)
528
541
  datatype for XGBoost models.
529
542
 
530
543
  ## 1.7.5 (03-06-2025)
531
544
 
532
- - Support Python 3.12.
533
- - Explainability: Support native and snowflake.ml.modeling sklearn pipeline
545
+ * Support Python 3.12.
546
+ * Explainability: Support native and snowflake.ml.modeling sklearn pipeline
534
547
 
535
548
  ### Bug Fixes
536
549
 
537
- - Registry: Fixed a compatibility issue when using `snowflake-ml-python` 1.7.0 or greater to save a `tensorflow.keras`
550
+ * Registry: Fixed a compatibility issue when using `snowflake-ml-python` 1.7.0 or greater to save a `tensorflow.keras`
538
551
  model with `keras` 2.x, if `relax_version` is set or default to True, and newer version of `snowflake-ml-python`
539
552
  is available in Snowflake Anaconda Channel, model could not be run in Snowflake. If you have such model, you could
540
553
  use the latest version of `snowflake-ml-python` and call `ModelVersion.load` to load it back, and re-log it.
541
554
  Alternatively, you can prevent this issue by setting `relax_version=False` when saving the model.
542
- - Registry: Removed the validation that disallows data that does not have non-null values being passed to
555
+ * Registry: Removed the validation that disallows data that does not have non-null values being passed to
543
556
  `ModelVersion.run`.
544
- - ML Job (PrPr): No longer require CREATE STAGE privilege if `stage_name` points to an existing stage
545
- - ML Job (PrPr): Fixed a bug causing some payload source and entrypoint path
557
+ * ML Job (PrPr): No longer require CREATE STAGE privilege if `stage_name` points to an existing stage
558
+ * ML Job (PrPr): Fixed a bug causing some payload source and entrypoint path
546
559
  combinations to be erroneously rejected with
547
560
  `ValueError(f"{self.entrypoint} must be a subpath of {self.source}")`
548
- - ML Job (PrPr): Fixed a bug in Ray cluster startup config which caused certain Runtime APIs to fail
561
+ * ML Job (PrPr): Fixed a bug in Ray cluster startup config which caused certain Runtime APIs to fail
549
562
 
550
563
  ### New Features
551
564
 
552
- - Registry: Added support for handling Hugging Face model configurations with auto-mapping functionality.
553
- - Registry: Added support for `keras` 3.x model with `tensorflow` and `pytorch` backend
565
+ * Registry: Added support for handling Hugging Face model configurations with auto-mapping functionality.
566
+ * Registry: Added support for `keras` 3.x model with `tensorflow` and `pytorch` backend
554
567
 
555
568
  ## 1.7.4 (01-28-2025)
556
569
 
557
- - FileSet: The `snowflake.ml.fileset.FileSet` has been deprecated and will be removed in a future version.
570
+ * FileSet: The `snowflake.ml.fileset.FileSet` has been deprecated and will be removed in a future version.
558
571
  Use [snowflake.ml.dataset.Dataset](https://docs.snowflake.com/en/developer-guide/snowflake-ml/dataset) and
559
572
  [snowflake.ml.data.DataConnector](https://docs.snowflake.com/en/developer-guide/snowpark-ml/reference/latest/api/data/snowflake.ml.data.data_connector.DataConnector)
560
573
  instead.
561
- - Registry: `ModelVersion.run` on a service would require redeploying the service once account opts into nested function.
574
+ * Registry: `ModelVersion.run` on a service would require redeploying the service once account opts into nested function.
562
575
 
563
576
  ### Bug Fixes
564
577
 
565
- - Registry: Fixed an issue that the hugging face pipeline is loaded using incorrect dtype.
566
- - Registry: Fixed an issue that only 1 row is used when infer the model signature in the modeling model.
578
+ * Registry: Fixed an issue that the hugging face pipeline is loaded using incorrect dtype.
579
+ * Registry: Fixed an issue that only 1 row is used when infer the model signature in the modeling model.
567
580
 
568
581
  ### New Features
569
582
 
570
- - Add new `snowflake.ml.jobs` preview API for running headless workloads on SPCS using
583
+ * Add new `snowflake.ml.jobs` preview API for running headless workloads on SPCS using
571
584
  [Container Runtime for ML](https://docs.snowflake.com/en/developer-guide/snowflake-ml/container-runtime-ml)
572
- - Added `guardrails` option to Cortex `complete` function, enabling
585
+ * Added `guardrails` option to Cortex `complete` function, enabling
573
586
  [Cortex Guard](https://docs.snowflake.com/en/user-guide/snowflake-cortex/llm-functions#cortex-guard) support
574
- - Model Monitoring: Expose Model Monitoring Python API by default.
587
+ * Model Monitoring: Expose Model Monitoring Python API by default.
575
588
 
576
589
  ## 1.7.3 (2025-01-08)
577
590
 
578
- - Added lowercase versions of Cortex functions, added deprecation warning to Capitalized versions.
579
- - Bumped the requirements of `fsspec` and `s3fs` to `>=2024.6.1,<2026`
580
- - Bumped the requirement of `mlflow` to `>=2.16.0, <3`
581
- - Registry: Support 500+ features for model registry
582
- - Feature Store: Add support for `cluster_by` for feature views.
591
+ * Added lowercase versions of Cortex functions, added deprecation warning to Capitalized versions.
592
+ * Bumped the requirements of `fsspec` and `s3fs` to `>=2024.6.1,<2026`
593
+ * Bumped the requirement of `mlflow` to `>=2.16.0, <3`
594
+ * Registry: Support 500+ features for model registry
595
+ * Feature Store: Add support for `cluster_by` for feature views.
583
596
 
584
597
  ### Bug Fixes
585
598
 
586
- - Registry: Fixed a bug when providing non-range index pandas DataFrame as the input to a `ModelVersion.run`.
587
- - Registry: Improved random model version name generation to prevent collisions.
588
- - Registry: Fix an issue when inferring signature or running inference with Snowpark data that has a column whose type
599
+ * Registry: Fixed a bug when providing non-range index pandas DataFrame as the input to a `ModelVersion.run`.
600
+ * Registry: Improved random model version name generation to prevent collisions.
601
+ * Registry: Fix an issue when inferring signature or running inference with Snowpark data that has a column whose type
589
602
  is `ARRAY` and contains `NULL` value.
590
- - Registry: `ModelVersion.run` now accepts fully qualified service name.
591
- - Monitoring: Fix issue in SDK with creating monitors using fully qualified names.
592
- - Registry: Fix error in log_model for any sklearn models with only data pre-processing including pre-processing only
603
+ * Registry: `ModelVersion.run` now accepts fully qualified service name.
604
+ * Monitoring: Fix issue in SDK with creating monitors using fully qualified names.
605
+ * Registry: Fix error in log_model for any sklearn models with only data pre-processing including pre-processing only
593
606
  pipeline models due to default explainability enablement.
594
607
 
595
608
  ### New Features
596
609
 
597
- - Added `user_files` argument to `Registry.log_model` for including images or any extra file with the model.
598
- - Registry: Added support for handling Hugging Face model configurations with auto-mapping functionality
599
- - DataConnector: Add new `DataConnector.from_sql()` constructor
600
- - Registry: Provided new arguments to `snowflake.ml.model.model_signature.infer_signature` method to specify rows limit
610
+ * Added `user_files` argument to `Registry.log_model` for including images or any extra file with the model.
611
+ * Registry: Added support for handling Hugging Face model configurations with auto-mapping functionality
612
+ * DataConnector: Add new `DataConnector.from_sql()` constructor
613
+ * Registry: Provided new arguments to `snowflake.ml.model.model_signature.infer_signature` method to specify rows limit
601
614
  to be used when inferring the signature.
602
615
 
603
616
  ## 1.7.2 (2024-11-21)
604
617
 
605
618
  ### Bug Fixes
606
619
 
607
- - Model Explainability: Fix issue that explain is enabled for scikit-learn pipeline
620
+ * Model Explainability: Fix issue that explain is enabled for scikit-learn pipeline
608
621
  whose task is UNKNOWN and fails later when invoked.
609
622
 
610
623
  ### New Features
611
624
 
612
- - Registry: Support asynchronous model inference service creation with the `block` option
625
+ * Registry: Support asynchronous model inference service creation with the `block` option
613
626
  in `ModelVersion.create_service()` set to True by default.
614
- - Registry: Allow specify `batch_size` when inferencing using sentence-transformers model.
627
+ * Registry: Allow specify `batch_size` when inferencing using sentence-transformers model.
615
628
 
616
629
  ## 1.7.1 (2024-11-05)
617
630
 
618
631
  ### Bug Fixes
619
632
 
620
- - Registry: Null value is now allowed in the dataframe used in model signature inference. Null values will be ignored
633
+ * Registry: Null value is now allowed in the dataframe used in model signature inference. Null values will be ignored
621
634
  and others will be used to infer the signature.
622
- - Registry: Pandas Extension DTypes (`pandas.StringDType()`, `pandas.BooleanDType()`, etc.) are now supported in model
635
+ * Registry: Pandas Extension DTypes (`pandas.StringDType()`, `pandas.BooleanDType()`, etc.) are now supported in model
623
636
  signature inference.
624
- - Registry: Null value is now allowed in the dataframe used to predict.
625
- - Data: Fix missing `snowflake.ml.data.*` module exports in wheel
626
- - Dataset: Fix missing `snowflake.ml.dataset.*` module exports in wheel.
627
- - Registry: Fix the issue that `tf_keras.Model` is not recognized as keras model when logging.
637
+ * Registry: Null value is now allowed in the dataframe used to predict.
638
+ * Data: Fix missing `snowflake.ml.data.*` module exports in wheel
639
+ * Dataset: Fix missing `snowflake.ml.dataset.*` module exports in wheel.
640
+ * Registry: Fix the issue that `tf_keras.Model` is not recognized as keras model when logging.
628
641
 
629
642
  ### New Features
630
643
 
631
- - Registry: Option to `enable_monitoring` set to False by default. This will gate access to preview features of Model Monitoring.
632
- - Model Monitoring: `show_model_monitors` Registry method. This feature is still in Private Preview.
633
- - Registry: Support `pd.Series` in input and output data.
634
- - Model Monitoring: `add_monitor` Registry method. This feature is still in Private Preview.
635
- - Model Monitoring: `resume` and `suspend` ModelMonitor. This feature is still in Private Preview.
636
- - Model Monitoring: `get_monitor` Registry method. This feature is still in Private Preview.
637
- - Model Monitoring: `delete_monitor` Registry method. This feature is still in Private Preview.
644
+ * Registry: Option to `enable_monitoring` set to False by default. This will gate access to preview features of Model Monitoring.
645
+ * Model Monitoring: `show_model_monitors` Registry method. This feature is still in Private Preview.
646
+ * Registry: Support `pd.Series` in input and output data.
647
+ * Model Monitoring: `add_monitor` Registry method. This feature is still in Private Preview.
648
+ * Model Monitoring: `resume` and `suspend` ModelMonitor. This feature is still in Private Preview.
649
+ * Model Monitoring: `get_monitor` Registry method. This feature is still in Private Preview.
650
+ * Model Monitoring: `delete_monitor` Registry method. This feature is still in Private Preview.
638
651
 
639
652
  ## 1.7.0 (10-22-2024)
640
653
 
641
654
  ### Behavior Change
642
655
 
643
- - Generic: Require python >= 3.9.
644
- - Data Connector: Update `to_torch_dataset` and `to_torch_datapipe` to add a dimension for scalar data.
656
+ * Generic: Require python >= 3.9.
657
+ * Data Connector: Update `to_torch_dataset` and `to_torch_datapipe` to add a dimension for scalar data.
645
658
  This allows for more seamless integration with PyTorch `DataLoader`, which creates batches by stacking inputs of each batch.
646
659
 
647
660
  Examples:
@@ -650,30 +663,30 @@ Examples:
650
663
  ds = connector.to_torch_dataset(shuffle=False, batch_size=3)
651
664
  ```
652
665
 
653
- - Input: "col1": [10, 11, 12]
654
- - Previous batch: array([10., 11., 12.]) with shape (3,)
655
- - New batch: array([[10.], [11.], [12.]]) with shape (3, 1)
666
+ * Input: "col1": [10, 11, 12]
667
+ * Previous batch: array([10., 11., 12.]) with shape (3,)
668
+ * New batch: array([[10.], [11.], [12.]]) with shape (3, 1)
656
669
 
657
- - Input: "col2": [[0, 100], [1, 110], [2, 200]]
658
- - Previous batch: array([[ 0, 100], [ 1, 110], [ 2, 200]]) with shape (3,2)
659
- - New batch: No change
670
+ * Input: "col2": [[0, 100], [1, 110], [2, 200]]
671
+ * Previous batch: array([[ 0, 100], [ 1, 110], [ 2, 200]]) with shape (3,2)
672
+ * New batch: No change
660
673
 
661
- - Model Registry: External access integrations are optional when creating a model inference service in
674
+ * Model Registry: External access integrations are optional when creating a model inference service in
662
675
  Snowflake >= 8.40.0.
663
- - Model Registry: Deprecate `build_external_access_integration` with `build_external_access_integrations` in
676
+ * Model Registry: Deprecate `build_external_access_integration` with `build_external_access_integrations` in
664
677
  `ModelVersion.create_service()`.
665
678
 
666
679
  ### Bug Fixes
667
680
 
668
- - Registry: Updated `log_model` API to accept both signature and sample_input_data parameters.
669
- - Feature Store: ExampleHelper uses fully qualified path for table name. change weather features aggregation from 1d to 1h.
670
- - Data Connector: Return numpy array with appropriate object type instead of list for multi-dimensional
681
+ * Registry: Updated `log_model` API to accept both signature and sample_input_data parameters.
682
+ * Feature Store: ExampleHelper uses fully qualified path for table name. change weather features aggregation from 1d to 1h.
683
+ * Data Connector: Return numpy array with appropriate object type instead of list for multi-dimensional
671
684
  data from `to_torch_dataset` and `to_torch_datapipe`
672
- - Model explainability: Incompatibility between SHAP 0.42.1 and XGB 2.1.1 resolved by using latest SHAP 0.46.0.
685
+ * Model explainability: Incompatibility between SHAP 0.42.1 and XGB 2.1.1 resolved by using latest SHAP 0.46.0.
673
686
 
674
687
  ### New Features
675
688
 
676
- - Registry: Provide pass keyworded variable length of arguments to class ModelContext. Example usage:
689
+ * Registry: Provide pass keyworded variable length of arguments to class ModelContext. Example usage:
677
690
 
678
691
  ```python
679
692
  mc = custom_model.ModelContext(
@@ -693,106 +706,106 @@ class ExamplePipelineModel(custom_model.CustomModel):
693
706
  return pd.DataFrame({'output': model_output + self.bias})
694
707
  ```
695
708
 
696
- - Model Development: Upgrade scikit-learn in UDTF backend for log_loss metric. As a result, `eps` argument is now ignored.
697
- - Data Connector: Add the option of passing a `None` sized batch to `to_torch_dataset` for better
709
+ * Model Development: Upgrade scikit-learn in UDTF backend for log_loss metric. As a result, `eps` argument is now ignored.
710
+ * Data Connector: Add the option of passing a `None` sized batch to `to_torch_dataset` for better
698
711
  interoperability with PyTorch DataLoader.
699
- - Model Registry: Support [pandas.CategoricalDtype](https://pandas.pydata.org/docs/reference/api/pandas.CategoricalDtype.html#pandas-categoricaldtype)
700
- - Limitations:
701
- - The native categorical data handling handling by XGBoost using `enable_categorical=True` is not supported.
712
+ * Model Registry: Support [pandas.CategoricalDtype](https://pandas.pydata.org/docs/reference/api/pandas.CategoricalDtype.html#pandas-categoricaldtype)
713
+ * Limitations:
714
+ * The native categorical data handling handling by XGBoost using `enable_categorical=True` is not supported.
702
715
  Instead please use [`sklearn.pipeline`](https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html)
703
716
  to preprocess the categorical datatype and log the pipeline with the XGBoost model.
704
- - Registry: It is now possible to pass `signatures` and `sample_input_data` at the same time to capture background
717
+ * Registry: It is now possible to pass `signatures` and `sample_input_data` at the same time to capture background
705
718
  data from explainablity and data lineage.
706
719
 
707
720
  ## 1.6.4 (2024-10-17)
708
721
 
709
722
  ### Bug Fixes
710
723
 
711
- - Registry: Fix an issue that leads to incident when using `ModelVersion.run` with service.
724
+ * Registry: Fix an issue that leads to incident when using `ModelVersion.run` with service.
712
725
 
713
726
  ## 1.6.3 (2024-10-07)
714
727
 
715
- - Model Registry (PrPr) has been removed.
728
+ * Model Registry (PrPr) has been removed.
716
729
 
717
730
  ### Bug Fixes
718
731
 
719
- - Registry: Fix a bug that when package whose name does not follow PEP-508 is provided when logging the model,
732
+ * Registry: Fix a bug that when package whose name does not follow PEP-508 is provided when logging the model,
720
733
  an unexpected normalization is happening.
721
- - Registry: Fix `not a valid remote uri` error when logging mlflow models.
722
- - Registry: Fix a bug that `ModelVersion.run` is called in a nested way.
723
- - Registry: Fix an issue that leads to `log_model` failure when local package version contains parts other than
734
+ * Registry: Fix `not a valid remote uri` error when logging mlflow models.
735
+ * Registry: Fix a bug that `ModelVersion.run` is called in a nested way.
736
+ * Registry: Fix an issue that leads to `log_model` failure when local package version contains parts other than
724
737
  base version.
725
- - Fix issue where `sample_weights` were not being applied to search estimators.
726
- - Model explainability: Fix bug which creates explain as a function instead of table function when enabling by default.
727
- - Model explainability: Update lightgbm binary classification to return non-json values, from customer feedback.
738
+ * Fix issue where `sample_weights` were not being applied to search estimators.
739
+ * Model explainability: Fix bug which creates explain as a function instead of table function when enabling by default.
740
+ * Model explainability: Update lightgbm binary classification to return non-json values, from customer feedback.
728
741
 
729
742
  ### New Features
730
743
 
731
- - Data: Improve `DataConnector.to_pandas()` performance when loading from Snowpark DataFrames.
732
- - Model Registry: Allow users to set a model task while using `log_model`.
733
- - Feature Store: FeatureView supports ON_CREATE or ON_SCHEDULE initialize mode.
744
+ * Data: Improve `DataConnector.to_pandas()` performance when loading from Snowpark DataFrames.
745
+ * Model Registry: Allow users to set a model task while using `log_model`.
746
+ * Feature Store: FeatureView supports ON_CREATE or ON_SCHEDULE initialize mode.
734
747
 
735
748
  ## 1.6.2 (2024-09-04)
736
749
 
737
750
  ### Bug Fixes
738
751
 
739
- - Modeling: Support XGBoost version that is larger than 2.
752
+ * Modeling: Support XGBoost version that is larger than 2.
740
753
 
741
- - Data: Fix multiple epoch iteration over `DataConnector.to_torch_datapipe()` DataPipes.
742
- - Generic: Fix a bug that when an invalid name is provided to argument where fully qualified name is expected, it will
754
+ * Data: Fix multiple epoch iteration over `DataConnector.to_torch_datapipe()` DataPipes.
755
+ * Generic: Fix a bug that when an invalid name is provided to argument where fully qualified name is expected, it will
743
756
  be parsed wrongly. Now it raises an exception correctly.
744
- - Model Explainability: Handle explanations for multiclass XGBoost classification models
745
- - Model Explainability: Workarounds and better error handling for XGB>2.1.0 not working with SHAP==0.42.1
757
+ * Model Explainability: Handle explanations for multiclass XGBoost classification models
758
+ * Model Explainability: Workarounds and better error handling for XGB>2.1.0 not working with SHAP==0.42.1
746
759
 
747
760
  ### New Features
748
761
 
749
- - Data: Add top-level exports for `DataConnector` and `DataSource` to `snowflake.ml.data`.
750
- - Data: Add native batching support via `batch_size` and `drop_last_batch` arguments to `DataConnector.to_torch_dataset()`
751
- - Feature Store: update_feature_view() supports taking feature view object as argument.
762
+ * Data: Add top-level exports for `DataConnector` and `DataSource` to `snowflake.ml.data`.
763
+ * Data: Add native batching support via `batch_size` and `drop_last_batch` arguments to `DataConnector.to_torch_dataset()`
764
+ * Feature Store: update_feature_view() supports taking feature view object as argument.
752
765
 
753
766
  ## 1.6.1 (2024-08-12)
754
767
 
755
768
  ### Bug Fixes
756
769
 
757
- - Feature Store: Support large metadata blob when generating dataset
758
- - Feature Store: Added a hidden knob in FeatureView as kargs for setting customized
770
+ * Feature Store: Support large metadata blob when generating dataset
771
+ * Feature Store: Added a hidden knob in FeatureView as kargs for setting customized
759
772
  refresh_mode
760
- - Registry: Fix an error message in Model Version `run` when `function_name` is not mentioned and model has multiple
773
+ * Registry: Fix an error message in Model Version `run` when `function_name` is not mentioned and model has multiple
761
774
  target methods.
762
- - Cortex inference: snowflake.cortex.Complete now only uses the REST API for streaming and the use_rest_api_experimental
775
+ * Cortex inference: snowflake.cortex.Complete now only uses the REST API for streaming and the use_rest_api_experimental
763
776
  is no longer needed.
764
- - Feature Store: Add a new API: FeatureView.list_columns() which list all column information.
765
- - Data: Fix `DataFrame` ingestion with `ArrowIngestor`.
777
+ * Feature Store: Add a new API: FeatureView.list_columns() which list all column information.
778
+ * Data: Fix `DataFrame` ingestion with `ArrowIngestor`.
766
779
 
767
780
  ### New Features
768
781
 
769
- - Enable `set_params` to set the parameters of the underlying sklearn estimator, if the snowflake-ml model has been fit.
770
- - Data: Add `snowflake.ml.data.ingestor_utils` module with utility functions helpful for `DataIngestor` implementations.
771
- - Data: Add new `to_torch_dataset()` connector to `DataConnector` to replace deprecated DataPipe.
772
- - Registry: Option to `enable_explainability` set to True by default for XGBoost, LightGBM and CatBoost as PuPr feature.
773
- - Registry: Option to `enable_explainability` when registering SHAP supported sklearn models.
782
+ * Enable `set_params` to set the parameters of the underlying sklearn estimator, if the snowflake-ml model has been fit.
783
+ * Data: Add `snowflake.ml.data.ingestor_utils` module with utility functions helpful for `DataIngestor` implementations.
784
+ * Data: Add new `to_torch_dataset()` connector to `DataConnector` to replace deprecated DataPipe.
785
+ * Registry: Option to `enable_explainability` set to True by default for XGBoost, LightGBM and CatBoost as PuPr feature.
786
+ * Registry: Option to `enable_explainability` when registering SHAP supported sklearn models.
774
787
 
775
788
  ## 1.6.0 (2024-07-29)
776
789
 
777
790
  ### Bug Fixes
778
791
 
779
- - Modeling: `SimpleImputer` can impute integer columns with integer values.
780
- - Registry: Fix an issue when providing a pandas Dataframe whose index is not starting from 0 as the input to
792
+ * Modeling: `SimpleImputer` can impute integer columns with integer values.
793
+ * Registry: Fix an issue when providing a pandas Dataframe whose index is not starting from 0 as the input to
781
794
  the `ModelVersion.run`.
782
795
 
783
796
  ### New Features
784
797
 
785
- - Feature Store: Add overloads to APIs accept both object and name/version. Impacted APIs include read_feature_view(),
798
+ * Feature Store: Add overloads to APIs accept both object and name/version. Impacted APIs include read_feature_view(),
786
799
  refresh_feature_view(), get_refresh_history(), resume_feature_view(), suspend_feature_view(), delete_feature_view().
787
- - Feature Store: Add docstring inline examples for all public APIs.
788
- - Feature Store: Add new utility class `ExampleHelper` to help with load source data to simplify public notebooks.
789
- - Registry: Option to `enable_explainability` when registering XGBoost models as a pre-PuPr feature.
790
- - Feature Store: add new API `update_entity()`.
791
- - Registry: Option to `enable_explainability` when registering Catboost models as a pre-PuPr feature.
792
- - Feature Store: Add new argument warehouse to FeatureView constructor to overwrite the default warehouse. Also add
800
+ * Feature Store: Add docstring inline examples for all public APIs.
801
+ * Feature Store: Add new utility class `ExampleHelper` to help with load source data to simplify public notebooks.
802
+ * Registry: Option to `enable_explainability` when registering XGBoost models as a pre-PuPr feature.
803
+ * Feature Store: add new API `update_entity()`.
804
+ * Registry: Option to `enable_explainability` when registering Catboost models as a pre-PuPr feature.
805
+ * Feature Store: Add new argument warehouse to FeatureView constructor to overwrite the default warehouse. Also add
793
806
  a new column 'warehouse' to the output of list_feature_views().
794
- - Registry: Add support for logging model from a model version.
795
- - Modeling: Distributed Hyperparameter Optimization now announce GA refresh version. The latest memory efficient version
807
+ * Registry: Add support for logging model from a model version.
808
+ * Modeling: Distributed Hyperparameter Optimization now announce GA refresh version. The latest memory efficient version
796
809
  will not have the 10GB training limitation for dataset any more. To turn off, please run
797
810
  `
798
811
  from snowflake.ml.modeling._internal.snowpark_implementations import (
@@ -800,106 +813,106 @@ data from explainablity and data lineage.
800
813
  )
801
814
  distributed_hpo_trainer.ENABLE_EFFICIENT_MEMORY_USAGE = False
802
815
  `
803
- - Registry: Option to `enable_explainability` when registering LightGBM models as a pre-PuPr feature.
804
- - Data: Add new `snowflake.ml.data` preview module which contains data reading utilities like `DataConnector`
805
- - `DataConnector` provides efficient connectors from Snowpark `DataFrame`
816
+ * Registry: Option to `enable_explainability` when registering LightGBM models as a pre-PuPr feature.
817
+ * Data: Add new `snowflake.ml.data` preview module which contains data reading utilities like `DataConnector`
818
+ * `DataConnector` provides efficient connectors from Snowpark `DataFrame`
806
819
  and Snowpark ML `Dataset` to external frameworks like PyTorch, TensorFlow, and Pandas. Create `DataConnector`
807
820
  instances using the classmethod constructors `DataConnector.from_dataset()` and `DataConnector.from_dataframe()`.
808
- - Data: Add new `DataConnector.from_sources()` classmethod constructor for constructing from `DataSource` objects.
809
- - Data: Add new `ingestor_class` arg to `DataConnector` classmethod constructors for easier `DataIngestor` injection.
810
- - Dataset: `DatasetReader` now subclasses new `DataConnector` class.
811
- - Add optional `limit` arg to `DatasetReader.to_pandas()`
821
+ * Data: Add new `DataConnector.from_sources()` classmethod constructor for constructing from `DataSource` objects.
822
+ * Data: Add new `ingestor_class` arg to `DataConnector` classmethod constructors for easier `DataIngestor` injection.
823
+ * Dataset: `DatasetReader` now subclasses new `DataConnector` class.
824
+ * Add optional `limit` arg to `DatasetReader.to_pandas()`
812
825
 
813
826
  ### Behavior Changes
814
827
 
815
- - Feature Store: change some positional parameters to keyword arguments in following APIs:
816
- - Entity(): desc.
817
- - FeatureView(): timestamp_col, refresh_freq, desc.
818
- - FeatureStore(): creation_mode.
819
- - update_entity(): desc.
820
- - register_feature_view(): block, overwrite.
821
- - list_feature_views(): entity_name, feature_view_name.
822
- - get_refresh_history(): verbose.
823
- - retrieve_feature_values(): spine_timestamp_col, exclude_columns, include_feature_view_timestamp_col.
824
- - generate_training_set(): save_as, spine_timestamp_col, spine_label_cols, exclude_columns,
828
+ * Feature Store: change some positional parameters to keyword arguments in following APIs:
829
+ * Entity(): desc.
830
+ * FeatureView(): timestamp_col, refresh_freq, desc.
831
+ * FeatureStore(): creation_mode.
832
+ * update_entity(): desc.
833
+ * register_feature_view(): block, overwrite.
834
+ * list_feature_views(): entity_name, feature_view_name.
835
+ * get_refresh_history(): verbose.
836
+ * retrieve_feature_values(): spine_timestamp_col, exclude_columns, include_feature_view_timestamp_col.
837
+ * generate_training_set(): save_as, spine_timestamp_col, spine_label_cols, exclude_columns,
825
838
  include_feature_view_timestamp_col.
826
- - generate_dataset(): version, spine_timestamp_col, spine_label_cols, exclude_columns,
839
+ * generate_dataset(): version, spine_timestamp_col, spine_label_cols, exclude_columns,
827
840
  include_feature_view_timestamp_col, desc, output_type.
828
841
 
829
842
  ## 1.5.4 (2024-07-11)
830
843
 
831
844
  ### Bug Fixes
832
845
 
833
- - Model Registry (PrPr): Fix 401 Unauthorized issue when deploying model to SPCS.
834
- - Feature Store: Downgrades exceptions to warnings for few property setters in feature view. Now you can set
846
+ * Model Registry (PrPr): Fix 401 Unauthorized issue when deploying model to SPCS.
847
+ * Feature Store: Downgrades exceptions to warnings for few property setters in feature view. Now you can set
835
848
  desc, refresh_freq and warehouse for draft feature views.
836
- - Modeling: Fix an issue with calling `OrdinalEncoder` with `categories` as a dictionary and a pandas DataFrame
837
- - Modeling: Fix an issue with calling `OneHotEncoder` with `categories` as a dictionary and a pandas DataFrame
849
+ * Modeling: Fix an issue with calling `OrdinalEncoder` with `categories` as a dictionary and a pandas DataFrame
850
+ * Modeling: Fix an issue with calling `OneHotEncoder` with `categories` as a dictionary and a pandas DataFrame
838
851
 
839
852
  ### New Features
840
853
 
841
- - Registry: Allow overriding `device_map` and `device` when loading huggingface pipeline models.
842
- - Registry: Add `set_alias` method to `ModelVersion` instance to set an alias to model version.
843
- - Registry: Add `unset_alias` method to `ModelVersion` instance to unset an alias to model version.
844
- - Registry: Add `partitioned_inference_api` allowing users to create partitioned inference functions in registered
854
+ * Registry: Allow overriding `device_map` and `device` when loading huggingface pipeline models.
855
+ * Registry: Add `set_alias` method to `ModelVersion` instance to set an alias to model version.
856
+ * Registry: Add `unset_alias` method to `ModelVersion` instance to unset an alias to model version.
857
+ * Registry: Add `partitioned_inference_api` allowing users to create partitioned inference functions in registered
845
858
  models. Enable model inference methods with table functions with vectorized process methods in registered models.
846
- - Feature Store: add 3 more columns: refresh_freq, refresh_mode and scheduling_state to the result of
859
+ * Feature Store: add 3 more columns: refresh_freq, refresh_mode and scheduling_state to the result of
847
860
  `list_feature_views()`.
848
- - Feature Store: `update_feature_view()` supports updating description.
849
- - Feature Store: add new API `refresh_feature_view()`.
850
- - Feature Store: add new API `get_refresh_history()`.
851
- - Feature Store: Add `generate_training_set()` API for generating table-backed feature snapshots.
852
- - Feature Store: Add `DeprecationWarning` for `generate_dataset(..., output_type="table")`.
853
- - Feature Store: `update_feature_view()` supports updating description.
854
- - Feature Store: add new API `refresh_feature_view()`.
855
- - Feature Store: add new API `get_refresh_history()`.
856
- - Model Development: OrdinalEncoder supports a list of array-likes for `categories` argument.
857
- - Model Development: OneHotEncoder supports a list of array-likes for `categories` argument.
861
+ * Feature Store: `update_feature_view()` supports updating description.
862
+ * Feature Store: add new API `refresh_feature_view()`.
863
+ * Feature Store: add new API `get_refresh_history()`.
864
+ * Feature Store: Add `generate_training_set()` API for generating table-backed feature snapshots.
865
+ * Feature Store: Add `DeprecationWarning` for `generate_dataset(..., output_type="table")`.
866
+ * Feature Store: `update_feature_view()` supports updating description.
867
+ * Feature Store: add new API `refresh_feature_view()`.
868
+ * Feature Store: add new API `get_refresh_history()`.
869
+ * Model Development: OrdinalEncoder supports a list of array-likes for `categories` argument.
870
+ * Model Development: OneHotEncoder supports a list of array-likes for `categories` argument.
858
871
 
859
872
  ## 1.5.3 (06-17-2024)
860
873
 
861
874
  ### Bug Fixes
862
875
 
863
- - Modeling: Fix an issue causing lineage information to be missing for
876
+ * Modeling: Fix an issue causing lineage information to be missing for
864
877
  `Pipeline`, `GridSearchCV` , `SimpleImputer`, and `RandomizedSearchCV`
865
- - Registry: Fix an issue that leads to incorrect result when using pandas Dataframe with over 100, 000 rows as the input
878
+ * Registry: Fix an issue that leads to incorrect result when using pandas Dataframe with over 100, 000 rows as the input
866
879
  of `ModelVersion.run` method in Stored Procedure.
867
880
 
868
881
  ### New Features
869
882
 
870
- - Registry: Add support for TIMESTAMP_NTZ model signature data type, allowing timestamp input and output.
871
- - Dataset: Add `DatasetVersion.label_cols` and `DatasetVersion.exclude_cols` properties.
883
+ * Registry: Add support for TIMESTAMP_NTZ model signature data type, allowing timestamp input and output.
884
+ * Dataset: Add `DatasetVersion.label_cols` and `DatasetVersion.exclude_cols` properties.
872
885
 
873
886
  ## 1.5.2 (06-10-2024)
874
887
 
875
888
  ### Bug Fixes
876
889
 
877
- - Registry: Fix an issue that leads to unable to log model in store procedure.
878
- - Modeling: Quick fix `import snowflake.ml.modeling.parameters.enable_anonymous_sproc` cannot be imported due to package
890
+ * Registry: Fix an issue that leads to unable to log model in store procedure.
891
+ * Modeling: Quick fix `import snowflake.ml.modeling.parameters.enable_anonymous_sproc` cannot be imported due to package
879
892
  dependency error.
880
893
 
881
894
  ## 1.5.1 (05-22-2024)
882
895
 
883
896
  ### Bug Fixes
884
897
 
885
- - Dataset: Fix `snowflake.connector.errors.DataError: Query Result did not match expected number of rows` when accessing
898
+ * Dataset: Fix `snowflake.connector.errors.DataError: Query Result did not match expected number of rows` when accessing
886
899
  DatasetVersion properties when case insensitive `SHOW VERSIONS IN DATASET` check matches multiple version names.
887
- - Dataset: Fix bug in SnowFS bulk file read when used with DuckDB
888
- - Registry: Fixed a bug when loading old models.
889
- - Lineage: Fix Dataset source lineage propagation through `snowpark.DataFrame` transformations
900
+ * Dataset: Fix bug in SnowFS bulk file read when used with DuckDB
901
+ * Registry: Fixed a bug when loading old models.
902
+ * Lineage: Fix Dataset source lineage propagation through `snowpark.DataFrame` transformations
890
903
 
891
904
  ### Behavior Changes
892
905
 
893
- - Feature Store: convert clear() into a private function. Also make it deletes feature views and entities only.
894
- - Feature Store: Use NULL as default value for timestamp tag value.
906
+ * Feature Store: convert clear() into a private function. Also make it deletes feature views and entities only.
907
+ * Feature Store: Use NULL as default value for timestamp tag value.
895
908
 
896
909
  ### New Features
897
910
 
898
- - Feature Store: Added new `snowflake.ml.feature_store.setup_feature_store()` API to assist Feature Store RBAC setup.
899
- - Feature Store: Add `output_type` argument to `FeatureStore.generate_dataset()` to allow generating data snapshots
911
+ * Feature Store: Added new `snowflake.ml.feature_store.setup_feature_store()` API to assist Feature Store RBAC setup.
912
+ * Feature Store: Add `output_type` argument to `FeatureStore.generate_dataset()` to allow generating data snapshots
900
913
  as Datasets or Tables.
901
- - Registry: `log_model`, `get_model`, `delete_model` now supports fully qualified name.
902
- - Modeling: Supports anonymous stored procedure during fit calls so that modeling would not require sufficient
914
+ * Registry: `log_model`, `get_model`, `delete_model` now supports fully qualified name.
915
+ * Modeling: Supports anonymous stored procedure during fit calls so that modeling would not require sufficient
903
916
  permissions to operate on schema. Please call
904
917
  `import snowflake.ml.modeling.parameters.enable_anonymous_sproc # noqa: F401`
905
918
 
@@ -907,11 +920,11 @@ data from explainablity and data lineage.
907
920
 
908
921
  ### Bug Fixes
909
922
 
910
- - Registry: Fix invalid parameter 'SHOW_MODEL_DETAILS_IN_SHOW_VERSIONS_IN_MODEL' error.
923
+ * Registry: Fix invalid parameter 'SHOW_MODEL_DETAILS_IN_SHOW_VERSIONS_IN_MODEL' error.
911
924
 
912
925
  ### Behavior Changes
913
926
 
914
- - Model Development: The behavior of `fit_transform` for all estimators is changed.
927
+ * Model Development: The behavior of `fit_transform` for all estimators is changed.
915
928
  Firstly, it will cover all the estimator that contains this function,
916
929
  secondly, the output would be the union of pandas DataFrame and snowpark DataFrame.
917
930
 
@@ -919,167 +932,167 @@ data from explainablity and data lineage.
919
932
 
920
933
  `snowflake.ml.registry.artifact` and related `snowflake.ml.model_registry.ModelRegistry` APIs have been removed.
921
934
 
922
- - Removed `snowflake.ml.registry.artifact` module.
923
- - Removed `ModelRegistry.log_artifact()`, `ModelRegistry.list_artifacts()`, `ModelRegistry.get_artifact()`
924
- - Removed `artifacts` argument from `ModelRegistry.log_model()`
935
+ * Removed `snowflake.ml.registry.artifact` module.
936
+ * Removed `ModelRegistry.log_artifact()`, `ModelRegistry.list_artifacts()`, `ModelRegistry.get_artifact()`
937
+ * Removed `artifacts` argument from `ModelRegistry.log_model()`
925
938
 
926
939
  #### Dataset (PrPr)
927
940
 
928
941
  `snowflake.ml.dataset.Dataset` has been redesigned to be backed by Snowflake Dataset entities.
929
942
 
930
- - New `Dataset`s can be created with `Dataset.create()` and existing `Dataset`s may be loaded
943
+ * New `Dataset`s can be created with `Dataset.create()` and existing `Dataset`s may be loaded
931
944
  with `Dataset.load()`.
932
- - `Dataset`s now maintain an immutable `selected_version` state. The `Dataset.create_version()` and
945
+ * `Dataset`s now maintain an immutable `selected_version` state. The `Dataset.create_version()` and
933
946
  `Dataset.load_version()` APIs return new `Dataset` objects with the requested `selected_version` state.
934
- - Added `dataset.create_from_dataframe()` and `dataset.load_dataset()` convenience APIs as a shortcut
947
+ * Added `dataset.create_from_dataframe()` and `dataset.load_dataset()` convenience APIs as a shortcut
935
948
  to creating and loading `Dataset`s with a pre-selected version.
936
- - `Dataset.materialized_table` and `Dataset.snapshot_table` no longer exist with `Dataset.fully_qualified_name`
949
+ * `Dataset.materialized_table` and `Dataset.snapshot_table` no longer exist with `Dataset.fully_qualified_name`
937
950
  as the closest equivalent.
938
- - `Dataset.df` no longer exists. Instead, use `DatasetReader.read.to_snowpark_dataframe()`.
939
- - `Dataset.owner` has been moved to `Dataset.selected_version.owner`
940
- - `Dataset.desc` has been moved to `DatasetVersion.selected_version.comment`
941
- - `Dataset.timestamp_col`, `Dataset.label_cols`, `Dataset.feature_store_metadata`, and
951
+ * `Dataset.df` no longer exists. Instead, use `DatasetReader.read.to_snowpark_dataframe()`.
952
+ * `Dataset.owner` has been moved to `Dataset.selected_version.owner`
953
+ * `Dataset.desc` has been moved to `DatasetVersion.selected_version.comment`
954
+ * `Dataset.timestamp_col`, `Dataset.label_cols`, `Dataset.feature_store_metadata`, and
942
955
  `Dataset.schema_version` have been removed.
943
956
 
944
957
  #### Feature Store (PrPr)
945
958
 
946
- - `FeatureStore.generate_dataset` argument list has been changed to match the new
959
+ * `FeatureStore.generate_dataset` argument list has been changed to match the new
947
960
  `snowflake.ml.dataset.Dataset` definition
948
961
 
949
- - `materialized_table` has been removed and replaced with `name` and `version`.
950
- - `name` moved to first positional argument
951
- - `save_mode` has been removed as `merge` behavior is no longer supported. The new behavior is always `errorifexists`.
962
+ * `materialized_table` has been removed and replaced with `name` and `version`.
963
+ * `name` moved to first positional argument
964
+ * `save_mode` has been removed as `merge` behavior is no longer supported. The new behavior is always `errorifexists`.
952
965
 
953
- - Change feature view version type from str to `FeatureViewVersion`. It is a restricted string literal.
966
+ * Change feature view version type from str to `FeatureViewVersion`. It is a restricted string literal.
954
967
 
955
- - Remove as_dataframe arg from FeatureStore.list_feature_views(), now always returns result as DataFrame.
968
+ * Remove as_dataframe arg from FeatureStore.list_feature_views(), now always returns result as DataFrame.
956
969
 
957
- - Combines few metadata tags into a new tag: SNOWML_FEATURE_VIEW_METADATA. This will make previously created feature views
970
+ * Combines few metadata tags into a new tag: SNOWML_FEATURE_VIEW_METADATA. This will make previously created feature views
958
971
  not readable by new SDK.
959
972
 
960
973
  ### New Features
961
974
 
962
- - Registry: Add `export` method to `ModelVersion` instance to export model files.
963
- - Registry: Add `load` method to `ModelVersion` instance to load the underlying object from the model.
964
- - Registry: Add `Model.rename` method to `Model` instance to rename or move a model.
975
+ * Registry: Add `export` method to `ModelVersion` instance to export model files.
976
+ * Registry: Add `load` method to `ModelVersion` instance to load the underlying object from the model.
977
+ * Registry: Add `Model.rename` method to `Model` instance to rename or move a model.
965
978
 
966
979
  #### Dataset (PrPr)
967
980
 
968
- - Added Snowpark DataFrame integration using `Dataset.read.to_snowpark_dataframe()`
969
- - Added Pandas DataFrame integration using `Dataset.read.to_pandas()`
970
- - Added PyTorch and TensorFlow integrations using `Dataset.read.to_torch_datapipe()`
981
+ * Added Snowpark DataFrame integration using `Dataset.read.to_snowpark_dataframe()`
982
+ * Added Pandas DataFrame integration using `Dataset.read.to_pandas()`
983
+ * Added PyTorch and TensorFlow integrations using `Dataset.read.to_torch_datapipe()`
971
984
  and `Dataset.read.to_tf_dataset()` respectively.
972
- - Added `fsspec` style file integration using `Dataset.read.files()` and `Dataset.read.filesystem()`
985
+ * Added `fsspec` style file integration using `Dataset.read.files()` and `Dataset.read.filesystem()`
973
986
 
974
987
  #### Feature Store
975
988
 
976
- - use new tag_reference_internal to speed up metadata lookup.
989
+ * use new tag_reference_internal to speed up metadata lookup.
977
990
 
978
991
  ## 1.4.1 (2024-04-18)
979
992
 
980
993
  ### New Features
981
994
 
982
- - Registry: Add support for `catboost` model (`catboost.CatBoostClassifier`, `catboost.CatBoostRegressor`).
983
- - Registry: Add support for `lightgbm` model (`lightgbm.Booster`, `lightgbm.LightGBMClassifier`, `lightgbm.LightGBMRegressor`).
995
+ * Registry: Add support for `catboost` model (`catboost.CatBoostClassifier`, `catboost.CatBoostRegressor`).
996
+ * Registry: Add support for `lightgbm` model (`lightgbm.Booster`, `lightgbm.LightGBMClassifier`, `lightgbm.LightGBMRegressor`).
984
997
 
985
998
  ### Bug Fixes
986
999
 
987
- - Registry: Fix a bug that leads to relax_version option is not working.
1000
+ * Registry: Fix a bug that leads to relax_version option is not working.
988
1001
 
989
1002
  ### Behavior changes
990
1003
 
991
- - Feature Store: update_feature_view takes refresh_freq and warehouse as argument.
1004
+ * Feature Store: update_feature_view takes refresh_freq and warehouse as argument.
992
1005
 
993
1006
  ## 1.4.0 (2024-04-08)
994
1007
 
995
1008
  ### Bug Fixes
996
1009
 
997
- - Registry: Fix a bug when multiple models are being called from the same query, models other than the first one will
1010
+ * Registry: Fix a bug when multiple models are being called from the same query, models other than the first one will
998
1011
  have incorrect result. This fix only works for newly logged model.
999
- - Modeling: When registering a model, only method(s) that is mentioned in `save_model` would be added to model signature
1012
+ * Modeling: When registering a model, only method(s) that is mentioned in `save_model` would be added to model signature
1000
1013
  in SnowML models.
1001
- - Modeling: Fix a bug that when n_jobs is not 1, model cannot execute methods such as
1014
+ * Modeling: Fix a bug that when n_jobs is not 1, model cannot execute methods such as
1002
1015
  predict, predict_log_proba, and other batch inference methods. The n_jobs would automatically
1003
1016
  set to 1 because vectorized udf currently doesn't support joblib parallel backend.
1004
- - Modeling: Fix a bug that batch inference methods cannot infer the datatype when the first row of data contains NULL.
1005
- - Modeling: Matches Distributed HPO output column names with the snowflake identifier.
1006
- - Modeling: Relax package versions for all Distributed HPO methods if the installed version
1017
+ * Modeling: Fix a bug that batch inference methods cannot infer the datatype when the first row of data contains NULL.
1018
+ * Modeling: Matches Distributed HPO output column names with the snowflake identifier.
1019
+ * Modeling: Relax package versions for all Distributed HPO methods if the installed version
1007
1020
  is not available in the Snowflake conda channel
1008
- - Modeling: Add sklearn as required dependency for LightGBM package.
1021
+ * Modeling: Add sklearn as required dependency for LightGBM package.
1009
1022
 
1010
1023
  ### Behavior Changes
1011
1024
 
1012
- - Registry: `apply` method is no longer by default logged when logging a xgboost model. If that is required, it could
1025
+ * Registry: `apply` method is no longer by default logged when logging a xgboost model. If that is required, it could
1013
1026
  be specified manually when logging the model by `log_model(..., options={"target_methods": ["apply", ...]})`.
1014
- - Feature Store: register_entity returns an entity object.
1015
- - Feature Store: register_feature_view `block=true` becomes default.
1027
+ * Feature Store: register_entity returns an entity object.
1028
+ * Feature Store: register_feature_view `block=true` becomes default.
1016
1029
 
1017
1030
  ### New Features
1018
1031
 
1019
- - Registry: Add support for `sentence-transformers` model (`sentence_transformers.SentenceTransformer`).
1020
- - Registry: Now version name is no longer required when logging a model. If not provided, a random human readable ID
1032
+ * Registry: Add support for `sentence-transformers` model (`sentence_transformers.SentenceTransformer`).
1033
+ * Registry: Now version name is no longer required when logging a model. If not provided, a random human readable ID
1021
1034
  will be generated.
1022
1035
 
1023
1036
  ## 1.3.1 (2024-03-21)
1024
1037
 
1025
1038
  ### New Features
1026
1039
 
1027
- - FileSet: `snowflake.ml.fileset.sfcfs.SFFileSystem` can now be used in UDFs and stored procedures.
1040
+ * FileSet: `snowflake.ml.fileset.sfcfs.SFFileSystem` can now be used in UDFs and stored procedures.
1028
1041
 
1029
1042
  ## 1.3.0 (2024-03-12)
1030
1043
 
1031
1044
  ### Bug Fixes
1032
1045
 
1033
- - Registry: Fix a bug that leads to module in `code_paths` when `log_model` cannot be correctly imported.
1034
- - Registry: Fix incorrect error message when validating input Snowpark DataFrame with array feature.
1035
- - Model Registry: Fix an issue when deploying a model to SPCS that some files do not have proper permission.
1036
- - Model Development: Relax package versions for all inference methods if the installed version
1046
+ * Registry: Fix a bug that leads to module in `code_paths` when `log_model` cannot be correctly imported.
1047
+ * Registry: Fix incorrect error message when validating input Snowpark DataFrame with array feature.
1048
+ * Model Registry: Fix an issue when deploying a model to SPCS that some files do not have proper permission.
1049
+ * Model Development: Relax package versions for all inference methods if the installed version
1037
1050
  is not available in the Snowflake conda channel
1038
1051
 
1039
1052
  ### Behavior Changes
1040
1053
 
1041
- - Registry: When running the method of a model, the value range based input validation to avoid input from overflowing
1054
+ * Registry: When running the method of a model, the value range based input validation to avoid input from overflowing
1042
1055
  is now optional rather than enforced, this should improve the performance and should not lead to problem for most
1043
1056
  kinds of model. If you want to enable this check as previous, specify `strict_input_validation=True` when
1044
1057
  calling `run`.
1045
- - Registry: By default `relax_version=True` when logging a model instead of using the specific local dependency versions.
1058
+ * Registry: By default `relax_version=True` when logging a model instead of using the specific local dependency versions.
1046
1059
  This improves dependency versioning by using versions available in Snowflake. To switch back to the previous behavior
1047
1060
  and use specific local dependency versions, specify `relax_version=False` when calling `log_model`.
1048
- - Model Development: The behavior of `fit_predict` for all estimators is changed.
1061
+ * Model Development: The behavior of `fit_predict` for all estimators is changed.
1049
1062
  Firstly, it will cover all the estimator that contains this function,
1050
1063
  secondly, the output would be the union of pandas DataFrame and snowpark DataFrame.
1051
1064
 
1052
1065
  ### New Features
1053
1066
 
1054
- - FileSet: `snowflake.ml.fileset.sfcfs.SFFileSystem` can now be serialized with `pickle`.
1067
+ * FileSet: `snowflake.ml.fileset.sfcfs.SFFileSystem` can now be serialized with `pickle`.
1055
1068
 
1056
1069
  ## 1.2.3 (2024-02-26)
1057
1070
 
1058
1071
  ### Bug Fixes
1059
1072
 
1060
- - Registry: Now when providing Decimal Type column to a DOUBLE or FLOAT feature will not error out but auto cast with
1073
+ * Registry: Now when providing Decimal Type column to a DOUBLE or FLOAT feature will not error out but auto cast with
1061
1074
  warnings.
1062
- - Registry: Improve the error message when specifying currently unsupported `pip_requirements` argument.
1063
- - Model Development: Fix precision_recall_fscore_support incorrect results when `average="samples"`.
1064
- - Model Registry: Fix an issue that leads to description, metrics or tags are not correctly returned in newly created
1075
+ * Registry: Improve the error message when specifying currently unsupported `pip_requirements` argument.
1076
+ * Model Development: Fix precision_recall_fscore_support incorrect results when `average="samples"`.
1077
+ * Model Registry: Fix an issue that leads to description, metrics or tags are not correctly returned in newly created
1065
1078
  Model Registry (PrPr) due to Snowflake BCR [2024_01](https://docs.snowflake.com/en/release-notes/bcr-bundles/2024_01/bcr-1483)
1066
1079
 
1067
1080
  ### Behavior Changes
1068
1081
 
1069
- - Feature Store: `FeatureStore.suspend_feature_view` and `FeatureStore.resume_feature_view` doesn't mutate input feature
1082
+ * Feature Store: `FeatureStore.suspend_feature_view` and `FeatureStore.resume_feature_view` doesn't mutate input feature
1070
1083
  view argument any more. The updated status only reflected in the returned feature view object.
1071
1084
 
1072
1085
  ### New Features
1073
1086
 
1074
- - Model Development: support `score_samples` method for all the classes, including Pipeline,
1087
+ * Model Development: support `score_samples` method for all the classes, including Pipeline,
1075
1088
  GridSearchCV, RandomizedSearchCV, PCA, IsolationForest, ...
1076
- - Registry: Support deleting a version of a model.
1089
+ * Registry: Support deleting a version of a model.
1077
1090
 
1078
1091
  ## 1.2.2 (2024-02-13)
1079
1092
 
1080
1093
  ### New Features
1081
1094
 
1082
- - Model Registry: Support providing external access integrations when deploying a model to SPCS. This will help and be
1095
+ * Model Registry: Support providing external access integrations when deploying a model to SPCS. This will help and be
1083
1096
  required to make sure the deploying process work as long as SPCS will by default deny all network connections. The
1084
1097
  following endpoints must be allowed to make deployment work: docker.com:80, docker.com:443, anaconda.com:80,
1085
1098
  anaconda.com:443, anaconda.org:80, anaconda.org:443, pypi.org:80, pypi.org:443. If you are using
@@ -1090,30 +1103,30 @@ not readable by new SDK.
1090
1103
 
1091
1104
  ### New Features
1092
1105
 
1093
- - Model Development: Infers output column data type for transformers when possible.
1094
- - Registry: `relax_version` option is available in the `options` argument when logging the model.
1106
+ * Model Development: Infers output column data type for transformers when possible.
1107
+ * Registry: `relax_version` option is available in the `options` argument when logging the model.
1095
1108
 
1096
1109
  ## 1.2.0 (2024-01-11)
1097
1110
 
1098
1111
  ### Bug Fixes
1099
1112
 
1100
- - Model Registry: Fix "XGBoost version not compiled with GPU support" error when running CPU inference against open-source
1113
+ * Model Registry: Fix "XGBoost version not compiled with GPU support" error when running CPU inference against open-source
1101
1114
  XGBoost models deployed to SPCS.
1102
- - Model Registry: Fix model deployment to SPCS on Windows machines.
1115
+ * Model Registry: Fix model deployment to SPCS on Windows machines.
1103
1116
 
1104
1117
  ### New Features
1105
1118
 
1106
- - Model Development: Introduced XGBoost external memory training feature. This feature enables training XGBoost models
1119
+ * Model Development: Introduced XGBoost external memory training feature. This feature enables training XGBoost models
1107
1120
  on large datasets that don't fit into memory.
1108
- - Registry: New Registry class named `snowflake.ml.registry.Registry` providing similar APIs as the old one but works
1121
+ * Registry: New Registry class named `snowflake.ml.registry.Registry` providing similar APIs as the old one but works
1109
1122
  with new MODEL object in Snowflake SQL. Also, we are providing`snowflake.ml.model.Model` and
1110
1123
  `snowflake.ml.model.ModelVersion` to represent a model and a specific version of a model.
1111
- - Model Development: Add support for `fit_predict` method in `AgglomerativeClustering`, `DBSCAN`, and `OPTICS` classes;
1112
- - Model Development: Add support for `fit_transform` method in `MDS`, `SpectralEmbedding` and `TSNE` class.
1124
+ * Model Development: Add support for `fit_predict` method in `AgglomerativeClustering`, `DBSCAN`, and `OPTICS` classes;
1125
+ * Model Development: Add support for `fit_transform` method in `MDS`, `SpectralEmbedding` and `TSNE` class.
1113
1126
 
1114
1127
  ### Additional Notes
1115
1128
 
1116
- - Model Registry: The `snowflake.ml.registry.model_registry.ModelRegistry` has been deprecated starting from version
1129
+ * Model Registry: The `snowflake.ml.registry.model_registry.ModelRegistry` has been deprecated starting from version
1117
1130
  1.2.0. It will stay in the Private Preview phase. For future implementations, kindly utilize
1118
1131
  `snowflake.ml.registry.Registry`, except when specifically required. The old model registry will be removed once all
1119
1132
  its primary functionalities are fully integrated into the new registry.
@@ -1122,30 +1135,30 @@ not readable by new SDK.
1122
1135
 
1123
1136
  ### Bug Fixes
1124
1137
 
1125
- - Generic: Fix the issue that stack trace is hidden by telemetry unexpectedly.
1126
- - Model Development: Execute model signature inference without materializing full dataframe in memory.
1127
- - Model Registry: Fix occasional 'snowflake-ml-python library does not exist' error when deploying to SPCS.
1138
+ * Generic: Fix the issue that stack trace is hidden by telemetry unexpectedly.
1139
+ * Model Development: Execute model signature inference without materializing full dataframe in memory.
1140
+ * Model Registry: Fix occasional 'snowflake-ml-python library does not exist' error when deploying to SPCS.
1128
1141
 
1129
1142
  ### Behavior Changes
1130
1143
 
1131
- - Model Registry: When calling `predict` with Snowpark DataFrame, both inferred or normalized column names are accepted.
1132
- - Model Registry: When logging a Snowpark ML Modeling Model, sample input data or manually provided signature will be
1144
+ * Model Registry: When calling `predict` with Snowpark DataFrame, both inferred or normalized column names are accepted.
1145
+ * Model Registry: When logging a Snowpark ML Modeling Model, sample input data or manually provided signature will be
1133
1146
  ignored since they are not necessary.
1134
1147
 
1135
1148
  ### New Features
1136
1149
 
1137
- - Model Development: SQL implementation of binary `precision_score` metric.
1150
+ * Model Development: SQL implementation of binary `precision_score` metric.
1138
1151
 
1139
1152
  ## 1.1.1 (2023-12-05)
1140
1153
 
1141
1154
  ### Bug Fixes
1142
1155
 
1143
- - Model Registry: The `predict` target method on registered models is now compatible with unsupervised estimators.
1144
- - Model Development: Fix confusion_matrix incorrect results when the row number cannot be divided by the batch size.
1156
+ * Model Registry: The `predict` target method on registered models is now compatible with unsupervised estimators.
1157
+ * Model Development: Fix confusion_matrix incorrect results when the row number cannot be divided by the batch size.
1145
1158
 
1146
1159
  ### New Features
1147
1160
 
1148
- - Introduced passthrough_col param in Modeling API. This new param is helpful in scenarios
1161
+ * Introduced passthrough_col param in Modeling API. This new param is helpful in scenarios
1149
1162
  requiring automatic input_cols inference, but need to avoid using specific
1150
1163
  columns, like index columns, during training or inference.
1151
1164
 
@@ -1153,165 +1166,165 @@ not readable by new SDK.
1153
1166
 
1154
1167
  ### Bug Fixes
1155
1168
 
1156
- - Model Registry: Fix panda dataframe input not handling first row properly.
1157
- - Model Development: OrdinalEncoder and LabelEncoder output_columns do not need to be valid snowflake identifiers. They
1169
+ * Model Registry: Fix panda dataframe input not handling first row properly.
1170
+ * Model Development: OrdinalEncoder and LabelEncoder output_columns do not need to be valid snowflake identifiers. They
1158
1171
  would previously be excluded if the normalized name did not match the name specified in output_columns.
1159
1172
 
1160
1173
  ### New Features
1161
1174
 
1162
- - Model Registry: Add support for invoking public endpoint on SPCS service, by providing a "enable_ingress" SPCS
1175
+ * Model Registry: Add support for invoking public endpoint on SPCS service, by providing a "enable_ingress" SPCS
1163
1176
  deployment option.
1164
- - Model Development: Add support for distributed HPO - GridSearchCV and RandomizedSearchCV execution will be
1177
+ * Model Development: Add support for distributed HPO - GridSearchCV and RandomizedSearchCV execution will be
1165
1178
  distributed on multi-node warehouses.
1166
1179
 
1167
1180
  ## 1.0.12 (2023-11-13)
1168
1181
 
1169
1182
  ### Bug Fixes
1170
1183
 
1171
- - Model Registry: Fix regression issue that container logging is not shown during model deployment to SPCS.
1172
- - Model Development: Enhance the column capacity of OrdinalEncoder.
1173
- - Model Registry: Fix unbound `batch_size` error when deploying a model other than Hugging Face Pipeline
1184
+ * Model Registry: Fix regression issue that container logging is not shown during model deployment to SPCS.
1185
+ * Model Development: Enhance the column capacity of OrdinalEncoder.
1186
+ * Model Registry: Fix unbound `batch_size` error when deploying a model other than Hugging Face Pipeline
1174
1187
  and LLM with GPU on SPCS.
1175
1188
 
1176
1189
  ### Behavior Changes
1177
1190
 
1178
- - Model Registry: Raise early error when deploying to SPCS with db/schema that starts with underscore.
1179
- - Model Registry: `conda-forge` channel is now automatically added to channel lists when deploying to SPCS.
1180
- - Model Registry: `relax_version` will not strip all version specifier, instead it will relax `==x.y.z` specifier to
1191
+ * Model Registry: Raise early error when deploying to SPCS with db/schema that starts with underscore.
1192
+ * Model Registry: `conda-forge` channel is now automatically added to channel lists when deploying to SPCS.
1193
+ * Model Registry: `relax_version` will not strip all version specifier, instead it will relax `==x.y.z` specifier to
1181
1194
  `>=x.y,<(x+1)`.
1182
- - Model Registry: Python with different patchlevel but the same major and minor will not result a warning when loading
1195
+ * Model Registry: Python with different patchlevel but the same major and minor will not result a warning when loading
1183
1196
  the model via Model Registry and would be considered to use when deploying to SPCS.
1184
- - Model Registry: When logging a `snowflake.ml.model.models.huggingface_pipeline.HuggingFacePipelineModel` object,
1197
+ * Model Registry: When logging a `snowflake.ml.model.models.huggingface_pipeline.HuggingFacePipelineModel` object,
1185
1198
  versions of local installed libraries won't be picked as dependencies of models, instead it will pick up some pre-
1186
1199
  defined dependencies to improve user experience.
1187
1200
 
1188
1201
  ### New Features
1189
1202
 
1190
- - Model Registry: Enable best-effort SPCS job/service log streaming when logging level is set to INFO.
1203
+ * Model Registry: Enable best-effort SPCS job/service log streaming when logging level is set to INFO.
1191
1204
 
1192
1205
  ## 1.0.11 (2023-10-27)
1193
1206
 
1194
1207
  ### New Features
1195
1208
 
1196
- - Model Registry: Add log_artifact() public method.
1197
- - Model Development: Add support for `kneighbors`.
1209
+ * Model Registry: Add log_artifact() public method.
1210
+ * Model Development: Add support for `kneighbors`.
1198
1211
 
1199
1212
  ### Behavior Changes
1200
1213
 
1201
- - Model Registry: Change log_model() argument from TrainingDataset to List of Artifact.
1202
- - Model Registry: Change get_training_dataset() to get_artifact().
1214
+ * Model Registry: Change log_model() argument from TrainingDataset to List of Artifact.
1215
+ * Model Registry: Change get_training_dataset() to get_artifact().
1203
1216
 
1204
1217
  ### Bug Fixes
1205
1218
 
1206
- - Model Development: Fix support for XGBoost and LightGBM models using SKLearn Grid Search and Randomized Search model selectors.
1207
- - Model Development: DecimalType is now supported as a DataType.
1208
- - Model Development: Fix metrics compatibility with Snowpark Dataframes that use Snowflake identifiers
1209
- - Model Registry: Resolve 'delete_deployment' not deleting the SPCS service in certain cases.
1219
+ * Model Development: Fix support for XGBoost and LightGBM models using SKLearn Grid Search and Randomized Search model selectors.
1220
+ * Model Development: DecimalType is now supported as a DataType.
1221
+ * Model Development: Fix metrics compatibility with Snowpark Dataframes that use Snowflake identifiers
1222
+ * Model Registry: Resolve 'delete_deployment' not deleting the SPCS service in certain cases.
1210
1223
 
1211
1224
  ## 1.0.10 (2023-10-13)
1212
1225
 
1213
1226
  ### Behavior Changes
1214
1227
 
1215
- - Model Development: precision_score, recall_score, f1_score, fbeta_score, precision_recall_fscore_support,
1228
+ * Model Development: precision_score, recall_score, f1_score, fbeta_score, precision_recall_fscore_support,
1216
1229
  mean_absolute_error, mean_squared_error, and mean_absolute_percentage_error metric calculations are now distributed.
1217
- - Model Registry: `deploy` will now return `Deployment` for deployment information.
1230
+ * Model Registry: `deploy` will now return `Deployment` for deployment information.
1218
1231
 
1219
1232
  ### New Features
1220
1233
 
1221
- - Model Registry: When the model signature is auto-inferred, it will be printed to the log for reference.
1222
- - Model Registry: For SPCS deployment, `Deployment` details will contains `image_name`, `service_spec` and `service_function_sql`.
1234
+ * Model Registry: When the model signature is auto-inferred, it will be printed to the log for reference.
1235
+ * Model Registry: For SPCS deployment, `Deployment` details will contains `image_name`, `service_spec` and `service_function_sql`.
1223
1236
 
1224
1237
  ### Bug Fixes
1225
1238
 
1226
- - Model Development: Fix an issue that leading to UTF-8 decoding errors when using modeling modules on Windows.
1227
- - Model Development: Fix an issue that alias definitions cause `SnowparkSQLUnexpectedAliasException` in inference.
1228
- - Model Registry: Fix an issue that signature inference could be incorrect when using Snowpark DataFrame as sample input.
1229
- - Model Registry: Fix too strict data type validation when predicting. Now, for example, if you have a INT8
1239
+ * Model Development: Fix an issue that leading to UTF-8 decoding errors when using modeling modules on Windows.
1240
+ * Model Development: Fix an issue that alias definitions cause `SnowparkSQLUnexpectedAliasException` in inference.
1241
+ * Model Registry: Fix an issue that signature inference could be incorrect when using Snowpark DataFrame as sample input.
1242
+ * Model Registry: Fix too strict data type validation when predicting. Now, for example, if you have a INT8
1230
1243
  type feature in the signature, if providing a INT64 dataframe but all values are within the range, it would not fail.
1231
1244
 
1232
1245
  ## 1.0.9 (2023-09-28)
1233
1246
 
1234
1247
  ### Behavior Changes
1235
1248
 
1236
- - Model Development: log_loss metric calculation is now distributed.
1249
+ * Model Development: log_loss metric calculation is now distributed.
1237
1250
 
1238
1251
  ### Bug Fixes
1239
1252
 
1240
- - Model Registry: Fix an issue that building images fails with specific docker setup.
1241
- - Model Registry: Fix an issue that unable to embed local ML library when the library is imported by `zipimport`.
1242
- - Model Registry: Fix out-of-date doc about `platform` argument in the `deploy` function.
1243
- - Model Registry: Fix an issue that unable to deploy a GPU-trained PyTorch model to a platform where GPU is not available.
1253
+ * Model Registry: Fix an issue that building images fails with specific docker setup.
1254
+ * Model Registry: Fix an issue that unable to embed local ML library when the library is imported by `zipimport`.
1255
+ * Model Registry: Fix out-of-date doc about `platform` argument in the `deploy` function.
1256
+ * Model Registry: Fix an issue that unable to deploy a GPU-trained PyTorch model to a platform where GPU is not available.
1244
1257
 
1245
1258
  ## 1.0.8 (2023-09-15)
1246
1259
 
1247
1260
  ### Bug Fixes
1248
1261
 
1249
- - Model Development: Ordinal encoder can be used with mixed input column types.
1250
- - Model Development: Fix an issue when the sklearn default value is `np.nan`.
1251
- - Model Registry: Fix an issue that incorrect docker executable is used when building images.
1252
- - Model Registry: Fix an issue that specifying `token` argument when using
1262
+ * Model Development: Ordinal encoder can be used with mixed input column types.
1263
+ * Model Development: Fix an issue when the sklearn default value is `np.nan`.
1264
+ * Model Registry: Fix an issue that incorrect docker executable is used when building images.
1265
+ * Model Registry: Fix an issue that specifying `token` argument when using
1253
1266
  `snowflake.ml.model.models.huggingface_pipeline.HuggingFacePipelineModel` with `transformers < 4.32.0` is not effective.
1254
- - Model Registry: Fix an issue that incorrect system function call is used when deploying to SPCS.
1255
- - Model Registry: Fix an issue when using a `transformers.pipeline` that does not have a `tokenizer`.
1256
- - Model Registry: Fix incorrectly-inferred image repository name during model deployment to SPCS.
1257
- - Model Registry: Fix GPU resource retention issue caused by failed or stuck previous deployments in SPCS.
1267
+ * Model Registry: Fix an issue that incorrect system function call is used when deploying to SPCS.
1268
+ * Model Registry: Fix an issue when using a `transformers.pipeline` that does not have a `tokenizer`.
1269
+ * Model Registry: Fix incorrectly-inferred image repository name during model deployment to SPCS.
1270
+ * Model Registry: Fix GPU resource retention issue caused by failed or stuck previous deployments in SPCS.
1258
1271
 
1259
1272
  ## 1.0.7 (2023-09-05)
1260
1273
 
1261
1274
  ### Bug Fixes
1262
1275
 
1263
- - Model Development & Model Registry: Fix an error related to `pandas.io.json.json_normalize`.
1264
- - Allow disabling telemetry.
1276
+ * Model Development & Model Registry: Fix an error related to `pandas.io.json.json_normalize`.
1277
+ * Allow disabling telemetry.
1265
1278
 
1266
1279
  ## 1.0.6 (2023-09-01)
1267
1280
 
1268
1281
  ### New Features
1269
1282
 
1270
- - Model Registry: add `create_if_not_exists` parameter in constructor.
1271
- - Model Registry: Added get_or_create_model_registry API.
1272
- - Model Registry: Added support for using GPU inference when deploying XGBoost (`xgboost.XGBModel` and `xgboost.Booster`
1283
+ * Model Registry: add `create_if_not_exists` parameter in constructor.
1284
+ * Model Registry: Added get_or_create_model_registry API.
1285
+ * Model Registry: Added support for using GPU inference when deploying XGBoost (`xgboost.XGBModel` and `xgboost.Booster`
1273
1286
  ), PyTorch (`torch.nn.Module` and `torch.jit.ScriptModule`) and TensorFlow (`tensorflow.Module` and
1274
1287
  `tensorflow.keras.Model`) models to Snowpark Container Services.
1275
- - Model Registry: When inferring model signature, `Sequence` of built-in types, `Sequence` of `numpy.ndarray`,
1288
+ * Model Registry: When inferring model signature, `Sequence` of built-in types, `Sequence` of `numpy.ndarray`,
1276
1289
  `Sequence` of `torch.Tensor`, `Sequence` of `tensorflow.Tensor` and `Sequence` of `tensorflow.Tensor` can be used
1277
1290
  instead of only `List` of them.
1278
- - Model Registry: Added `get_training_dataset` API.
1279
- - Model Development: Size of metrics result can exceed previous 8MB limit.
1280
- - Model Registry: Added support save/load/deploy HuggingFace pipeline object (`transformers.Pipeline`) and our wrapper
1291
+ * Model Registry: Added `get_training_dataset` API.
1292
+ * Model Development: Size of metrics result can exceed previous 8MB limit.
1293
+ * Model Registry: Added support save/load/deploy HuggingFace pipeline object (`transformers.Pipeline`) and our wrapper
1281
1294
  (`snowflake.ml.model.models.huggingface_pipeline.HuggingFacePipelineModel`) to it. Using the wrapper to specify
1282
1295
  configurations and the model for the pipeline will be loaded dynamically when deploying. Currently, following tasks
1283
1296
  are supported to log without manually specifying model signatures:
1284
- - "conversational"
1285
- - "fill-mask"
1286
- - "question-answering"
1287
- - "summarization"
1288
- - "table-question-answering"
1289
- - "text2text-generation"
1290
- - "text-classification" (alias "sentiment-analysis" available)
1291
- - "text-generation"
1292
- - "token-classification" (alias "ner" available)
1293
- - "translation"
1294
- - "translation_xx_to_yy"
1295
- - "zero-shot-classification"
1297
+ * "conversational"
1298
+ * "fill-mask"
1299
+ * "question-answering"
1300
+ * "summarization"
1301
+ * "table-question-answering"
1302
+ * "text2text-generation"
1303
+ * "text-classification" (alias "sentiment-analysis" available)
1304
+ * "text-generation"
1305
+ * "token-classification" (alias "ner" available)
1306
+ * "translation"
1307
+ * "translation_xx_to_yy"
1308
+ * "zero-shot-classification"
1296
1309
 
1297
1310
  ### Bug Fixes
1298
1311
 
1299
- - Model Development: Fixed a bug when using simple imputer with numpy >= 1.25.
1300
- - Model Development: Fixed a bug when inferring the type of label columns.
1312
+ * Model Development: Fixed a bug when using simple imputer with numpy >= 1.25.
1313
+ * Model Development: Fixed a bug when inferring the type of label columns.
1301
1314
 
1302
1315
  ### Behavior Changes
1303
1316
 
1304
- - Model Registry: `log_model()` now return a `ModelReference` object instead of a model ID.
1305
- - Model Registry: When deploying a model with 1 `target method` only, the `target_method` argument can be omitted.
1306
- - Model Registry: When using the snowflake-ml-python with version newer than what is available in Snowflake Anaconda
1317
+ * Model Registry: `log_model()` now return a `ModelReference` object instead of a model ID.
1318
+ * Model Registry: When deploying a model with 1 `target method` only, the `target_method` argument can be omitted.
1319
+ * Model Registry: When using the snowflake-ml-python with version newer than what is available in Snowflake Anaconda
1307
1320
  Channel, `embed_local_ml_library` option will be set as `True` automatically if not.
1308
- - Model Registry: When deploying a model to Snowpark Container Services and using GPU, the default value of num_workers
1321
+ * Model Registry: When deploying a model to Snowpark Container Services and using GPU, the default value of num_workers
1309
1322
  will be 1.
1310
- - Model Registry: `keep_order` and `output_with_input_features` in the deploy options have been removed. Now the
1323
+ * Model Registry: `keep_order` and `output_with_input_features` in the deploy options have been removed. Now the
1311
1324
  behavior is controlled by the type of the input when calling `model.predict()`. If the input is a `pandas.DataFrame`,
1312
1325
  the behavior will be the same as `keep_order=True` and `output_with_input_features=False` before. If the input is a
1313
1326
  `snowpark.DataFrame`, the behavior will be the same as `keep_order=False` and `output_with_input_features=True` before.
1314
- - Model Registry: When logging and deploying PyTorch (`torch.nn.Module` and `torch.jit.ScriptModule`) and TensorFlow
1327
+ * Model Registry: When logging and deploying PyTorch (`torch.nn.Module` and `torch.jit.ScriptModule`) and TensorFlow
1315
1328
  (`tensorflow.Module` and `tensorflow.keras.Model`) models, we no longer accept models whose input is a list of tensor
1316
1329
  and output is a list of tensors. Instead, now we accept models whose input is 1 or more tensors as positional arguments,
1317
1330
  and output is a tensor or a tuple of tensors. The input and output dataframe when predicting keep the same as before,
@@ -1321,53 +1334,53 @@ not readable by new SDK.
1321
1334
 
1322
1335
  ### New Features
1323
1336
 
1324
- - Model Registry: Added support save/load/deploy xgboost Booster model.
1325
- - Model Registry: Added support to get the model name and the model version from model references.
1337
+ * Model Registry: Added support save/load/deploy xgboost Booster model.
1338
+ * Model Registry: Added support to get the model name and the model version from model references.
1326
1339
 
1327
1340
  ### Bug Fixes
1328
1341
 
1329
- - Model Registry: Restore the db/schema back to the session after `create_model_registry()`.
1330
- - Model Registry: Fixed an issue that the UDF name created when deploying a model is not identical to what is provided
1342
+ * Model Registry: Restore the db/schema back to the session after `create_model_registry()`.
1343
+ * Model Registry: Fixed an issue that the UDF name created when deploying a model is not identical to what is provided
1331
1344
  and cannot be correctly dropped when deployment getting dropped.
1332
- - connection_params.SnowflakeLoginOptions(): Added support for `private_key_path`.
1345
+ * connection_params.SnowflakeLoginOptions(): Added support for `private_key_path`.
1333
1346
 
1334
1347
  ## 1.0.4 (2023-07-28)
1335
1348
 
1336
1349
  ### New Features
1337
1350
 
1338
- - Model Registry: Added support save/load/deploy Tensorflow models (`tensorflow.Module`).
1339
- - Model Registry: Added support save/load/deploy MLFlow PyFunc models (`mlflow.pyfunc.PyFuncModel`).
1340
- - Model Development: Input dataframes can now be joined against data loaded from staged files.
1341
- - Model Development: Added support for non-English languages.
1351
+ * Model Registry: Added support save/load/deploy Tensorflow models (`tensorflow.Module`).
1352
+ * Model Registry: Added support save/load/deploy MLFlow PyFunc models (`mlflow.pyfunc.PyFuncModel`).
1353
+ * Model Development: Input dataframes can now be joined against data loaded from staged files.
1354
+ * Model Development: Added support for non-English languages.
1342
1355
 
1343
1356
  ### Bug Fixes
1344
1357
 
1345
- - Model Registry: Fix an issue that model dependencies are incorrectly reported as unresolvable on certain platforms.
1358
+ * Model Registry: Fix an issue that model dependencies are incorrectly reported as unresolvable on certain platforms.
1346
1359
 
1347
1360
  ## 1.0.3 (2023-07-14)
1348
1361
 
1349
1362
  ### Behavior Changes
1350
1363
 
1351
- - Model Registry: When predicting a model whose output is a list of NumPy ndarray, the output would not be flattened,
1364
+ * Model Registry: When predicting a model whose output is a list of NumPy ndarray, the output would not be flattened,
1352
1365
  instead, every ndarray will act as a feature(column) in the output.
1353
1366
 
1354
1367
  ### New Features
1355
1368
 
1356
- - Model Registry: Added support save/load/deploy PyTorch models (`torch.nn.Module` and `torch.jit.ScriptModule`).
1369
+ * Model Registry: Added support save/load/deploy PyTorch models (`torch.nn.Module` and `torch.jit.ScriptModule`).
1357
1370
 
1358
1371
  ### Bug Fixes
1359
1372
 
1360
- - Model Registry: Fix an issue that when database or schema name provided to `create_model_registry` contains special
1373
+ * Model Registry: Fix an issue that when database or schema name provided to `create_model_registry` contains special
1361
1374
  characters, the model registry cannot be created.
1362
- - Model Registry: Fix an issue that `get_model_description` returns with additional quotes.
1363
- - Model Registry: Fix incorrect error message when attempting to remove a unset tag of a model.
1364
- - Model Registry: Fix a typo in the default deployment table name.
1365
- - Model Registry: Snowpark dataframe for sample input or input for `predict` method that contains a column with
1375
+ * Model Registry: Fix an issue that `get_model_description` returns with additional quotes.
1376
+ * Model Registry: Fix incorrect error message when attempting to remove a unset tag of a model.
1377
+ * Model Registry: Fix a typo in the default deployment table name.
1378
+ * Model Registry: Snowpark dataframe for sample input or input for `predict` method that contains a column with
1366
1379
  Snowflake `NUMBER(precision, scale)` data type where `scale = 0` will not lead to error, and will now correctly
1367
1380
  recognized as `INT64` data type in model signature.
1368
- - Model Registry: Fix an issue that prevent model logged in the system whose default encoding is not UTF-8 compatible
1381
+ * Model Registry: Fix an issue that prevent model logged in the system whose default encoding is not UTF-8 compatible
1369
1382
  from deploying.
1370
- - Model Registry: Added earlier and better error message when any file name in the model or the file name of model
1383
+ * Model Registry: Added earlier and better error message when any file name in the model or the file name of model
1371
1384
  itself contains characters that are unable to be encoded using ASCII. It is currently not supported to deploy such a
1372
1385
  model.
1373
1386
 
@@ -1375,181 +1388,181 @@ not readable by new SDK.
1375
1388
 
1376
1389
  ### Behavior Changes
1377
1390
 
1378
- - Model Registry: Prohibit non-snowflake-native models from being logged.
1379
- - Model Registry: `_use_local_snowml` parameter in options of `deploy()` has been removed.
1380
- - Model Registry: A default `False` `embed_local_ml_library` parameter has been added to the options of `log_model()`.
1391
+ * Model Registry: Prohibit non-snowflake-native models from being logged.
1392
+ * Model Registry: `_use_local_snowml` parameter in options of `deploy()` has been removed.
1393
+ * Model Registry: A default `False` `embed_local_ml_library` parameter has been added to the options of `log_model()`.
1381
1394
  With this set to `False` (default), the version of the local snowflake-ml-python library will be recorded and used when
1382
1395
  deploying the model. With this set to `True`, local snowflake-ml-python library will be embedded into the logged model,
1383
1396
  and will be used when you load or deploy the model.
1384
1397
 
1385
1398
  ### New Features
1386
1399
 
1387
- - Model Registry: A new optional argument named `code_paths` has been added to the arguments of `log_model()` for users
1400
+ * Model Registry: A new optional argument named `code_paths` has been added to the arguments of `log_model()` for users
1388
1401
  to specify additional code paths to be imported when loading and deploying the model.
1389
- - Model Registry: A new optional argument named `options` has been added to the arguments of `log_model()` to specify
1402
+ * Model Registry: A new optional argument named `options` has been added to the arguments of `log_model()` to specify
1390
1403
  any additional options when saving the model.
1391
- - Model Development: Added metrics:
1392
- - d2_absolute_error_score
1393
- - d2_pinball_score
1394
- - explained_variance_score
1395
- - mean_absolute_error
1396
- - mean_absolute_percentage_error
1397
- - mean_squared_error
1404
+ * Model Development: Added metrics:
1405
+ * d2_absolute_error_score
1406
+ * d2_pinball_score
1407
+ * explained_variance_score
1408
+ * mean_absolute_error
1409
+ * mean_absolute_percentage_error
1410
+ * mean_squared_error
1398
1411
 
1399
1412
  ### Bug Fixes
1400
1413
 
1401
- - Model Development: `accuracy_score()` now works when given label column names are lists of a single value.
1414
+ * Model Development: `accuracy_score()` now works when given label column names are lists of a single value.
1402
1415
 
1403
1416
  ## 1.0.1 (2023-06-16)
1404
1417
 
1405
1418
  ### Behavior Changes
1406
1419
 
1407
- - Model Development: Changed Metrics APIs to imitate sklearn metrics modules:
1408
- - `accuracy_score()`, `confusion_matrix()`, `precision_recall_fscore_support()`, `precision_score()` methods move from
1420
+ * Model Development: Changed Metrics APIs to imitate sklearn metrics modules:
1421
+ * `accuracy_score()`, `confusion_matrix()`, `precision_recall_fscore_support()`, `precision_score()` methods move from
1409
1422
  respective modules to `metrics.classification`.
1410
- - Model Registry: The default table/stage created by the Registry now uses "_SYSTEM_" as a prefix.
1411
- - Model Registry: `get_model_history()` method as been enhanced to include the history of model deployment.
1423
+ * Model Registry: The default table/stage created by the Registry now uses "_SYSTEM_" as a prefix.
1424
+ * Model Registry: `get_model_history()` method as been enhanced to include the history of model deployment.
1412
1425
 
1413
1426
  ### New Features
1414
1427
 
1415
- - Model Registry: A default `False` flag named `replace_udf` has been added to the options of `deploy()`. Setting this
1428
+ * Model Registry: A default `False` flag named `replace_udf` has been added to the options of `deploy()`. Setting this
1416
1429
  to `True` will allow overwrite existing UDF with the same name when deploying.
1417
- - Model Development: Added metrics:
1418
- - f1_score
1419
- - fbeta_score
1420
- - recall_score
1421
- - roc_auc_score
1422
- - roc_curve
1423
- - log_loss
1424
- - precision_recall_curve
1425
- - Model Registry: A new argument named `permanent` has been added to the argument of `deploy()`. Setting this to `True`
1430
+ * Model Development: Added metrics:
1431
+ * f1_score
1432
+ * fbeta_score
1433
+ * recall_score
1434
+ * roc_auc_score
1435
+ * roc_curve
1436
+ * log_loss
1437
+ * precision_recall_curve
1438
+ * Model Registry: A new argument named `permanent` has been added to the argument of `deploy()`. Setting this to `True`
1426
1439
  allows the creation of a permanent deployment without needing to specify the UDF location.
1427
- - Model Registry: A new method `list_deployments()` has been added to enumerate all permanent deployments originating
1440
+ * Model Registry: A new method `list_deployments()` has been added to enumerate all permanent deployments originating
1428
1441
  from a specific model.
1429
- - Model Registry: A new method `get_deployment()` has been added to fetch a deployment by its deployment name.
1430
- - Model Registry: A new method `delete_deployment()` has been added to remove an existing permanent deployment.
1442
+ * Model Registry: A new method `get_deployment()` has been added to fetch a deployment by its deployment name.
1443
+ * Model Registry: A new method `delete_deployment()` has been added to remove an existing permanent deployment.
1431
1444
 
1432
1445
  ## 1.0.0 (2023-06-09)
1433
1446
 
1434
1447
  ### Behavior Changes
1435
1448
 
1436
- - Model Registry: `predict()` method moves from Registry to ModelReference.
1437
- - Model Registry: `_snowml_wheel_path` parameter in options of `deploy()`, is replaced with `_use_local_snowml` with
1449
+ * Model Registry: `predict()` method moves from Registry to ModelReference.
1450
+ * Model Registry: `_snowml_wheel_path` parameter in options of `deploy()`, is replaced with `_use_local_snowml` with
1438
1451
  default value of `False`. Setting this to `True` will have the same effect of uploading local SnowML code when executing
1439
1452
  model in the warehouse.
1440
- - Model Registry: Removed `id` field from `ModelReference` constructor.
1441
- - Model Development: Preprocessing and Metrics move to the modeling package: `snowflake.ml.modeling.preprocessing` and
1453
+ * Model Registry: Removed `id` field from `ModelReference` constructor.
1454
+ * Model Development: Preprocessing and Metrics move to the modeling package: `snowflake.ml.modeling.preprocessing` and
1442
1455
  `snowflake.ml.modeling.metrics`.
1443
- - Model Development: `get_sklearn_object()` method is renamed to `to_sklearn()`, `to_xgboost()`, and `to_lightgbm()` for
1456
+ * Model Development: `get_sklearn_object()` method is renamed to `to_sklearn()`, `to_xgboost()`, and `to_lightgbm()` for
1444
1457
  respective native models.
1445
1458
 
1446
1459
  ### New Features
1447
1460
 
1448
- - Added PolynomialFeatures transformer to the snowflake.ml.modeling.preprocessing module.
1449
- - Added metrics:
1450
- - accuracy_score
1451
- - confusion_matrix
1452
- - precision_recall_fscore_support
1453
- - precision_score
1461
+ * Added PolynomialFeatures transformer to the snowflake.ml.modeling.preprocessing module.
1462
+ * Added metrics:
1463
+ * accuracy_score
1464
+ * confusion_matrix
1465
+ * precision_recall_fscore_support
1466
+ * precision_score
1454
1467
 
1455
1468
  ### Bug Fixes
1456
1469
 
1457
- - Model Registry: Model version can now be any string (not required to be a valid identifier)
1458
- - Model Deployment: `deploy()` & `predict()` methods now correctly escapes identifiers
1470
+ * Model Registry: Model version can now be any string (not required to be a valid identifier)
1471
+ * Model Deployment: `deploy()` & `predict()` methods now correctly escapes identifiers
1459
1472
 
1460
1473
  ## 0.3.2 (2023-05-23)
1461
1474
 
1462
1475
  ### Behavior Changes
1463
1476
 
1464
- - Use cloudpickle to serialize and deserialize models throughout the codebase and removed dependency on joblib.
1477
+ * Use cloudpickle to serialize and deserialize models throughout the codebase and removed dependency on joblib.
1465
1478
 
1466
1479
  ### New Features
1467
1480
 
1468
- - Model Deployment: Added support for snowflake.ml models.
1481
+ * Model Deployment: Added support for snowflake.ml models.
1469
1482
 
1470
1483
  ## 0.3.1 (2023-05-18)
1471
1484
 
1472
1485
  ### Behavior Changes
1473
1486
 
1474
- - Standardized registry API with following
1475
- - Create & open registry taking same set of arguments
1476
- - Create & Open can choose schema to use
1477
- - Set_tag, set_metric, etc now explicitly calls out arg name as metric_name, tag_name, metric_name, etc.
1487
+ * Standardized registry API with following
1488
+ * Create & open registry taking same set of arguments
1489
+ * Create & Open can choose schema to use
1490
+ * Set_tag, set_metric, etc now explicitly calls out arg name as metric_name, tag_name, metric_name, etc.
1478
1491
 
1479
1492
  ### New Features
1480
1493
 
1481
- - Changes to support python 3.9, 3.10
1482
- - Added kBinsDiscretizer
1483
- - Support for deployment of XGBoost models & int8 types of data
1494
+ * Changes to support python 3.9, 3.10
1495
+ * Added kBinsDiscretizer
1496
+ * Support for deployment of XGBoost models & int8 types of data
1484
1497
 
1485
1498
  ## 0.3.0 (2023-05-11)
1486
1499
 
1487
1500
  ### Behavior Changes
1488
1501
 
1489
- - Big Model Registry Refresh
1490
- - Fixed API discrepancies between register_model & log_model.
1491
- - Model can be referred by Name + Version (no opaque internal id is required)
1502
+ * Big Model Registry Refresh
1503
+ * Fixed API discrepancies between register_model & log_model.
1504
+ * Model can be referred by Name + Version (no opaque internal id is required)
1492
1505
 
1493
1506
  ### New Features
1494
1507
 
1495
- - Model Registry: Added support save/load/deploy SKL & XGB Models
1508
+ * Model Registry: Added support save/load/deploy SKL & XGB Models
1496
1509
 
1497
1510
  ## 0.2.3 (2023-04-27)
1498
1511
 
1499
1512
  ### Bug Fixes
1500
1513
 
1501
- - Allow using OneHotEncoder along with sklearn style estimators in a pipeline.
1514
+ * Allow using OneHotEncoder along with sklearn style estimators in a pipeline.
1502
1515
 
1503
1516
  ### New Features
1504
1517
 
1505
- - Model Registry: Added support for delete_model. Use delete_artifact = False to not delete the underlying model data
1518
+ * Model Registry: Added support for delete_model. Use delete_artifact = False to not delete the underlying model data
1506
1519
  but just unregister.
1507
1520
 
1508
1521
  ## 0.2.2 (2023-04-11)
1509
1522
 
1510
1523
  ### New Features
1511
1524
 
1512
- - Initial version of snowflake-ml modeling package.
1513
- - Provide support for training most of scikit-learn and xgboost estimators and transformers.
1525
+ * Initial version of snowflake-ml modeling package.
1526
+ * Provide support for training most of scikit-learn and xgboost estimators and transformers.
1514
1527
 
1515
1528
  ### Bug Fixes
1516
1529
 
1517
- - Minor fixes in preprocessing package.
1530
+ * Minor fixes in preprocessing package.
1518
1531
 
1519
1532
  ## 0.2.1 (2023-03-23)
1520
1533
 
1521
1534
  ### New Features
1522
1535
 
1523
- - New in Preprocessing:
1524
- - SimpleImputer
1525
- - Covariance Matrix
1526
- - Optimization of Ordinal Encoder client computations.
1536
+ * New in Preprocessing:
1537
+ * SimpleImputer
1538
+ * Covariance Matrix
1539
+ * Optimization of Ordinal Encoder client computations.
1527
1540
 
1528
1541
  ### Bug Fixes
1529
1542
 
1530
- - Minor fixes in OneHotEncoder.
1543
+ * Minor fixes in OneHotEncoder.
1531
1544
 
1532
1545
  ## 0.2.0 (2023-02-27)
1533
1546
 
1534
1547
  ### New Features
1535
1548
 
1536
- - Model Registry
1537
- - PyTorch & Tensorflow connector file generic FileSet API
1538
- - New to Preprocessing:
1539
- - Binarizer
1540
- - Normalizer
1541
- - Pearson correlation Matrix
1542
- - Optimization in Ordinal Encoder to cache vocabulary in temp tables.
1549
+ * Model Registry
1550
+ * PyTorch & Tensorflow connector file generic FileSet API
1551
+ * New to Preprocessing:
1552
+ * Binarizer
1553
+ * Normalizer
1554
+ * Pearson correlation Matrix
1555
+ * Optimization in Ordinal Encoder to cache vocabulary in temp tables.
1543
1556
 
1544
1557
  ## 0.1.3 (2023-02-02)
1545
1558
 
1546
1559
  ### New Features
1547
1560
 
1548
- - Initial version of transformers including:
1549
- - Label Encoder
1550
- - Max Abs Scaler
1551
- - Min Max Scaler
1552
- - One Hot Encoder
1553
- - Ordinal Encoder
1554
- - Robust Scaler
1555
- - Standard Scaler
1561
+ * Initial version of transformers including:
1562
+ * Label Encoder
1563
+ * Max Abs Scaler
1564
+ * Min Max Scaler
1565
+ * One Hot Encoder
1566
+ * Ordinal Encoder
1567
+ * Robust Scaler
1568
+ * Standard Scaler