snowflake-ml-python 1.9.1__tar.gz → 1.10.0__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/CHANGELOG.md +538 -488
- {snowflake_ml_python-1.9.1/snowflake_ml_python.egg-info → snowflake_ml_python-1.10.0}/PKG-INFO +542 -491
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/pyproject.toml +3 -3
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/utils/mixins.py +6 -4
- snowflake_ml_python-1.10.0/snowflake/ml/_internal/utils/service_logger.py +179 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/data/_internal/arrow_ingestor.py +4 -1
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/data/data_connector.py +4 -34
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/dataset/dataset.py +1 -1
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/dataset/dataset_reader.py +2 -8
- snowflake_ml_python-1.10.0/snowflake/ml/experiment/__init__.py +3 -0
- snowflake_ml_python-1.10.0/snowflake/ml/experiment/callback/lightgbm.py +55 -0
- snowflake_ml_python-1.10.0/snowflake/ml/experiment/callback/xgboost.py +63 -0
- snowflake_ml_python-1.10.0/snowflake/ml/experiment/utils.py +14 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/jobs/_utils/constants.py +15 -4
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/jobs/_utils/payload_utils.py +159 -52
- snowflake_ml_python-1.10.0/snowflake/ml/jobs/_utils/scripts/constants.py +4 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/jobs/_utils/scripts/mljob_launcher.py +126 -23
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/jobs/_utils/spec_utils.py +1 -1
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/jobs/_utils/stage_utils.py +30 -14
- snowflake_ml_python-1.10.0/snowflake/ml/jobs/_utils/types.py +109 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/jobs/job.py +22 -6
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/jobs/manager.py +5 -3
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_client/model/model_version_impl.py +56 -48
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_client/ops/service_ops.py +194 -14
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_client/sql/service.py +1 -38
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_handlers/sklearn.py +9 -5
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py +1 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_signatures/pandas_handler.py +3 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_signatures/utils.py +4 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/event_handler.py +87 -18
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/model_signature.py +2 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/models/huggingface_pipeline.py +71 -49
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/type_hints.py +26 -1
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/registry/_manager/model_manager.py +30 -35
- snowflake_ml_python-1.10.0/snowflake/ml/registry/_manager/model_parameter_reconciler.py +105 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/registry/registry.py +0 -19
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0/snowflake_ml_python.egg-info}/PKG-INFO +542 -491
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake_ml_python.egg-info/SOURCES.txt +5 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake_ml_python.egg-info/requires.txt +3 -2
- snowflake_ml_python-1.9.1/snowflake/ml/_internal/utils/service_logger.py +0 -65
- snowflake_ml_python-1.9.1/snowflake/ml/jobs/_utils/scripts/constants.py +0 -26
- snowflake_ml_python-1.9.1/snowflake/ml/jobs/_utils/types.py +0 -49
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/README.md +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/setup.cfg +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/cortex/__init__.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/cortex/_classify_text.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/cortex/_complete.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/cortex/_embed_text_1024.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/cortex/_embed_text_768.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/cortex/_extract_answer.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/cortex/_finetune.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/cortex/_sentiment.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/cortex/_sse_client.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/cortex/_summarize.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/cortex/_translate.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/cortex/_util.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/env.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/env_utils.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/exceptions/dataset_error_messages.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/exceptions/dataset_errors.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/exceptions/error_codes.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/exceptions/error_messages.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/exceptions/exceptions.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/exceptions/fileset_error_messages.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/exceptions/fileset_errors.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/exceptions/modeling_error_messages.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/exceptions/sql_error_codes.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/file_utils.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/human_readable_id/adjectives.txt +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/human_readable_id/animals.txt +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/human_readable_id/hrid_generator.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/init_utils.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/lineage/lineage_utils.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/migrator_utils.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/platform_capabilities.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/relax_version_strategy.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/telemetry.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/type_utils.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/utils/connection_params.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/utils/db_utils.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/utils/formatting.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/utils/identifier.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/utils/import_utils.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/utils/jwt_generator.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/utils/parallelize.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/utils/pkg_version_utils.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/utils/query_result_checker.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/utils/result.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/utils/snowflake_env.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/utils/snowpark_dataframe_utils.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/utils/sql_identifier.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/utils/table_manager.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/utils/temp_file_utils.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/data/__init__.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/data/data_ingestor.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/data/data_source.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/data/ingestor_utils.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/data/torch_utils.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/dataset/__init__.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/dataset/dataset_factory.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/dataset/dataset_metadata.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/experiment/_client/experiment_tracking_sql_client.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/experiment/_entities/__init__.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/experiment/_entities/experiment.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/experiment/_entities/run.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/experiment/_entities/run_metadata.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/experiment/_experiment_info.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/experiment/experiment_tracking.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/__init__.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/access_manager.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/entity.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/examples/airline_features/entities.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/examples/airline_features/features/plane_features.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/examples/airline_features/features/weather_features.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/examples/airline_features/source.yaml +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/examples/citibike_trip_features/entities.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/examples/citibike_trip_features/features/station_feature.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/examples/citibike_trip_features/features/trip_feature.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/examples/citibike_trip_features/source.yaml +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/examples/example_helper.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/examples/new_york_taxi_features/entities.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/examples/new_york_taxi_features/features/location_features.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/examples/new_york_taxi_features/features/trip_features.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/examples/new_york_taxi_features/source.yaml +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/examples/source_data/airline.yaml +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/examples/source_data/citibike_trips.yaml +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/examples/source_data/fraud_transactions.yaml +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/examples/source_data/nyc_yellow_trips.yaml +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/examples/source_data/winequality_red.yaml +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/examples/wine_quality_features/entities.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/examples/wine_quality_features/features/managed_wine_features.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/examples/wine_quality_features/features/static_wine_features.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/examples/wine_quality_features/source.yaml +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/feature_store.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/feature_view.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/fileset/embedded_stage_fs.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/fileset/fileset.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/fileset/sfcfs.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/fileset/snowfs.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/fileset/stage_fs.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/jobs/__init__.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/jobs/_utils/function_payload_utils.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/jobs/_utils/interop_utils.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/jobs/_utils/query_helper.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/jobs/_utils/scripts/get_instance_ip.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/jobs/_utils/scripts/signal_workers.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/jobs/_utils/scripts/worker_shutdown_listener.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/jobs/decorators.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/lineage/__init__.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/lineage/lineage_node.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/__init__.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_client/model/model_impl.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_client/ops/metadata_ops.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_client/ops/model_ops.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_client/service/model_deployment_spec.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_client/service/model_deployment_spec_schema.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_client/sql/_base.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_client/sql/model.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_client/sql/model_version.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_client/sql/stage.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_client/sql/tag.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_model_composer/model_composer.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_model_composer/model_method/constants.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_model_composer/model_method/function_generator.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_model_composer/model_method/infer_function.py_template +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_model_composer/model_method/infer_partitioned.py_template +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_model_composer/model_method/model_method.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_model_composer/model_user_file/model_user_file.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_env/model_env.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_handler.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_handlers/_base.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_handlers/_utils.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_handlers/catboost.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_handlers/custom.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_handlers/keras.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_handlers/lightgbm.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_handlers/mlflow.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_handlers/pytorch.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_handlers/sentence_transformers.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_handlers/tensorflow.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_handlers/torchscript.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_handlers/xgboost.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_handlers_migrator/base_migrator.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_handlers_migrator/pytorch_migrator_2023_12_01.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_handlers_migrator/tensorflow_migrator_2023_12_01.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_handlers_migrator/tensorflow_migrator_2025_01_01.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_handlers_migrator/torchscript_migrator_2023_12_01.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_meta/model_blob_meta.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_meta/model_meta.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_meta/model_meta_schema.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_meta_migrator/base_migrator.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_meta_migrator/migrator_v1.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_packager.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_runtime/model_runtime.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_task/model_task_utils.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_signatures/base_handler.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_signatures/builtins_handler.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_signatures/core.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_signatures/dmatrix_handler.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_signatures/numpy_handler.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_signatures/pytorch_handler.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_signatures/snowpark_handler.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_signatures/tensorflow_handler.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/custom_model.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/target_platform.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/task.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/_internal/estimator_utils.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/_internal/model_specifications.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/_internal/model_trainer.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/_internal/model_trainer_builder.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/_internal/model_transformer_builder.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/_internal/snowpark_implementations/distributed_search_udf_file.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/_internal/snowpark_implementations/xgboost_external_memory_trainer.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/_internal/transformer_protocols.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/calibration/__init__.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/cluster/__init__.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/cluster/affinity_propagation.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/cluster/agglomerative_clustering.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/cluster/birch.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/cluster/bisecting_k_means.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/cluster/dbscan.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/cluster/feature_agglomeration.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/cluster/k_means.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/cluster/mean_shift.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/cluster/mini_batch_k_means.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/cluster/optics.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/cluster/spectral_biclustering.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/cluster/spectral_clustering.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/cluster/spectral_coclustering.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/compose/__init__.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/compose/column_transformer.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/compose/transformed_target_regressor.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/covariance/__init__.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/covariance/elliptic_envelope.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/covariance/empirical_covariance.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/covariance/graphical_lasso.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/covariance/graphical_lasso_cv.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/covariance/ledoit_wolf.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/covariance/min_cov_det.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/covariance/oas.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/covariance/shrunk_covariance.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/decomposition/__init__.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/decomposition/dictionary_learning.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/decomposition/factor_analysis.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/decomposition/fast_ica.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/decomposition/incremental_pca.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/decomposition/kernel_pca.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/decomposition/pca.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/decomposition/sparse_pca.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/decomposition/truncated_svd.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/discriminant_analysis/__init__.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/ensemble/__init__.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/ensemble/ada_boost_classifier.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/ensemble/ada_boost_regressor.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/ensemble/bagging_classifier.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/ensemble/bagging_regressor.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/ensemble/extra_trees_classifier.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/ensemble/extra_trees_regressor.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/ensemble/isolation_forest.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/ensemble/random_forest_classifier.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/ensemble/random_forest_regressor.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/ensemble/stacking_regressor.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/ensemble/voting_classifier.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/ensemble/voting_regressor.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/feature_selection/__init__.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/feature_selection/generic_univariate_select.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/feature_selection/select_fdr.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/feature_selection/select_fpr.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/feature_selection/select_fwe.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/feature_selection/select_k_best.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/feature_selection/select_percentile.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/feature_selection/variance_threshold.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/framework/_utils.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/framework/base.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/gaussian_process/__init__.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/impute/__init__.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/impute/iterative_imputer.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/impute/knn_imputer.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/impute/missing_indicator.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/impute/simple_imputer.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/kernel_approximation/__init__.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/kernel_approximation/nystroem.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/kernel_ridge/__init__.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/lightgbm/__init__.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/lightgbm/lgbm_classifier.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/lightgbm/lgbm_regressor.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/__init__.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/ard_regression.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/bayesian_ridge.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/elastic_net.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/elastic_net_cv.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/gamma_regressor.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/huber_regressor.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/lars.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/lars_cv.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/lasso.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/lasso_cv.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/lasso_lars.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/lasso_lars_cv.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/lasso_lars_ic.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/linear_regression.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/logistic_regression.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/logistic_regression_cv.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/multi_task_lasso.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/perceptron.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/poisson_regressor.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/ransac_regressor.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/ridge.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/ridge_classifier.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/ridge_cv.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/sgd_classifier.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/sgd_regressor.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/theil_sen_regressor.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/tweedie_regressor.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/manifold/__init__.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/manifold/isomap.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/manifold/mds.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/manifold/spectral_embedding.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/manifold/tsne.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/metrics/__init__.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/metrics/classification.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/metrics/correlation.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/metrics/covariance.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/metrics/metrics_utils.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/metrics/ranking.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/metrics/regression.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/mixture/__init__.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/mixture/gaussian_mixture.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/model_selection/__init__.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/model_selection/grid_search_cv.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/model_selection/randomized_search_cv.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/multiclass/__init__.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/multiclass/output_code_classifier.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/naive_bayes/__init__.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/naive_bayes/categorical_nb.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/naive_bayes/complement_nb.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/naive_bayes/gaussian_nb.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/naive_bayes/multinomial_nb.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/neighbors/__init__.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/neighbors/kernel_density.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/neighbors/local_outlier_factor.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/neighbors/nearest_centroid.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/neighbors/nearest_neighbors.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/neural_network/__init__.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/neural_network/bernoulli_rbm.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/neural_network/mlp_classifier.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/neural_network/mlp_regressor.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/parameters/disable_distributed_hpo.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/parameters/disable_model_tracer.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/parameters/enable_anonymous_sproc.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/pipeline/__init__.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/pipeline/pipeline.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/preprocessing/__init__.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/preprocessing/binarizer.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/preprocessing/label_encoder.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/preprocessing/max_abs_scaler.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/preprocessing/min_max_scaler.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/preprocessing/normalizer.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/preprocessing/one_hot_encoder.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/preprocessing/ordinal_encoder.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/preprocessing/polynomial_features.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/preprocessing/robust_scaler.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/preprocessing/standard_scaler.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/semi_supervised/__init__.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/semi_supervised/label_propagation.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/semi_supervised/label_spreading.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/svm/__init__.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/svm/linear_svc.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/svm/linear_svr.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/svm/nu_svc.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/svm/nu_svr.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/svm/svc.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/svm/svr.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/tree/__init__.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/tree/decision_tree_classifier.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/tree/decision_tree_regressor.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/tree/extra_tree_classifier.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/tree/extra_tree_regressor.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/xgboost/__init__.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/xgboost/xgb_classifier.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/xgboost/xgb_regressor.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/xgboost/xgbrf_classifier.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/xgboost/xgbrf_regressor.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/monitoring/_client/model_monitor_sql_client.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/monitoring/_client/queries/record_count.ssql +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/monitoring/_client/queries/rmse.ssql +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/monitoring/_manager/model_monitor_manager.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/monitoring/entities/model_monitor_config.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/monitoring/explain_visualize.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/monitoring/model_monitor.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/monitoring/shap.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/registry/__init__.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/utils/authentication.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/utils/connection_params.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/utils/html_utils.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/utils/sparse.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/utils/sql_client.py +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake_ml_python.egg-info/dependency_links.txt +0 -0
- {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake_ml_python.egg-info/top_level.txt +0 -0
|
@@ -1,17 +1,67 @@
|
|
|
1
1
|
# Release History
|
|
2
2
|
|
|
3
|
-
## 1.
|
|
3
|
+
## 1.10.0
|
|
4
4
|
|
|
5
5
|
### Bug Fixes
|
|
6
6
|
|
|
7
|
-
|
|
7
|
+
### Behavior Changes
|
|
8
|
+
|
|
9
|
+
### New Features
|
|
10
|
+
|
|
11
|
+
* Registry: add progress bars for `ModelVersion.create_service` and `ModelVersion.log_model`.
|
|
12
|
+
* ModelRegistry: Logs emitted during `ModelVersion.create_service` will be written to a file. The file location
|
|
13
|
+
will be shown in the console.
|
|
14
|
+
|
|
15
|
+
## 1.9.2
|
|
16
|
+
|
|
17
|
+
### Bug Fixes
|
|
18
|
+
|
|
19
|
+
* DataConnector: Fix `self._session` related errors inside Container Runtime.
|
|
20
|
+
* Registry: Fix a bug when trying to pass `None` to array (`pd.dtype('O')`) in signature and pandas data handler.
|
|
21
|
+
|
|
22
|
+
### New Features
|
|
23
|
+
|
|
24
|
+
* Experiment Tracking (PrPr): Automatically log the model, metrics, and parameters while training
|
|
25
|
+
XGBoost and LightGBM models.
|
|
26
|
+
|
|
27
|
+
```python
|
|
28
|
+
from snowflake.ml.experiment import ExperimentTracking
|
|
29
|
+
|
|
30
|
+
exp = ExperimentTracking(session=sp_session, database_name="ML", schema_name="PUBLIC")
|
|
31
|
+
|
|
32
|
+
exp.set_experiment("MY_EXPERIMENT")
|
|
33
|
+
|
|
34
|
+
# XGBoost
|
|
35
|
+
from snowflake.ml.experiment.callback.xgboost import SnowflakeXgboostCallback
|
|
36
|
+
callback = SnowflakeXgboostCallback(
|
|
37
|
+
exp, log_model=True, log_metrics=True, log_params=True, model_name="model_name", model_signature=sig
|
|
38
|
+
)
|
|
39
|
+
model = XGBClassifier(callbacks=[callback])
|
|
40
|
+
with exp.start_run():
|
|
41
|
+
model.fit(X, y, eval_set=[(X_test, y_test)])
|
|
42
|
+
|
|
43
|
+
# LightGBM
|
|
44
|
+
from snowflake.ml.experiment.callback.lightgbm import SnowflakeLightgbmCallback
|
|
45
|
+
callback = SnowflakeLightgbmCallback(
|
|
46
|
+
exp, log_model=True, log_metrics=True, log_params=True, model_name="model_name", model_signature=sig
|
|
47
|
+
)
|
|
48
|
+
model = LGBMClassifier()
|
|
49
|
+
with exp.start_run():
|
|
50
|
+
model.fit(X, y, eval_set=[(X_test, y_test)], callbacks=[callback])
|
|
51
|
+
```
|
|
52
|
+
|
|
53
|
+
## 1.9.1 (07-18-2025)
|
|
54
|
+
|
|
55
|
+
### Bug Fixes
|
|
56
|
+
|
|
57
|
+
* Registry: Fix a bug when trying to set the PAD token the HuggingFace `text-generation` model had multiple EOS tokens.
|
|
8
58
|
The handler picks the first EOS token as PAD token now.
|
|
9
59
|
|
|
10
60
|
### New Features
|
|
11
61
|
|
|
12
|
-
|
|
13
|
-
|
|
14
|
-
|
|
62
|
+
* DataConnector: DataConnector objects can now be pickled
|
|
63
|
+
* Dataset: Dataset objects can now be pickled
|
|
64
|
+
* Registry (PrPr): Introducing `create_service` function in `snowflake/ml/model/models/huggingface_pipeline.py`
|
|
15
65
|
which creates a service to log a HF model and upon successful logging, an inference service is created.
|
|
16
66
|
|
|
17
67
|
```python
|
|
@@ -32,7 +82,7 @@ hf_model_ref.create_service(
|
|
|
32
82
|
)
|
|
33
83
|
```
|
|
34
84
|
|
|
35
|
-
|
|
85
|
+
* Experiment Tracking (PrPr): New module for managing and tracking ML experiments in Snowflake.
|
|
36
86
|
|
|
37
87
|
```python
|
|
38
88
|
from snowflake.ml.experiment import ExperimentTracking
|
|
@@ -47,16 +97,16 @@ with exp.start_run():
|
|
|
47
97
|
exp.log_model(my_model, model_name="MY_MODEL")
|
|
48
98
|
```
|
|
49
99
|
|
|
50
|
-
|
|
100
|
+
* Registry: Added support for wide input (500+ features) for inference done using SPCS
|
|
51
101
|
|
|
52
102
|
## 1.9.0
|
|
53
103
|
|
|
54
104
|
### Bug Fixes
|
|
55
105
|
|
|
56
|
-
|
|
106
|
+
* Registry: Fixed bug causing snowpark to pandas dataframe conversion to fail when `QUOTED_IDENTIFIERS_IGNORE_CASE`
|
|
57
107
|
parameter is enabled
|
|
58
|
-
|
|
59
|
-
|
|
108
|
+
* Registry: Fixed duplicate UserWarning logs during model packaging
|
|
109
|
+
* Registry: If the huggingface pipeline text-generation model doesn't contain a default chat template, a ChatML template
|
|
60
110
|
is assigned to the tokenizer.
|
|
61
111
|
|
|
62
112
|
```shell
|
|
@@ -68,40 +118,40 @@ with exp.start_run():
|
|
|
68
118
|
{% endif %}"
|
|
69
119
|
```
|
|
70
120
|
|
|
71
|
-
|
|
121
|
+
* Registry: Fixed SQL queries during registry initialization that were forcing warehouse requirement
|
|
72
122
|
|
|
73
123
|
### Behavior Changes
|
|
74
124
|
|
|
75
|
-
|
|
125
|
+
* ML Job: The `list_jobs()` API has been modified. The `scope` parameter has been removed,
|
|
76
126
|
optional `database` and `schema` parameters have been added, the return type has changed
|
|
77
127
|
from `snowpark.DataFrame` to `pandas.DataFrame`, and the returned columns have been updated
|
|
78
128
|
to `name`, `status`, `message`, `database_name`, `schema_name`, `owner`, `compute_pool`,
|
|
79
129
|
`target_instances`, `created_time`, and `completed_time`.
|
|
80
|
-
|
|
81
|
-
|
|
130
|
+
* Registry: Set `relax_version` to false when pip_requirements are specified while logging model
|
|
131
|
+
* Registry: UserWarning will now be raised based on specified target_platforms (addresses spurious warnings)
|
|
82
132
|
|
|
83
133
|
### New Features
|
|
84
134
|
|
|
85
|
-
|
|
135
|
+
* Registry: `target_platforms` supports `TargetPlatformMode`: `WAREHOUSE_ONLY`, `SNOWPARK_CONTAINER_SERVICES_ONLY`,
|
|
86
136
|
or `BOTH_WAREHOUSE_AND_SNOWPARK_CONTAINER_SERVICES`.
|
|
87
|
-
|
|
137
|
+
* Registry: Introduce `snowflake.ml.model.target_platform.TargetPlatform`, target platform constants, and
|
|
88
138
|
`snowflake.ml.model.task.Task`.
|
|
89
|
-
|
|
90
|
-
|
|
91
|
-
|
|
92
|
-
|
|
139
|
+
* ML Job: Single-node ML Jobs are now in GA. Multi-node support is now in PuPr
|
|
140
|
+
* Moved less frequently used job submission parameters to `**kwargs`
|
|
141
|
+
* Platform metrics are now enabled by default
|
|
142
|
+
* `list_jobs()` behavior changed, see [Behavior Changes](#behavior-changes) for more info
|
|
93
143
|
|
|
94
144
|
## 1.8.6
|
|
95
145
|
|
|
96
146
|
### Bug Fixes
|
|
97
147
|
|
|
98
|
-
|
|
148
|
+
* Fixed fatal errors from internal telemetry wrappers.
|
|
99
149
|
|
|
100
150
|
### New Features
|
|
101
151
|
|
|
102
|
-
|
|
103
|
-
|
|
104
|
-
|
|
152
|
+
* Registry: Add service container info to logs.
|
|
153
|
+
* ML Job (PuPr): Add new `submit_from_stage()` API for submitting a payload from an existing stage path.
|
|
154
|
+
* ML Job (PuPr): Add support for `snowpark.Session` objects in the argument list of
|
|
105
155
|
`@remote` decorated functions. `Session` object will be injected from context in
|
|
106
156
|
the job execution environment.
|
|
107
157
|
|
|
@@ -109,75 +159,75 @@ with exp.start_run():
|
|
|
109
159
|
|
|
110
160
|
### Bug Fixes
|
|
111
161
|
|
|
112
|
-
|
|
113
|
-
|
|
114
|
-
|
|
115
|
-
|
|
162
|
+
* Registry: Fixed a bug when listing and deleting container services.
|
|
163
|
+
* Registry: Fixed explainability issue with scikit-learn pipelines, skipping explain function creation.
|
|
164
|
+
* Explainability: bump minimum streamlit version down to 1.30
|
|
165
|
+
* Modeling: Make XGBoost a required dependency (xgboost is not a required dependency in snowflake-ml-python 1.8.4).
|
|
116
166
|
|
|
117
167
|
### Behavior Changes
|
|
118
168
|
|
|
119
|
-
|
|
169
|
+
* ML Job (Multi-node PrPr): Rename argument `num_instances` to `target_instances` in job submission APIs and
|
|
120
170
|
change type from `Optional[int]` to `int`
|
|
121
171
|
|
|
122
172
|
### New Features
|
|
123
173
|
|
|
124
|
-
|
|
174
|
+
* Registry: No longer checks if the snowflake-ml-python version is available in the Snowflake Conda channel when logging
|
|
125
175
|
an SPCS-only model.
|
|
126
|
-
|
|
127
|
-
|
|
176
|
+
* ML Job (PuPr): Add `min_instances` argument to the job decorator to allow waiting for workers to be ready.
|
|
177
|
+
* ML Job (PuPr): Adjust polling behavior to reduce number of SQL calls.
|
|
128
178
|
|
|
129
179
|
### Deprecations
|
|
130
180
|
|
|
131
|
-
|
|
181
|
+
* `SnowflakeLoginOptions` is deprecated and will be removed in a future release.
|
|
132
182
|
|
|
133
183
|
## 1.8.4 (2025-05-12)
|
|
134
184
|
|
|
135
185
|
### Bug Fixes
|
|
136
186
|
|
|
137
|
-
|
|
138
|
-
|
|
139
|
-
|
|
187
|
+
* Registry: Default `enable_explainability` to True when the model can be deployed to Warehouse.
|
|
188
|
+
* Registry: Add `custom_model.partitioned_api` decorator and deprecate `partitioned_inference_api`.
|
|
189
|
+
* Registry: Fixed a bug when logging pytroch and tensorflow models that caused
|
|
140
190
|
`UnboundLocalError: local variable 'multiple_inputs' referenced before assignment`.
|
|
141
191
|
|
|
142
192
|
### Behavior Changes
|
|
143
193
|
|
|
144
|
-
|
|
194
|
+
* ML Job (PuPr) Updated property `id` to be fully qualified name; Introduced new property `name`
|
|
145
195
|
to represent the ML Job name
|
|
146
|
-
|
|
147
|
-
|
|
196
|
+
* ML Job (PuPr) Modified `list_jobs()` to return ML Job `name` instead of `id`
|
|
197
|
+
* Registry: Error in `log_model` if `enable_explainability` is True and model is only deployed to
|
|
148
198
|
Snowpark Container Services, instead of just user warning.
|
|
149
199
|
|
|
150
200
|
### New Features
|
|
151
201
|
|
|
152
|
-
|
|
202
|
+
* ML Job (PuPr): Extend `@remote` function decorator, `submit_file()` and `submit_directory()` to accept `database` and
|
|
153
203
|
`schema` parameters
|
|
154
|
-
|
|
155
|
-
|
|
156
|
-
|
|
157
|
-
|
|
204
|
+
* ML Job (PuPr): Support querying by fully qualified name in `get_job()`
|
|
205
|
+
* Explainability: Added visualization functions to `snowflake.ml.monitoring` to plot explanations in notebooks.
|
|
206
|
+
* Explainability: Support explain for categorical transforms for sklearn pipeline
|
|
207
|
+
* Support categorical type for `xgboost.DMatrix` inputs.
|
|
158
208
|
|
|
159
209
|
## 1.8.3
|
|
160
210
|
|
|
161
211
|
### New Features
|
|
162
212
|
|
|
163
|
-
|
|
164
|
-
|
|
213
|
+
* Registry: Default to the runtime cuda version if available when logging a GPU model in Container Runtime.
|
|
214
|
+
* ML Job (PuPr): Added `as_list` argument to `MLJob.get_logs()` to enable retrieving logs
|
|
165
215
|
as a list of strings
|
|
166
|
-
|
|
167
|
-
|
|
168
|
-
|
|
216
|
+
* Registry: Support `ModelVersion.run_job` to run inference with a single-node Snowpark Container Services job.
|
|
217
|
+
* DataConnector: Removed PrPr decorators
|
|
218
|
+
* Registry: Default the target platform to warehouse when logging a partitioned model.
|
|
169
219
|
|
|
170
220
|
## 1.8.2
|
|
171
221
|
|
|
172
222
|
### New Features
|
|
173
223
|
|
|
174
|
-
|
|
175
|
-
|
|
224
|
+
* ML Job now available as a PuPr feature
|
|
225
|
+
* Add ability to retrieve results for `@remote` decorated functions using
|
|
176
226
|
new `MLJobWithResult.result()` API, which will return the unpickled result
|
|
177
227
|
or raise an exception if the job execution failed.
|
|
178
|
-
|
|
228
|
+
* Pre-created Snowpark Session is now available inside job payloads using
|
|
179
229
|
`snowflake.snowpark.context.get_active_session()`
|
|
180
|
-
|
|
230
|
+
* Registry: Introducing `save_location` to `log_model` using the `options` argument.
|
|
181
231
|
Users can use the `save_location` option to specify a local directory where the model files and configuration are written.
|
|
182
232
|
This is useful when the default temporary directory has space limitations.
|
|
183
233
|
|
|
@@ -191,44 +241,44 @@ reg.log_model(
|
|
|
191
241
|
)
|
|
192
242
|
```
|
|
193
243
|
|
|
194
|
-
|
|
195
|
-
|
|
196
|
-
|
|
244
|
+
* Registry: Include model dependencies in pip requirements by default when logging in Container Runtime.
|
|
245
|
+
* Multi-node ML Job (PrPr): Add `instance_id` argument to `get_logs` and `show_logs` method to support multi node log retrieval
|
|
246
|
+
* Multi-node ML Job (PrPr): Add `job.get_instance_status(instance_id=...)` API to support multi node status retrieval
|
|
197
247
|
|
|
198
248
|
## 1.8.1 (03-26-2025)
|
|
199
249
|
|
|
200
250
|
### Bug Fixes
|
|
201
251
|
|
|
202
|
-
|
|
252
|
+
* Registry: Fix a bug that caused `unsupported model type` error while logging a sklearn model with `score_samples`
|
|
203
253
|
inference method.
|
|
204
|
-
|
|
254
|
+
* Registry: Fix a bug that model inference service creation fails on an existing and suspended service.
|
|
205
255
|
|
|
206
256
|
### New Features
|
|
207
257
|
|
|
208
|
-
|
|
209
|
-
|
|
258
|
+
* ML Job (PrPr): Update Container Runtime image version to `1.0.1`
|
|
259
|
+
* ML Job (PrPr): Add `enable_metrics` argument to job submission APIs to enable publishing service metrics to Event Table.
|
|
210
260
|
See [Accessing Event Table service metrics](https://docs.snowflake.com/en/developer-guide/snowpark-container-services/monitoring-services#accessing-event-table-service-metrics)
|
|
211
261
|
for retrieving published metrics
|
|
212
262
|
and [Costs of telemetry data collection](https://docs.snowflake.com/en/developer-guide/logging-tracing/logging-tracing-billing)
|
|
213
263
|
for cost implications.
|
|
214
|
-
|
|
264
|
+
* Registry: When creating a copy of a `ModelVersion` with `log_model`, raise an exception if unsupported arguments are provided.
|
|
215
265
|
|
|
216
266
|
## 1.8.0 (03-20-2025)
|
|
217
267
|
|
|
218
268
|
### Bug Fixes
|
|
219
269
|
|
|
220
|
-
|
|
270
|
+
* Modeling: Fix a bug in some metrics that allowed an unsupported version of numpy to be installed
|
|
221
271
|
automatically in the stored procedure, resulting in a numpy error on execution
|
|
222
|
-
|
|
272
|
+
* Registry: Fix a bug that leads to incorrect `Model is does not have _is_inference_api` error message when assigning
|
|
223
273
|
a supported model as a property of a CustomModel.
|
|
224
|
-
|
|
274
|
+
* Registry: Fix a bug that inference is not working when models with more than 500 input features
|
|
225
275
|
are deployed to SPCS.
|
|
226
276
|
|
|
227
277
|
### Behavior Change
|
|
228
278
|
|
|
229
|
-
|
|
279
|
+
* Registry: With FeatureGroupSpec support, auto inferred model signature for `transformers.Pipeline` models have been
|
|
230
280
|
updated, including:
|
|
231
|
-
|
|
281
|
+
* Signature for fill-mask task has been changed from
|
|
232
282
|
|
|
233
283
|
```python
|
|
234
284
|
ModelSignature(
|
|
@@ -263,7 +313,7 @@ reg.log_model(
|
|
|
263
313
|
)
|
|
264
314
|
```
|
|
265
315
|
|
|
266
|
-
|
|
316
|
+
* Signature for token-classification task has been changed from
|
|
267
317
|
|
|
268
318
|
```python
|
|
269
319
|
ModelSignature(
|
|
@@ -298,7 +348,7 @@ reg.log_model(
|
|
|
298
348
|
)
|
|
299
349
|
```
|
|
300
350
|
|
|
301
|
-
|
|
351
|
+
* Signature for question-answering task when top_k is larger than 1 has been changed from
|
|
302
352
|
|
|
303
353
|
```python
|
|
304
354
|
ModelSignature(
|
|
@@ -335,7 +385,7 @@ reg.log_model(
|
|
|
335
385
|
)
|
|
336
386
|
```
|
|
337
387
|
|
|
338
|
-
|
|
388
|
+
* Signature for text-classification task when top_k is `None` has been changed from
|
|
339
389
|
|
|
340
390
|
```python
|
|
341
391
|
ModelSignature(
|
|
@@ -364,7 +414,7 @@ reg.log_model(
|
|
|
364
414
|
)
|
|
365
415
|
```
|
|
366
416
|
|
|
367
|
-
|
|
417
|
+
* Signature for text-classification task when top_k is not `None` has been changed from
|
|
368
418
|
|
|
369
419
|
```python
|
|
370
420
|
ModelSignature(
|
|
@@ -398,7 +448,7 @@ reg.log_model(
|
|
|
398
448
|
)
|
|
399
449
|
```
|
|
400
450
|
|
|
401
|
-
|
|
451
|
+
* Signature for text-generation task has been changed from
|
|
402
452
|
|
|
403
453
|
```python
|
|
404
454
|
ModelSignature(
|
|
@@ -435,7 +485,7 @@ reg.log_model(
|
|
|
435
485
|
)
|
|
436
486
|
```
|
|
437
487
|
|
|
438
|
-
|
|
488
|
+
* Registry: PyTorch and TensorFlow models now expect a single tensor input/output by default when logging to Model
|
|
439
489
|
Registry. To use multiple tensors (previous behavior), set `options={"multiple_inputs": True}`.
|
|
440
490
|
|
|
441
491
|
Example with single tensor input:
|
|
@@ -481,130 +531,130 @@ reg.log_model(
|
|
|
481
531
|
)
|
|
482
532
|
```
|
|
483
533
|
|
|
484
|
-
|
|
534
|
+
* Registry: Default `enable_explainability` to False when the model can be deployed to Snowpark Container Services.
|
|
485
535
|
|
|
486
536
|
### New Features
|
|
487
537
|
|
|
488
|
-
|
|
538
|
+
* Registry: Added support to single `torch.Tensor`, `tensorflow.Tensor` and `tensorflow.Variable` as input or output
|
|
489
539
|
data.
|
|
490
|
-
|
|
540
|
+
* Registry: Support [`xgboost.DMatrix`](https://xgboost.readthedocs.io/en/stable/python/python_api.html#xgboost.DMatrix)
|
|
491
541
|
datatype for XGBoost models.
|
|
492
542
|
|
|
493
543
|
## 1.7.5 (03-06-2025)
|
|
494
544
|
|
|
495
|
-
|
|
496
|
-
|
|
545
|
+
* Support Python 3.12.
|
|
546
|
+
* Explainability: Support native and snowflake.ml.modeling sklearn pipeline
|
|
497
547
|
|
|
498
548
|
### Bug Fixes
|
|
499
549
|
|
|
500
|
-
|
|
550
|
+
* Registry: Fixed a compatibility issue when using `snowflake-ml-python` 1.7.0 or greater to save a `tensorflow.keras`
|
|
501
551
|
model with `keras` 2.x, if `relax_version` is set or default to True, and newer version of `snowflake-ml-python`
|
|
502
552
|
is available in Snowflake Anaconda Channel, model could not be run in Snowflake. If you have such model, you could
|
|
503
553
|
use the latest version of `snowflake-ml-python` and call `ModelVersion.load` to load it back, and re-log it.
|
|
504
554
|
Alternatively, you can prevent this issue by setting `relax_version=False` when saving the model.
|
|
505
|
-
|
|
555
|
+
* Registry: Removed the validation that disallows data that does not have non-null values being passed to
|
|
506
556
|
`ModelVersion.run`.
|
|
507
|
-
|
|
508
|
-
|
|
557
|
+
* ML Job (PrPr): No longer require CREATE STAGE privilege if `stage_name` points to an existing stage
|
|
558
|
+
* ML Job (PrPr): Fixed a bug causing some payload source and entrypoint path
|
|
509
559
|
combinations to be erroneously rejected with
|
|
510
560
|
`ValueError(f"{self.entrypoint} must be a subpath of {self.source}")`
|
|
511
|
-
|
|
561
|
+
* ML Job (PrPr): Fixed a bug in Ray cluster startup config which caused certain Runtime APIs to fail
|
|
512
562
|
|
|
513
563
|
### New Features
|
|
514
564
|
|
|
515
|
-
|
|
516
|
-
|
|
565
|
+
* Registry: Added support for handling Hugging Face model configurations with auto-mapping functionality.
|
|
566
|
+
* Registry: Added support for `keras` 3.x model with `tensorflow` and `pytorch` backend
|
|
517
567
|
|
|
518
568
|
## 1.7.4 (01-28-2025)
|
|
519
569
|
|
|
520
|
-
|
|
570
|
+
* FileSet: The `snowflake.ml.fileset.FileSet` has been deprecated and will be removed in a future version.
|
|
521
571
|
Use [snowflake.ml.dataset.Dataset](https://docs.snowflake.com/en/developer-guide/snowflake-ml/dataset) and
|
|
522
572
|
[snowflake.ml.data.DataConnector](https://docs.snowflake.com/en/developer-guide/snowpark-ml/reference/latest/api/data/snowflake.ml.data.data_connector.DataConnector)
|
|
523
573
|
instead.
|
|
524
|
-
|
|
574
|
+
* Registry: `ModelVersion.run` on a service would require redeploying the service once account opts into nested function.
|
|
525
575
|
|
|
526
576
|
### Bug Fixes
|
|
527
577
|
|
|
528
|
-
|
|
529
|
-
|
|
578
|
+
* Registry: Fixed an issue that the hugging face pipeline is loaded using incorrect dtype.
|
|
579
|
+
* Registry: Fixed an issue that only 1 row is used when infer the model signature in the modeling model.
|
|
530
580
|
|
|
531
581
|
### New Features
|
|
532
582
|
|
|
533
|
-
|
|
583
|
+
* Add new `snowflake.ml.jobs` preview API for running headless workloads on SPCS using
|
|
534
584
|
[Container Runtime for ML](https://docs.snowflake.com/en/developer-guide/snowflake-ml/container-runtime-ml)
|
|
535
|
-
|
|
585
|
+
* Added `guardrails` option to Cortex `complete` function, enabling
|
|
536
586
|
[Cortex Guard](https://docs.snowflake.com/en/user-guide/snowflake-cortex/llm-functions#cortex-guard) support
|
|
537
|
-
|
|
587
|
+
* Model Monitoring: Expose Model Monitoring Python API by default.
|
|
538
588
|
|
|
539
589
|
## 1.7.3 (2025-01-08)
|
|
540
590
|
|
|
541
|
-
|
|
542
|
-
|
|
543
|
-
|
|
544
|
-
|
|
545
|
-
|
|
591
|
+
* Added lowercase versions of Cortex functions, added deprecation warning to Capitalized versions.
|
|
592
|
+
* Bumped the requirements of `fsspec` and `s3fs` to `>=2024.6.1,<2026`
|
|
593
|
+
* Bumped the requirement of `mlflow` to `>=2.16.0, <3`
|
|
594
|
+
* Registry: Support 500+ features for model registry
|
|
595
|
+
* Feature Store: Add support for `cluster_by` for feature views.
|
|
546
596
|
|
|
547
597
|
### Bug Fixes
|
|
548
598
|
|
|
549
|
-
|
|
550
|
-
|
|
551
|
-
|
|
599
|
+
* Registry: Fixed a bug when providing non-range index pandas DataFrame as the input to a `ModelVersion.run`.
|
|
600
|
+
* Registry: Improved random model version name generation to prevent collisions.
|
|
601
|
+
* Registry: Fix an issue when inferring signature or running inference with Snowpark data that has a column whose type
|
|
552
602
|
is `ARRAY` and contains `NULL` value.
|
|
553
|
-
|
|
554
|
-
|
|
555
|
-
|
|
603
|
+
* Registry: `ModelVersion.run` now accepts fully qualified service name.
|
|
604
|
+
* Monitoring: Fix issue in SDK with creating monitors using fully qualified names.
|
|
605
|
+
* Registry: Fix error in log_model for any sklearn models with only data pre-processing including pre-processing only
|
|
556
606
|
pipeline models due to default explainability enablement.
|
|
557
607
|
|
|
558
608
|
### New Features
|
|
559
609
|
|
|
560
|
-
|
|
561
|
-
|
|
562
|
-
|
|
563
|
-
|
|
610
|
+
* Added `user_files` argument to `Registry.log_model` for including images or any extra file with the model.
|
|
611
|
+
* Registry: Added support for handling Hugging Face model configurations with auto-mapping functionality
|
|
612
|
+
* DataConnector: Add new `DataConnector.from_sql()` constructor
|
|
613
|
+
* Registry: Provided new arguments to `snowflake.ml.model.model_signature.infer_signature` method to specify rows limit
|
|
564
614
|
to be used when inferring the signature.
|
|
565
615
|
|
|
566
616
|
## 1.7.2 (2024-11-21)
|
|
567
617
|
|
|
568
618
|
### Bug Fixes
|
|
569
619
|
|
|
570
|
-
|
|
620
|
+
* Model Explainability: Fix issue that explain is enabled for scikit-learn pipeline
|
|
571
621
|
whose task is UNKNOWN and fails later when invoked.
|
|
572
622
|
|
|
573
623
|
### New Features
|
|
574
624
|
|
|
575
|
-
|
|
625
|
+
* Registry: Support asynchronous model inference service creation with the `block` option
|
|
576
626
|
in `ModelVersion.create_service()` set to True by default.
|
|
577
|
-
|
|
627
|
+
* Registry: Allow specify `batch_size` when inferencing using sentence-transformers model.
|
|
578
628
|
|
|
579
629
|
## 1.7.1 (2024-11-05)
|
|
580
630
|
|
|
581
631
|
### Bug Fixes
|
|
582
632
|
|
|
583
|
-
|
|
633
|
+
* Registry: Null value is now allowed in the dataframe used in model signature inference. Null values will be ignored
|
|
584
634
|
and others will be used to infer the signature.
|
|
585
|
-
|
|
635
|
+
* Registry: Pandas Extension DTypes (`pandas.StringDType()`, `pandas.BooleanDType()`, etc.) are now supported in model
|
|
586
636
|
signature inference.
|
|
587
|
-
|
|
588
|
-
|
|
589
|
-
|
|
590
|
-
|
|
637
|
+
* Registry: Null value is now allowed in the dataframe used to predict.
|
|
638
|
+
* Data: Fix missing `snowflake.ml.data.*` module exports in wheel
|
|
639
|
+
* Dataset: Fix missing `snowflake.ml.dataset.*` module exports in wheel.
|
|
640
|
+
* Registry: Fix the issue that `tf_keras.Model` is not recognized as keras model when logging.
|
|
591
641
|
|
|
592
642
|
### New Features
|
|
593
643
|
|
|
594
|
-
|
|
595
|
-
|
|
596
|
-
|
|
597
|
-
|
|
598
|
-
|
|
599
|
-
|
|
600
|
-
|
|
644
|
+
* Registry: Option to `enable_monitoring` set to False by default. This will gate access to preview features of Model Monitoring.
|
|
645
|
+
* Model Monitoring: `show_model_monitors` Registry method. This feature is still in Private Preview.
|
|
646
|
+
* Registry: Support `pd.Series` in input and output data.
|
|
647
|
+
* Model Monitoring: `add_monitor` Registry method. This feature is still in Private Preview.
|
|
648
|
+
* Model Monitoring: `resume` and `suspend` ModelMonitor. This feature is still in Private Preview.
|
|
649
|
+
* Model Monitoring: `get_monitor` Registry method. This feature is still in Private Preview.
|
|
650
|
+
* Model Monitoring: `delete_monitor` Registry method. This feature is still in Private Preview.
|
|
601
651
|
|
|
602
652
|
## 1.7.0 (10-22-2024)
|
|
603
653
|
|
|
604
654
|
### Behavior Change
|
|
605
655
|
|
|
606
|
-
|
|
607
|
-
|
|
656
|
+
* Generic: Require python >= 3.9.
|
|
657
|
+
* Data Connector: Update `to_torch_dataset` and `to_torch_datapipe` to add a dimension for scalar data.
|
|
608
658
|
This allows for more seamless integration with PyTorch `DataLoader`, which creates batches by stacking inputs of each batch.
|
|
609
659
|
|
|
610
660
|
Examples:
|
|
@@ -613,30 +663,30 @@ Examples:
|
|
|
613
663
|
ds = connector.to_torch_dataset(shuffle=False, batch_size=3)
|
|
614
664
|
```
|
|
615
665
|
|
|
616
|
-
|
|
617
|
-
|
|
618
|
-
|
|
666
|
+
* Input: "col1": [10, 11, 12]
|
|
667
|
+
* Previous batch: array([10., 11., 12.]) with shape (3,)
|
|
668
|
+
* New batch: array([[10.], [11.], [12.]]) with shape (3, 1)
|
|
619
669
|
|
|
620
|
-
|
|
621
|
-
|
|
622
|
-
|
|
670
|
+
* Input: "col2": [[0, 100], [1, 110], [2, 200]]
|
|
671
|
+
* Previous batch: array([[ 0, 100], [ 1, 110], [ 2, 200]]) with shape (3,2)
|
|
672
|
+
* New batch: No change
|
|
623
673
|
|
|
624
|
-
|
|
674
|
+
* Model Registry: External access integrations are optional when creating a model inference service in
|
|
625
675
|
Snowflake >= 8.40.0.
|
|
626
|
-
|
|
676
|
+
* Model Registry: Deprecate `build_external_access_integration` with `build_external_access_integrations` in
|
|
627
677
|
`ModelVersion.create_service()`.
|
|
628
678
|
|
|
629
679
|
### Bug Fixes
|
|
630
680
|
|
|
631
|
-
|
|
632
|
-
|
|
633
|
-
|
|
681
|
+
* Registry: Updated `log_model` API to accept both signature and sample_input_data parameters.
|
|
682
|
+
* Feature Store: ExampleHelper uses fully qualified path for table name. change weather features aggregation from 1d to 1h.
|
|
683
|
+
* Data Connector: Return numpy array with appropriate object type instead of list for multi-dimensional
|
|
634
684
|
data from `to_torch_dataset` and `to_torch_datapipe`
|
|
635
|
-
|
|
685
|
+
* Model explainability: Incompatibility between SHAP 0.42.1 and XGB 2.1.1 resolved by using latest SHAP 0.46.0.
|
|
636
686
|
|
|
637
687
|
### New Features
|
|
638
688
|
|
|
639
|
-
|
|
689
|
+
* Registry: Provide pass keyworded variable length of arguments to class ModelContext. Example usage:
|
|
640
690
|
|
|
641
691
|
```python
|
|
642
692
|
mc = custom_model.ModelContext(
|
|
@@ -656,106 +706,106 @@ class ExamplePipelineModel(custom_model.CustomModel):
|
|
|
656
706
|
return pd.DataFrame({'output': model_output + self.bias})
|
|
657
707
|
```
|
|
658
708
|
|
|
659
|
-
|
|
660
|
-
|
|
709
|
+
* Model Development: Upgrade scikit-learn in UDTF backend for log_loss metric. As a result, `eps` argument is now ignored.
|
|
710
|
+
* Data Connector: Add the option of passing a `None` sized batch to `to_torch_dataset` for better
|
|
661
711
|
interoperability with PyTorch DataLoader.
|
|
662
|
-
|
|
663
|
-
|
|
664
|
-
|
|
712
|
+
* Model Registry: Support [pandas.CategoricalDtype](https://pandas.pydata.org/docs/reference/api/pandas.CategoricalDtype.html#pandas-categoricaldtype)
|
|
713
|
+
* Limitations:
|
|
714
|
+
* The native categorical data handling handling by XGBoost using `enable_categorical=True` is not supported.
|
|
665
715
|
Instead please use [`sklearn.pipeline`](https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html)
|
|
666
716
|
to preprocess the categorical datatype and log the pipeline with the XGBoost model.
|
|
667
|
-
|
|
717
|
+
* Registry: It is now possible to pass `signatures` and `sample_input_data` at the same time to capture background
|
|
668
718
|
data from explainablity and data lineage.
|
|
669
719
|
|
|
670
720
|
## 1.6.4 (2024-10-17)
|
|
671
721
|
|
|
672
722
|
### Bug Fixes
|
|
673
723
|
|
|
674
|
-
|
|
724
|
+
* Registry: Fix an issue that leads to incident when using `ModelVersion.run` with service.
|
|
675
725
|
|
|
676
726
|
## 1.6.3 (2024-10-07)
|
|
677
727
|
|
|
678
|
-
|
|
728
|
+
* Model Registry (PrPr) has been removed.
|
|
679
729
|
|
|
680
730
|
### Bug Fixes
|
|
681
731
|
|
|
682
|
-
|
|
732
|
+
* Registry: Fix a bug that when package whose name does not follow PEP-508 is provided when logging the model,
|
|
683
733
|
an unexpected normalization is happening.
|
|
684
|
-
|
|
685
|
-
|
|
686
|
-
|
|
734
|
+
* Registry: Fix `not a valid remote uri` error when logging mlflow models.
|
|
735
|
+
* Registry: Fix a bug that `ModelVersion.run` is called in a nested way.
|
|
736
|
+
* Registry: Fix an issue that leads to `log_model` failure when local package version contains parts other than
|
|
687
737
|
base version.
|
|
688
|
-
|
|
689
|
-
|
|
690
|
-
|
|
738
|
+
* Fix issue where `sample_weights` were not being applied to search estimators.
|
|
739
|
+
* Model explainability: Fix bug which creates explain as a function instead of table function when enabling by default.
|
|
740
|
+
* Model explainability: Update lightgbm binary classification to return non-json values, from customer feedback.
|
|
691
741
|
|
|
692
742
|
### New Features
|
|
693
743
|
|
|
694
|
-
|
|
695
|
-
|
|
696
|
-
|
|
744
|
+
* Data: Improve `DataConnector.to_pandas()` performance when loading from Snowpark DataFrames.
|
|
745
|
+
* Model Registry: Allow users to set a model task while using `log_model`.
|
|
746
|
+
* Feature Store: FeatureView supports ON_CREATE or ON_SCHEDULE initialize mode.
|
|
697
747
|
|
|
698
748
|
## 1.6.2 (2024-09-04)
|
|
699
749
|
|
|
700
750
|
### Bug Fixes
|
|
701
751
|
|
|
702
|
-
|
|
752
|
+
* Modeling: Support XGBoost version that is larger than 2.
|
|
703
753
|
|
|
704
|
-
|
|
705
|
-
|
|
754
|
+
* Data: Fix multiple epoch iteration over `DataConnector.to_torch_datapipe()` DataPipes.
|
|
755
|
+
* Generic: Fix a bug that when an invalid name is provided to argument where fully qualified name is expected, it will
|
|
706
756
|
be parsed wrongly. Now it raises an exception correctly.
|
|
707
|
-
|
|
708
|
-
|
|
757
|
+
* Model Explainability: Handle explanations for multiclass XGBoost classification models
|
|
758
|
+
* Model Explainability: Workarounds and better error handling for XGB>2.1.0 not working with SHAP==0.42.1
|
|
709
759
|
|
|
710
760
|
### New Features
|
|
711
761
|
|
|
712
|
-
|
|
713
|
-
|
|
714
|
-
|
|
762
|
+
* Data: Add top-level exports for `DataConnector` and `DataSource` to `snowflake.ml.data`.
|
|
763
|
+
* Data: Add native batching support via `batch_size` and `drop_last_batch` arguments to `DataConnector.to_torch_dataset()`
|
|
764
|
+
* Feature Store: update_feature_view() supports taking feature view object as argument.
|
|
715
765
|
|
|
716
766
|
## 1.6.1 (2024-08-12)
|
|
717
767
|
|
|
718
768
|
### Bug Fixes
|
|
719
769
|
|
|
720
|
-
|
|
721
|
-
|
|
770
|
+
* Feature Store: Support large metadata blob when generating dataset
|
|
771
|
+
* Feature Store: Added a hidden knob in FeatureView as kargs for setting customized
|
|
722
772
|
refresh_mode
|
|
723
|
-
|
|
773
|
+
* Registry: Fix an error message in Model Version `run` when `function_name` is not mentioned and model has multiple
|
|
724
774
|
target methods.
|
|
725
|
-
|
|
775
|
+
* Cortex inference: snowflake.cortex.Complete now only uses the REST API for streaming and the use_rest_api_experimental
|
|
726
776
|
is no longer needed.
|
|
727
|
-
|
|
728
|
-
|
|
777
|
+
* Feature Store: Add a new API: FeatureView.list_columns() which list all column information.
|
|
778
|
+
* Data: Fix `DataFrame` ingestion with `ArrowIngestor`.
|
|
729
779
|
|
|
730
780
|
### New Features
|
|
731
781
|
|
|
732
|
-
|
|
733
|
-
|
|
734
|
-
|
|
735
|
-
|
|
736
|
-
|
|
782
|
+
* Enable `set_params` to set the parameters of the underlying sklearn estimator, if the snowflake-ml model has been fit.
|
|
783
|
+
* Data: Add `snowflake.ml.data.ingestor_utils` module with utility functions helpful for `DataIngestor` implementations.
|
|
784
|
+
* Data: Add new `to_torch_dataset()` connector to `DataConnector` to replace deprecated DataPipe.
|
|
785
|
+
* Registry: Option to `enable_explainability` set to True by default for XGBoost, LightGBM and CatBoost as PuPr feature.
|
|
786
|
+
* Registry: Option to `enable_explainability` when registering SHAP supported sklearn models.
|
|
737
787
|
|
|
738
788
|
## 1.6.0 (2024-07-29)
|
|
739
789
|
|
|
740
790
|
### Bug Fixes
|
|
741
791
|
|
|
742
|
-
|
|
743
|
-
|
|
792
|
+
* Modeling: `SimpleImputer` can impute integer columns with integer values.
|
|
793
|
+
* Registry: Fix an issue when providing a pandas Dataframe whose index is not starting from 0 as the input to
|
|
744
794
|
the `ModelVersion.run`.
|
|
745
795
|
|
|
746
796
|
### New Features
|
|
747
797
|
|
|
748
|
-
|
|
798
|
+
* Feature Store: Add overloads to APIs accept both object and name/version. Impacted APIs include read_feature_view(),
|
|
749
799
|
refresh_feature_view(), get_refresh_history(), resume_feature_view(), suspend_feature_view(), delete_feature_view().
|
|
750
|
-
|
|
751
|
-
|
|
752
|
-
|
|
753
|
-
|
|
754
|
-
|
|
755
|
-
|
|
800
|
+
* Feature Store: Add docstring inline examples for all public APIs.
|
|
801
|
+
* Feature Store: Add new utility class `ExampleHelper` to help with load source data to simplify public notebooks.
|
|
802
|
+
* Registry: Option to `enable_explainability` when registering XGBoost models as a pre-PuPr feature.
|
|
803
|
+
* Feature Store: add new API `update_entity()`.
|
|
804
|
+
* Registry: Option to `enable_explainability` when registering Catboost models as a pre-PuPr feature.
|
|
805
|
+
* Feature Store: Add new argument warehouse to FeatureView constructor to overwrite the default warehouse. Also add
|
|
756
806
|
a new column 'warehouse' to the output of list_feature_views().
|
|
757
|
-
|
|
758
|
-
|
|
807
|
+
* Registry: Add support for logging model from a model version.
|
|
808
|
+
* Modeling: Distributed Hyperparameter Optimization now announce GA refresh version. The latest memory efficient version
|
|
759
809
|
will not have the 10GB training limitation for dataset any more. To turn off, please run
|
|
760
810
|
`
|
|
761
811
|
from snowflake.ml.modeling._internal.snowpark_implementations import (
|
|
@@ -763,106 +813,106 @@ data from explainablity and data lineage.
|
|
|
763
813
|
)
|
|
764
814
|
distributed_hpo_trainer.ENABLE_EFFICIENT_MEMORY_USAGE = False
|
|
765
815
|
`
|
|
766
|
-
|
|
767
|
-
|
|
768
|
-
|
|
816
|
+
* Registry: Option to `enable_explainability` when registering LightGBM models as a pre-PuPr feature.
|
|
817
|
+
* Data: Add new `snowflake.ml.data` preview module which contains data reading utilities like `DataConnector`
|
|
818
|
+
* `DataConnector` provides efficient connectors from Snowpark `DataFrame`
|
|
769
819
|
and Snowpark ML `Dataset` to external frameworks like PyTorch, TensorFlow, and Pandas. Create `DataConnector`
|
|
770
820
|
instances using the classmethod constructors `DataConnector.from_dataset()` and `DataConnector.from_dataframe()`.
|
|
771
|
-
|
|
772
|
-
|
|
773
|
-
|
|
774
|
-
|
|
821
|
+
* Data: Add new `DataConnector.from_sources()` classmethod constructor for constructing from `DataSource` objects.
|
|
822
|
+
* Data: Add new `ingestor_class` arg to `DataConnector` classmethod constructors for easier `DataIngestor` injection.
|
|
823
|
+
* Dataset: `DatasetReader` now subclasses new `DataConnector` class.
|
|
824
|
+
* Add optional `limit` arg to `DatasetReader.to_pandas()`
|
|
775
825
|
|
|
776
826
|
### Behavior Changes
|
|
777
827
|
|
|
778
|
-
|
|
779
|
-
|
|
780
|
-
|
|
781
|
-
|
|
782
|
-
|
|
783
|
-
|
|
784
|
-
|
|
785
|
-
|
|
786
|
-
|
|
787
|
-
|
|
828
|
+
* Feature Store: change some positional parameters to keyword arguments in following APIs:
|
|
829
|
+
* Entity(): desc.
|
|
830
|
+
* FeatureView(): timestamp_col, refresh_freq, desc.
|
|
831
|
+
* FeatureStore(): creation_mode.
|
|
832
|
+
* update_entity(): desc.
|
|
833
|
+
* register_feature_view(): block, overwrite.
|
|
834
|
+
* list_feature_views(): entity_name, feature_view_name.
|
|
835
|
+
* get_refresh_history(): verbose.
|
|
836
|
+
* retrieve_feature_values(): spine_timestamp_col, exclude_columns, include_feature_view_timestamp_col.
|
|
837
|
+
* generate_training_set(): save_as, spine_timestamp_col, spine_label_cols, exclude_columns,
|
|
788
838
|
include_feature_view_timestamp_col.
|
|
789
|
-
|
|
839
|
+
* generate_dataset(): version, spine_timestamp_col, spine_label_cols, exclude_columns,
|
|
790
840
|
include_feature_view_timestamp_col, desc, output_type.
|
|
791
841
|
|
|
792
842
|
## 1.5.4 (2024-07-11)
|
|
793
843
|
|
|
794
844
|
### Bug Fixes
|
|
795
845
|
|
|
796
|
-
|
|
797
|
-
|
|
846
|
+
* Model Registry (PrPr): Fix 401 Unauthorized issue when deploying model to SPCS.
|
|
847
|
+
* Feature Store: Downgrades exceptions to warnings for few property setters in feature view. Now you can set
|
|
798
848
|
desc, refresh_freq and warehouse for draft feature views.
|
|
799
|
-
|
|
800
|
-
|
|
849
|
+
* Modeling: Fix an issue with calling `OrdinalEncoder` with `categories` as a dictionary and a pandas DataFrame
|
|
850
|
+
* Modeling: Fix an issue with calling `OneHotEncoder` with `categories` as a dictionary and a pandas DataFrame
|
|
801
851
|
|
|
802
852
|
### New Features
|
|
803
853
|
|
|
804
|
-
|
|
805
|
-
|
|
806
|
-
|
|
807
|
-
|
|
854
|
+
* Registry: Allow overriding `device_map` and `device` when loading huggingface pipeline models.
|
|
855
|
+
* Registry: Add `set_alias` method to `ModelVersion` instance to set an alias to model version.
|
|
856
|
+
* Registry: Add `unset_alias` method to `ModelVersion` instance to unset an alias to model version.
|
|
857
|
+
* Registry: Add `partitioned_inference_api` allowing users to create partitioned inference functions in registered
|
|
808
858
|
models. Enable model inference methods with table functions with vectorized process methods in registered models.
|
|
809
|
-
|
|
859
|
+
* Feature Store: add 3 more columns: refresh_freq, refresh_mode and scheduling_state to the result of
|
|
810
860
|
`list_feature_views()`.
|
|
811
|
-
|
|
812
|
-
|
|
813
|
-
|
|
814
|
-
|
|
815
|
-
|
|
816
|
-
|
|
817
|
-
|
|
818
|
-
|
|
819
|
-
|
|
820
|
-
|
|
861
|
+
* Feature Store: `update_feature_view()` supports updating description.
|
|
862
|
+
* Feature Store: add new API `refresh_feature_view()`.
|
|
863
|
+
* Feature Store: add new API `get_refresh_history()`.
|
|
864
|
+
* Feature Store: Add `generate_training_set()` API for generating table-backed feature snapshots.
|
|
865
|
+
* Feature Store: Add `DeprecationWarning` for `generate_dataset(..., output_type="table")`.
|
|
866
|
+
* Feature Store: `update_feature_view()` supports updating description.
|
|
867
|
+
* Feature Store: add new API `refresh_feature_view()`.
|
|
868
|
+
* Feature Store: add new API `get_refresh_history()`.
|
|
869
|
+
* Model Development: OrdinalEncoder supports a list of array-likes for `categories` argument.
|
|
870
|
+
* Model Development: OneHotEncoder supports a list of array-likes for `categories` argument.
|
|
821
871
|
|
|
822
872
|
## 1.5.3 (06-17-2024)
|
|
823
873
|
|
|
824
874
|
### Bug Fixes
|
|
825
875
|
|
|
826
|
-
|
|
876
|
+
* Modeling: Fix an issue causing lineage information to be missing for
|
|
827
877
|
`Pipeline`, `GridSearchCV` , `SimpleImputer`, and `RandomizedSearchCV`
|
|
828
|
-
|
|
878
|
+
* Registry: Fix an issue that leads to incorrect result when using pandas Dataframe with over 100, 000 rows as the input
|
|
829
879
|
of `ModelVersion.run` method in Stored Procedure.
|
|
830
880
|
|
|
831
881
|
### New Features
|
|
832
882
|
|
|
833
|
-
|
|
834
|
-
|
|
883
|
+
* Registry: Add support for TIMESTAMP_NTZ model signature data type, allowing timestamp input and output.
|
|
884
|
+
* Dataset: Add `DatasetVersion.label_cols` and `DatasetVersion.exclude_cols` properties.
|
|
835
885
|
|
|
836
886
|
## 1.5.2 (06-10-2024)
|
|
837
887
|
|
|
838
888
|
### Bug Fixes
|
|
839
889
|
|
|
840
|
-
|
|
841
|
-
|
|
890
|
+
* Registry: Fix an issue that leads to unable to log model in store procedure.
|
|
891
|
+
* Modeling: Quick fix `import snowflake.ml.modeling.parameters.enable_anonymous_sproc` cannot be imported due to package
|
|
842
892
|
dependency error.
|
|
843
893
|
|
|
844
894
|
## 1.5.1 (05-22-2024)
|
|
845
895
|
|
|
846
896
|
### Bug Fixes
|
|
847
897
|
|
|
848
|
-
|
|
898
|
+
* Dataset: Fix `snowflake.connector.errors.DataError: Query Result did not match expected number of rows` when accessing
|
|
849
899
|
DatasetVersion properties when case insensitive `SHOW VERSIONS IN DATASET` check matches multiple version names.
|
|
850
|
-
|
|
851
|
-
|
|
852
|
-
|
|
900
|
+
* Dataset: Fix bug in SnowFS bulk file read when used with DuckDB
|
|
901
|
+
* Registry: Fixed a bug when loading old models.
|
|
902
|
+
* Lineage: Fix Dataset source lineage propagation through `snowpark.DataFrame` transformations
|
|
853
903
|
|
|
854
904
|
### Behavior Changes
|
|
855
905
|
|
|
856
|
-
|
|
857
|
-
|
|
906
|
+
* Feature Store: convert clear() into a private function. Also make it deletes feature views and entities only.
|
|
907
|
+
* Feature Store: Use NULL as default value for timestamp tag value.
|
|
858
908
|
|
|
859
909
|
### New Features
|
|
860
910
|
|
|
861
|
-
|
|
862
|
-
|
|
911
|
+
* Feature Store: Added new `snowflake.ml.feature_store.setup_feature_store()` API to assist Feature Store RBAC setup.
|
|
912
|
+
* Feature Store: Add `output_type` argument to `FeatureStore.generate_dataset()` to allow generating data snapshots
|
|
863
913
|
as Datasets or Tables.
|
|
864
|
-
|
|
865
|
-
|
|
914
|
+
* Registry: `log_model`, `get_model`, `delete_model` now supports fully qualified name.
|
|
915
|
+
* Modeling: Supports anonymous stored procedure during fit calls so that modeling would not require sufficient
|
|
866
916
|
permissions to operate on schema. Please call
|
|
867
917
|
`import snowflake.ml.modeling.parameters.enable_anonymous_sproc # noqa: F401`
|
|
868
918
|
|
|
@@ -870,11 +920,11 @@ data from explainablity and data lineage.
|
|
|
870
920
|
|
|
871
921
|
### Bug Fixes
|
|
872
922
|
|
|
873
|
-
|
|
923
|
+
* Registry: Fix invalid parameter 'SHOW_MODEL_DETAILS_IN_SHOW_VERSIONS_IN_MODEL' error.
|
|
874
924
|
|
|
875
925
|
### Behavior Changes
|
|
876
926
|
|
|
877
|
-
|
|
927
|
+
* Model Development: The behavior of `fit_transform` for all estimators is changed.
|
|
878
928
|
Firstly, it will cover all the estimator that contains this function,
|
|
879
929
|
secondly, the output would be the union of pandas DataFrame and snowpark DataFrame.
|
|
880
930
|
|
|
@@ -882,167 +932,167 @@ data from explainablity and data lineage.
|
|
|
882
932
|
|
|
883
933
|
`snowflake.ml.registry.artifact` and related `snowflake.ml.model_registry.ModelRegistry` APIs have been removed.
|
|
884
934
|
|
|
885
|
-
|
|
886
|
-
|
|
887
|
-
|
|
935
|
+
* Removed `snowflake.ml.registry.artifact` module.
|
|
936
|
+
* Removed `ModelRegistry.log_artifact()`, `ModelRegistry.list_artifacts()`, `ModelRegistry.get_artifact()`
|
|
937
|
+
* Removed `artifacts` argument from `ModelRegistry.log_model()`
|
|
888
938
|
|
|
889
939
|
#### Dataset (PrPr)
|
|
890
940
|
|
|
891
941
|
`snowflake.ml.dataset.Dataset` has been redesigned to be backed by Snowflake Dataset entities.
|
|
892
942
|
|
|
893
|
-
|
|
943
|
+
* New `Dataset`s can be created with `Dataset.create()` and existing `Dataset`s may be loaded
|
|
894
944
|
with `Dataset.load()`.
|
|
895
|
-
|
|
945
|
+
* `Dataset`s now maintain an immutable `selected_version` state. The `Dataset.create_version()` and
|
|
896
946
|
`Dataset.load_version()` APIs return new `Dataset` objects with the requested `selected_version` state.
|
|
897
|
-
|
|
947
|
+
* Added `dataset.create_from_dataframe()` and `dataset.load_dataset()` convenience APIs as a shortcut
|
|
898
948
|
to creating and loading `Dataset`s with a pre-selected version.
|
|
899
|
-
|
|
949
|
+
* `Dataset.materialized_table` and `Dataset.snapshot_table` no longer exist with `Dataset.fully_qualified_name`
|
|
900
950
|
as the closest equivalent.
|
|
901
|
-
|
|
902
|
-
|
|
903
|
-
|
|
904
|
-
|
|
951
|
+
* `Dataset.df` no longer exists. Instead, use `DatasetReader.read.to_snowpark_dataframe()`.
|
|
952
|
+
* `Dataset.owner` has been moved to `Dataset.selected_version.owner`
|
|
953
|
+
* `Dataset.desc` has been moved to `DatasetVersion.selected_version.comment`
|
|
954
|
+
* `Dataset.timestamp_col`, `Dataset.label_cols`, `Dataset.feature_store_metadata`, and
|
|
905
955
|
`Dataset.schema_version` have been removed.
|
|
906
956
|
|
|
907
957
|
#### Feature Store (PrPr)
|
|
908
958
|
|
|
909
|
-
|
|
959
|
+
* `FeatureStore.generate_dataset` argument list has been changed to match the new
|
|
910
960
|
`snowflake.ml.dataset.Dataset` definition
|
|
911
961
|
|
|
912
|
-
|
|
913
|
-
|
|
914
|
-
|
|
962
|
+
* `materialized_table` has been removed and replaced with `name` and `version`.
|
|
963
|
+
* `name` moved to first positional argument
|
|
964
|
+
* `save_mode` has been removed as `merge` behavior is no longer supported. The new behavior is always `errorifexists`.
|
|
915
965
|
|
|
916
|
-
|
|
966
|
+
* Change feature view version type from str to `FeatureViewVersion`. It is a restricted string literal.
|
|
917
967
|
|
|
918
|
-
|
|
968
|
+
* Remove as_dataframe arg from FeatureStore.list_feature_views(), now always returns result as DataFrame.
|
|
919
969
|
|
|
920
|
-
|
|
970
|
+
* Combines few metadata tags into a new tag: SNOWML_FEATURE_VIEW_METADATA. This will make previously created feature views
|
|
921
971
|
not readable by new SDK.
|
|
922
972
|
|
|
923
973
|
### New Features
|
|
924
974
|
|
|
925
|
-
|
|
926
|
-
|
|
927
|
-
|
|
975
|
+
* Registry: Add `export` method to `ModelVersion` instance to export model files.
|
|
976
|
+
* Registry: Add `load` method to `ModelVersion` instance to load the underlying object from the model.
|
|
977
|
+
* Registry: Add `Model.rename` method to `Model` instance to rename or move a model.
|
|
928
978
|
|
|
929
979
|
#### Dataset (PrPr)
|
|
930
980
|
|
|
931
|
-
|
|
932
|
-
|
|
933
|
-
|
|
981
|
+
* Added Snowpark DataFrame integration using `Dataset.read.to_snowpark_dataframe()`
|
|
982
|
+
* Added Pandas DataFrame integration using `Dataset.read.to_pandas()`
|
|
983
|
+
* Added PyTorch and TensorFlow integrations using `Dataset.read.to_torch_datapipe()`
|
|
934
984
|
and `Dataset.read.to_tf_dataset()` respectively.
|
|
935
|
-
|
|
985
|
+
* Added `fsspec` style file integration using `Dataset.read.files()` and `Dataset.read.filesystem()`
|
|
936
986
|
|
|
937
987
|
#### Feature Store
|
|
938
988
|
|
|
939
|
-
|
|
989
|
+
* use new tag_reference_internal to speed up metadata lookup.
|
|
940
990
|
|
|
941
991
|
## 1.4.1 (2024-04-18)
|
|
942
992
|
|
|
943
993
|
### New Features
|
|
944
994
|
|
|
945
|
-
|
|
946
|
-
|
|
995
|
+
* Registry: Add support for `catboost` model (`catboost.CatBoostClassifier`, `catboost.CatBoostRegressor`).
|
|
996
|
+
* Registry: Add support for `lightgbm` model (`lightgbm.Booster`, `lightgbm.LightGBMClassifier`, `lightgbm.LightGBMRegressor`).
|
|
947
997
|
|
|
948
998
|
### Bug Fixes
|
|
949
999
|
|
|
950
|
-
|
|
1000
|
+
* Registry: Fix a bug that leads to relax_version option is not working.
|
|
951
1001
|
|
|
952
1002
|
### Behavior changes
|
|
953
1003
|
|
|
954
|
-
|
|
1004
|
+
* Feature Store: update_feature_view takes refresh_freq and warehouse as argument.
|
|
955
1005
|
|
|
956
1006
|
## 1.4.0 (2024-04-08)
|
|
957
1007
|
|
|
958
1008
|
### Bug Fixes
|
|
959
1009
|
|
|
960
|
-
|
|
1010
|
+
* Registry: Fix a bug when multiple models are being called from the same query, models other than the first one will
|
|
961
1011
|
have incorrect result. This fix only works for newly logged model.
|
|
962
|
-
|
|
1012
|
+
* Modeling: When registering a model, only method(s) that is mentioned in `save_model` would be added to model signature
|
|
963
1013
|
in SnowML models.
|
|
964
|
-
|
|
1014
|
+
* Modeling: Fix a bug that when n_jobs is not 1, model cannot execute methods such as
|
|
965
1015
|
predict, predict_log_proba, and other batch inference methods. The n_jobs would automatically
|
|
966
1016
|
set to 1 because vectorized udf currently doesn't support joblib parallel backend.
|
|
967
|
-
|
|
968
|
-
|
|
969
|
-
|
|
1017
|
+
* Modeling: Fix a bug that batch inference methods cannot infer the datatype when the first row of data contains NULL.
|
|
1018
|
+
* Modeling: Matches Distributed HPO output column names with the snowflake identifier.
|
|
1019
|
+
* Modeling: Relax package versions for all Distributed HPO methods if the installed version
|
|
970
1020
|
is not available in the Snowflake conda channel
|
|
971
|
-
|
|
1021
|
+
* Modeling: Add sklearn as required dependency for LightGBM package.
|
|
972
1022
|
|
|
973
1023
|
### Behavior Changes
|
|
974
1024
|
|
|
975
|
-
|
|
1025
|
+
* Registry: `apply` method is no longer by default logged when logging a xgboost model. If that is required, it could
|
|
976
1026
|
be specified manually when logging the model by `log_model(..., options={"target_methods": ["apply", ...]})`.
|
|
977
|
-
|
|
978
|
-
|
|
1027
|
+
* Feature Store: register_entity returns an entity object.
|
|
1028
|
+
* Feature Store: register_feature_view `block=true` becomes default.
|
|
979
1029
|
|
|
980
1030
|
### New Features
|
|
981
1031
|
|
|
982
|
-
|
|
983
|
-
|
|
1032
|
+
* Registry: Add support for `sentence-transformers` model (`sentence_transformers.SentenceTransformer`).
|
|
1033
|
+
* Registry: Now version name is no longer required when logging a model. If not provided, a random human readable ID
|
|
984
1034
|
will be generated.
|
|
985
1035
|
|
|
986
1036
|
## 1.3.1 (2024-03-21)
|
|
987
1037
|
|
|
988
1038
|
### New Features
|
|
989
1039
|
|
|
990
|
-
|
|
1040
|
+
* FileSet: `snowflake.ml.fileset.sfcfs.SFFileSystem` can now be used in UDFs and stored procedures.
|
|
991
1041
|
|
|
992
1042
|
## 1.3.0 (2024-03-12)
|
|
993
1043
|
|
|
994
1044
|
### Bug Fixes
|
|
995
1045
|
|
|
996
|
-
|
|
997
|
-
|
|
998
|
-
|
|
999
|
-
|
|
1046
|
+
* Registry: Fix a bug that leads to module in `code_paths` when `log_model` cannot be correctly imported.
|
|
1047
|
+
* Registry: Fix incorrect error message when validating input Snowpark DataFrame with array feature.
|
|
1048
|
+
* Model Registry: Fix an issue when deploying a model to SPCS that some files do not have proper permission.
|
|
1049
|
+
* Model Development: Relax package versions for all inference methods if the installed version
|
|
1000
1050
|
is not available in the Snowflake conda channel
|
|
1001
1051
|
|
|
1002
1052
|
### Behavior Changes
|
|
1003
1053
|
|
|
1004
|
-
|
|
1054
|
+
* Registry: When running the method of a model, the value range based input validation to avoid input from overflowing
|
|
1005
1055
|
is now optional rather than enforced, this should improve the performance and should not lead to problem for most
|
|
1006
1056
|
kinds of model. If you want to enable this check as previous, specify `strict_input_validation=True` when
|
|
1007
1057
|
calling `run`.
|
|
1008
|
-
|
|
1058
|
+
* Registry: By default `relax_version=True` when logging a model instead of using the specific local dependency versions.
|
|
1009
1059
|
This improves dependency versioning by using versions available in Snowflake. To switch back to the previous behavior
|
|
1010
1060
|
and use specific local dependency versions, specify `relax_version=False` when calling `log_model`.
|
|
1011
|
-
|
|
1061
|
+
* Model Development: The behavior of `fit_predict` for all estimators is changed.
|
|
1012
1062
|
Firstly, it will cover all the estimator that contains this function,
|
|
1013
1063
|
secondly, the output would be the union of pandas DataFrame and snowpark DataFrame.
|
|
1014
1064
|
|
|
1015
1065
|
### New Features
|
|
1016
1066
|
|
|
1017
|
-
|
|
1067
|
+
* FileSet: `snowflake.ml.fileset.sfcfs.SFFileSystem` can now be serialized with `pickle`.
|
|
1018
1068
|
|
|
1019
1069
|
## 1.2.3 (2024-02-26)
|
|
1020
1070
|
|
|
1021
1071
|
### Bug Fixes
|
|
1022
1072
|
|
|
1023
|
-
|
|
1073
|
+
* Registry: Now when providing Decimal Type column to a DOUBLE or FLOAT feature will not error out but auto cast with
|
|
1024
1074
|
warnings.
|
|
1025
|
-
|
|
1026
|
-
|
|
1027
|
-
|
|
1075
|
+
* Registry: Improve the error message when specifying currently unsupported `pip_requirements` argument.
|
|
1076
|
+
* Model Development: Fix precision_recall_fscore_support incorrect results when `average="samples"`.
|
|
1077
|
+
* Model Registry: Fix an issue that leads to description, metrics or tags are not correctly returned in newly created
|
|
1028
1078
|
Model Registry (PrPr) due to Snowflake BCR [2024_01](https://docs.snowflake.com/en/release-notes/bcr-bundles/2024_01/bcr-1483)
|
|
1029
1079
|
|
|
1030
1080
|
### Behavior Changes
|
|
1031
1081
|
|
|
1032
|
-
|
|
1082
|
+
* Feature Store: `FeatureStore.suspend_feature_view` and `FeatureStore.resume_feature_view` doesn't mutate input feature
|
|
1033
1083
|
view argument any more. The updated status only reflected in the returned feature view object.
|
|
1034
1084
|
|
|
1035
1085
|
### New Features
|
|
1036
1086
|
|
|
1037
|
-
|
|
1087
|
+
* Model Development: support `score_samples` method for all the classes, including Pipeline,
|
|
1038
1088
|
GridSearchCV, RandomizedSearchCV, PCA, IsolationForest, ...
|
|
1039
|
-
|
|
1089
|
+
* Registry: Support deleting a version of a model.
|
|
1040
1090
|
|
|
1041
1091
|
## 1.2.2 (2024-02-13)
|
|
1042
1092
|
|
|
1043
1093
|
### New Features
|
|
1044
1094
|
|
|
1045
|
-
|
|
1095
|
+
* Model Registry: Support providing external access integrations when deploying a model to SPCS. This will help and be
|
|
1046
1096
|
required to make sure the deploying process work as long as SPCS will by default deny all network connections. The
|
|
1047
1097
|
following endpoints must be allowed to make deployment work: docker.com:80, docker.com:443, anaconda.com:80,
|
|
1048
1098
|
anaconda.com:443, anaconda.org:80, anaconda.org:443, pypi.org:80, pypi.org:443. If you are using
|
|
@@ -1053,30 +1103,30 @@ not readable by new SDK.
|
|
|
1053
1103
|
|
|
1054
1104
|
### New Features
|
|
1055
1105
|
|
|
1056
|
-
|
|
1057
|
-
|
|
1106
|
+
* Model Development: Infers output column data type for transformers when possible.
|
|
1107
|
+
* Registry: `relax_version` option is available in the `options` argument when logging the model.
|
|
1058
1108
|
|
|
1059
1109
|
## 1.2.0 (2024-01-11)
|
|
1060
1110
|
|
|
1061
1111
|
### Bug Fixes
|
|
1062
1112
|
|
|
1063
|
-
|
|
1113
|
+
* Model Registry: Fix "XGBoost version not compiled with GPU support" error when running CPU inference against open-source
|
|
1064
1114
|
XGBoost models deployed to SPCS.
|
|
1065
|
-
|
|
1115
|
+
* Model Registry: Fix model deployment to SPCS on Windows machines.
|
|
1066
1116
|
|
|
1067
1117
|
### New Features
|
|
1068
1118
|
|
|
1069
|
-
|
|
1119
|
+
* Model Development: Introduced XGBoost external memory training feature. This feature enables training XGBoost models
|
|
1070
1120
|
on large datasets that don't fit into memory.
|
|
1071
|
-
|
|
1121
|
+
* Registry: New Registry class named `snowflake.ml.registry.Registry` providing similar APIs as the old one but works
|
|
1072
1122
|
with new MODEL object in Snowflake SQL. Also, we are providing`snowflake.ml.model.Model` and
|
|
1073
1123
|
`snowflake.ml.model.ModelVersion` to represent a model and a specific version of a model.
|
|
1074
|
-
|
|
1075
|
-
|
|
1124
|
+
* Model Development: Add support for `fit_predict` method in `AgglomerativeClustering`, `DBSCAN`, and `OPTICS` classes;
|
|
1125
|
+
* Model Development: Add support for `fit_transform` method in `MDS`, `SpectralEmbedding` and `TSNE` class.
|
|
1076
1126
|
|
|
1077
1127
|
### Additional Notes
|
|
1078
1128
|
|
|
1079
|
-
|
|
1129
|
+
* Model Registry: The `snowflake.ml.registry.model_registry.ModelRegistry` has been deprecated starting from version
|
|
1080
1130
|
1.2.0. It will stay in the Private Preview phase. For future implementations, kindly utilize
|
|
1081
1131
|
`snowflake.ml.registry.Registry`, except when specifically required. The old model registry will be removed once all
|
|
1082
1132
|
its primary functionalities are fully integrated into the new registry.
|
|
@@ -1085,30 +1135,30 @@ not readable by new SDK.
|
|
|
1085
1135
|
|
|
1086
1136
|
### Bug Fixes
|
|
1087
1137
|
|
|
1088
|
-
|
|
1089
|
-
|
|
1090
|
-
|
|
1138
|
+
* Generic: Fix the issue that stack trace is hidden by telemetry unexpectedly.
|
|
1139
|
+
* Model Development: Execute model signature inference without materializing full dataframe in memory.
|
|
1140
|
+
* Model Registry: Fix occasional 'snowflake-ml-python library does not exist' error when deploying to SPCS.
|
|
1091
1141
|
|
|
1092
1142
|
### Behavior Changes
|
|
1093
1143
|
|
|
1094
|
-
|
|
1095
|
-
|
|
1144
|
+
* Model Registry: When calling `predict` with Snowpark DataFrame, both inferred or normalized column names are accepted.
|
|
1145
|
+
* Model Registry: When logging a Snowpark ML Modeling Model, sample input data or manually provided signature will be
|
|
1096
1146
|
ignored since they are not necessary.
|
|
1097
1147
|
|
|
1098
1148
|
### New Features
|
|
1099
1149
|
|
|
1100
|
-
|
|
1150
|
+
* Model Development: SQL implementation of binary `precision_score` metric.
|
|
1101
1151
|
|
|
1102
1152
|
## 1.1.1 (2023-12-05)
|
|
1103
1153
|
|
|
1104
1154
|
### Bug Fixes
|
|
1105
1155
|
|
|
1106
|
-
|
|
1107
|
-
|
|
1156
|
+
* Model Registry: The `predict` target method on registered models is now compatible with unsupervised estimators.
|
|
1157
|
+
* Model Development: Fix confusion_matrix incorrect results when the row number cannot be divided by the batch size.
|
|
1108
1158
|
|
|
1109
1159
|
### New Features
|
|
1110
1160
|
|
|
1111
|
-
|
|
1161
|
+
* Introduced passthrough_col param in Modeling API. This new param is helpful in scenarios
|
|
1112
1162
|
requiring automatic input_cols inference, but need to avoid using specific
|
|
1113
1163
|
columns, like index columns, during training or inference.
|
|
1114
1164
|
|
|
@@ -1116,165 +1166,165 @@ not readable by new SDK.
|
|
|
1116
1166
|
|
|
1117
1167
|
### Bug Fixes
|
|
1118
1168
|
|
|
1119
|
-
|
|
1120
|
-
|
|
1169
|
+
* Model Registry: Fix panda dataframe input not handling first row properly.
|
|
1170
|
+
* Model Development: OrdinalEncoder and LabelEncoder output_columns do not need to be valid snowflake identifiers. They
|
|
1121
1171
|
would previously be excluded if the normalized name did not match the name specified in output_columns.
|
|
1122
1172
|
|
|
1123
1173
|
### New Features
|
|
1124
1174
|
|
|
1125
|
-
|
|
1175
|
+
* Model Registry: Add support for invoking public endpoint on SPCS service, by providing a "enable_ingress" SPCS
|
|
1126
1176
|
deployment option.
|
|
1127
|
-
|
|
1177
|
+
* Model Development: Add support for distributed HPO - GridSearchCV and RandomizedSearchCV execution will be
|
|
1128
1178
|
distributed on multi-node warehouses.
|
|
1129
1179
|
|
|
1130
1180
|
## 1.0.12 (2023-11-13)
|
|
1131
1181
|
|
|
1132
1182
|
### Bug Fixes
|
|
1133
1183
|
|
|
1134
|
-
|
|
1135
|
-
|
|
1136
|
-
|
|
1184
|
+
* Model Registry: Fix regression issue that container logging is not shown during model deployment to SPCS.
|
|
1185
|
+
* Model Development: Enhance the column capacity of OrdinalEncoder.
|
|
1186
|
+
* Model Registry: Fix unbound `batch_size` error when deploying a model other than Hugging Face Pipeline
|
|
1137
1187
|
and LLM with GPU on SPCS.
|
|
1138
1188
|
|
|
1139
1189
|
### Behavior Changes
|
|
1140
1190
|
|
|
1141
|
-
|
|
1142
|
-
|
|
1143
|
-
|
|
1191
|
+
* Model Registry: Raise early error when deploying to SPCS with db/schema that starts with underscore.
|
|
1192
|
+
* Model Registry: `conda-forge` channel is now automatically added to channel lists when deploying to SPCS.
|
|
1193
|
+
* Model Registry: `relax_version` will not strip all version specifier, instead it will relax `==x.y.z` specifier to
|
|
1144
1194
|
`>=x.y,<(x+1)`.
|
|
1145
|
-
|
|
1195
|
+
* Model Registry: Python with different patchlevel but the same major and minor will not result a warning when loading
|
|
1146
1196
|
the model via Model Registry and would be considered to use when deploying to SPCS.
|
|
1147
|
-
|
|
1197
|
+
* Model Registry: When logging a `snowflake.ml.model.models.huggingface_pipeline.HuggingFacePipelineModel` object,
|
|
1148
1198
|
versions of local installed libraries won't be picked as dependencies of models, instead it will pick up some pre-
|
|
1149
1199
|
defined dependencies to improve user experience.
|
|
1150
1200
|
|
|
1151
1201
|
### New Features
|
|
1152
1202
|
|
|
1153
|
-
|
|
1203
|
+
* Model Registry: Enable best-effort SPCS job/service log streaming when logging level is set to INFO.
|
|
1154
1204
|
|
|
1155
1205
|
## 1.0.11 (2023-10-27)
|
|
1156
1206
|
|
|
1157
1207
|
### New Features
|
|
1158
1208
|
|
|
1159
|
-
|
|
1160
|
-
|
|
1209
|
+
* Model Registry: Add log_artifact() public method.
|
|
1210
|
+
* Model Development: Add support for `kneighbors`.
|
|
1161
1211
|
|
|
1162
1212
|
### Behavior Changes
|
|
1163
1213
|
|
|
1164
|
-
|
|
1165
|
-
|
|
1214
|
+
* Model Registry: Change log_model() argument from TrainingDataset to List of Artifact.
|
|
1215
|
+
* Model Registry: Change get_training_dataset() to get_artifact().
|
|
1166
1216
|
|
|
1167
1217
|
### Bug Fixes
|
|
1168
1218
|
|
|
1169
|
-
|
|
1170
|
-
|
|
1171
|
-
|
|
1172
|
-
|
|
1219
|
+
* Model Development: Fix support for XGBoost and LightGBM models using SKLearn Grid Search and Randomized Search model selectors.
|
|
1220
|
+
* Model Development: DecimalType is now supported as a DataType.
|
|
1221
|
+
* Model Development: Fix metrics compatibility with Snowpark Dataframes that use Snowflake identifiers
|
|
1222
|
+
* Model Registry: Resolve 'delete_deployment' not deleting the SPCS service in certain cases.
|
|
1173
1223
|
|
|
1174
1224
|
## 1.0.10 (2023-10-13)
|
|
1175
1225
|
|
|
1176
1226
|
### Behavior Changes
|
|
1177
1227
|
|
|
1178
|
-
|
|
1228
|
+
* Model Development: precision_score, recall_score, f1_score, fbeta_score, precision_recall_fscore_support,
|
|
1179
1229
|
mean_absolute_error, mean_squared_error, and mean_absolute_percentage_error metric calculations are now distributed.
|
|
1180
|
-
|
|
1230
|
+
* Model Registry: `deploy` will now return `Deployment` for deployment information.
|
|
1181
1231
|
|
|
1182
1232
|
### New Features
|
|
1183
1233
|
|
|
1184
|
-
|
|
1185
|
-
|
|
1234
|
+
* Model Registry: When the model signature is auto-inferred, it will be printed to the log for reference.
|
|
1235
|
+
* Model Registry: For SPCS deployment, `Deployment` details will contains `image_name`, `service_spec` and `service_function_sql`.
|
|
1186
1236
|
|
|
1187
1237
|
### Bug Fixes
|
|
1188
1238
|
|
|
1189
|
-
|
|
1190
|
-
|
|
1191
|
-
|
|
1192
|
-
|
|
1239
|
+
* Model Development: Fix an issue that leading to UTF-8 decoding errors when using modeling modules on Windows.
|
|
1240
|
+
* Model Development: Fix an issue that alias definitions cause `SnowparkSQLUnexpectedAliasException` in inference.
|
|
1241
|
+
* Model Registry: Fix an issue that signature inference could be incorrect when using Snowpark DataFrame as sample input.
|
|
1242
|
+
* Model Registry: Fix too strict data type validation when predicting. Now, for example, if you have a INT8
|
|
1193
1243
|
type feature in the signature, if providing a INT64 dataframe but all values are within the range, it would not fail.
|
|
1194
1244
|
|
|
1195
1245
|
## 1.0.9 (2023-09-28)
|
|
1196
1246
|
|
|
1197
1247
|
### Behavior Changes
|
|
1198
1248
|
|
|
1199
|
-
|
|
1249
|
+
* Model Development: log_loss metric calculation is now distributed.
|
|
1200
1250
|
|
|
1201
1251
|
### Bug Fixes
|
|
1202
1252
|
|
|
1203
|
-
|
|
1204
|
-
|
|
1205
|
-
|
|
1206
|
-
|
|
1253
|
+
* Model Registry: Fix an issue that building images fails with specific docker setup.
|
|
1254
|
+
* Model Registry: Fix an issue that unable to embed local ML library when the library is imported by `zipimport`.
|
|
1255
|
+
* Model Registry: Fix out-of-date doc about `platform` argument in the `deploy` function.
|
|
1256
|
+
* Model Registry: Fix an issue that unable to deploy a GPU-trained PyTorch model to a platform where GPU is not available.
|
|
1207
1257
|
|
|
1208
1258
|
## 1.0.8 (2023-09-15)
|
|
1209
1259
|
|
|
1210
1260
|
### Bug Fixes
|
|
1211
1261
|
|
|
1212
|
-
|
|
1213
|
-
|
|
1214
|
-
|
|
1215
|
-
|
|
1262
|
+
* Model Development: Ordinal encoder can be used with mixed input column types.
|
|
1263
|
+
* Model Development: Fix an issue when the sklearn default value is `np.nan`.
|
|
1264
|
+
* Model Registry: Fix an issue that incorrect docker executable is used when building images.
|
|
1265
|
+
* Model Registry: Fix an issue that specifying `token` argument when using
|
|
1216
1266
|
`snowflake.ml.model.models.huggingface_pipeline.HuggingFacePipelineModel` with `transformers < 4.32.0` is not effective.
|
|
1217
|
-
|
|
1218
|
-
|
|
1219
|
-
|
|
1220
|
-
|
|
1267
|
+
* Model Registry: Fix an issue that incorrect system function call is used when deploying to SPCS.
|
|
1268
|
+
* Model Registry: Fix an issue when using a `transformers.pipeline` that does not have a `tokenizer`.
|
|
1269
|
+
* Model Registry: Fix incorrectly-inferred image repository name during model deployment to SPCS.
|
|
1270
|
+
* Model Registry: Fix GPU resource retention issue caused by failed or stuck previous deployments in SPCS.
|
|
1221
1271
|
|
|
1222
1272
|
## 1.0.7 (2023-09-05)
|
|
1223
1273
|
|
|
1224
1274
|
### Bug Fixes
|
|
1225
1275
|
|
|
1226
|
-
|
|
1227
|
-
|
|
1276
|
+
* Model Development & Model Registry: Fix an error related to `pandas.io.json.json_normalize`.
|
|
1277
|
+
* Allow disabling telemetry.
|
|
1228
1278
|
|
|
1229
1279
|
## 1.0.6 (2023-09-01)
|
|
1230
1280
|
|
|
1231
1281
|
### New Features
|
|
1232
1282
|
|
|
1233
|
-
|
|
1234
|
-
|
|
1235
|
-
|
|
1283
|
+
* Model Registry: add `create_if_not_exists` parameter in constructor.
|
|
1284
|
+
* Model Registry: Added get_or_create_model_registry API.
|
|
1285
|
+
* Model Registry: Added support for using GPU inference when deploying XGBoost (`xgboost.XGBModel` and `xgboost.Booster`
|
|
1236
1286
|
), PyTorch (`torch.nn.Module` and `torch.jit.ScriptModule`) and TensorFlow (`tensorflow.Module` and
|
|
1237
1287
|
`tensorflow.keras.Model`) models to Snowpark Container Services.
|
|
1238
|
-
|
|
1288
|
+
* Model Registry: When inferring model signature, `Sequence` of built-in types, `Sequence` of `numpy.ndarray`,
|
|
1239
1289
|
`Sequence` of `torch.Tensor`, `Sequence` of `tensorflow.Tensor` and `Sequence` of `tensorflow.Tensor` can be used
|
|
1240
1290
|
instead of only `List` of them.
|
|
1241
|
-
|
|
1242
|
-
|
|
1243
|
-
|
|
1291
|
+
* Model Registry: Added `get_training_dataset` API.
|
|
1292
|
+
* Model Development: Size of metrics result can exceed previous 8MB limit.
|
|
1293
|
+
* Model Registry: Added support save/load/deploy HuggingFace pipeline object (`transformers.Pipeline`) and our wrapper
|
|
1244
1294
|
(`snowflake.ml.model.models.huggingface_pipeline.HuggingFacePipelineModel`) to it. Using the wrapper to specify
|
|
1245
1295
|
configurations and the model for the pipeline will be loaded dynamically when deploying. Currently, following tasks
|
|
1246
1296
|
are supported to log without manually specifying model signatures:
|
|
1247
|
-
|
|
1248
|
-
|
|
1249
|
-
|
|
1250
|
-
|
|
1251
|
-
|
|
1252
|
-
|
|
1253
|
-
|
|
1254
|
-
|
|
1255
|
-
|
|
1256
|
-
|
|
1257
|
-
|
|
1258
|
-
|
|
1297
|
+
* "conversational"
|
|
1298
|
+
* "fill-mask"
|
|
1299
|
+
* "question-answering"
|
|
1300
|
+
* "summarization"
|
|
1301
|
+
* "table-question-answering"
|
|
1302
|
+
* "text2text-generation"
|
|
1303
|
+
* "text-classification" (alias "sentiment-analysis" available)
|
|
1304
|
+
* "text-generation"
|
|
1305
|
+
* "token-classification" (alias "ner" available)
|
|
1306
|
+
* "translation"
|
|
1307
|
+
* "translation_xx_to_yy"
|
|
1308
|
+
* "zero-shot-classification"
|
|
1259
1309
|
|
|
1260
1310
|
### Bug Fixes
|
|
1261
1311
|
|
|
1262
|
-
|
|
1263
|
-
|
|
1312
|
+
* Model Development: Fixed a bug when using simple imputer with numpy >= 1.25.
|
|
1313
|
+
* Model Development: Fixed a bug when inferring the type of label columns.
|
|
1264
1314
|
|
|
1265
1315
|
### Behavior Changes
|
|
1266
1316
|
|
|
1267
|
-
|
|
1268
|
-
|
|
1269
|
-
|
|
1317
|
+
* Model Registry: `log_model()` now return a `ModelReference` object instead of a model ID.
|
|
1318
|
+
* Model Registry: When deploying a model with 1 `target method` only, the `target_method` argument can be omitted.
|
|
1319
|
+
* Model Registry: When using the snowflake-ml-python with version newer than what is available in Snowflake Anaconda
|
|
1270
1320
|
Channel, `embed_local_ml_library` option will be set as `True` automatically if not.
|
|
1271
|
-
|
|
1321
|
+
* Model Registry: When deploying a model to Snowpark Container Services and using GPU, the default value of num_workers
|
|
1272
1322
|
will be 1.
|
|
1273
|
-
|
|
1323
|
+
* Model Registry: `keep_order` and `output_with_input_features` in the deploy options have been removed. Now the
|
|
1274
1324
|
behavior is controlled by the type of the input when calling `model.predict()`. If the input is a `pandas.DataFrame`,
|
|
1275
1325
|
the behavior will be the same as `keep_order=True` and `output_with_input_features=False` before. If the input is a
|
|
1276
1326
|
`snowpark.DataFrame`, the behavior will be the same as `keep_order=False` and `output_with_input_features=True` before.
|
|
1277
|
-
|
|
1327
|
+
* Model Registry: When logging and deploying PyTorch (`torch.nn.Module` and `torch.jit.ScriptModule`) and TensorFlow
|
|
1278
1328
|
(`tensorflow.Module` and `tensorflow.keras.Model`) models, we no longer accept models whose input is a list of tensor
|
|
1279
1329
|
and output is a list of tensors. Instead, now we accept models whose input is 1 or more tensors as positional arguments,
|
|
1280
1330
|
and output is a tensor or a tuple of tensors. The input and output dataframe when predicting keep the same as before,
|
|
@@ -1284,53 +1334,53 @@ not readable by new SDK.
|
|
|
1284
1334
|
|
|
1285
1335
|
### New Features
|
|
1286
1336
|
|
|
1287
|
-
|
|
1288
|
-
|
|
1337
|
+
* Model Registry: Added support save/load/deploy xgboost Booster model.
|
|
1338
|
+
* Model Registry: Added support to get the model name and the model version from model references.
|
|
1289
1339
|
|
|
1290
1340
|
### Bug Fixes
|
|
1291
1341
|
|
|
1292
|
-
|
|
1293
|
-
|
|
1342
|
+
* Model Registry: Restore the db/schema back to the session after `create_model_registry()`.
|
|
1343
|
+
* Model Registry: Fixed an issue that the UDF name created when deploying a model is not identical to what is provided
|
|
1294
1344
|
and cannot be correctly dropped when deployment getting dropped.
|
|
1295
|
-
|
|
1345
|
+
* connection_params.SnowflakeLoginOptions(): Added support for `private_key_path`.
|
|
1296
1346
|
|
|
1297
1347
|
## 1.0.4 (2023-07-28)
|
|
1298
1348
|
|
|
1299
1349
|
### New Features
|
|
1300
1350
|
|
|
1301
|
-
|
|
1302
|
-
|
|
1303
|
-
|
|
1304
|
-
|
|
1351
|
+
* Model Registry: Added support save/load/deploy Tensorflow models (`tensorflow.Module`).
|
|
1352
|
+
* Model Registry: Added support save/load/deploy MLFlow PyFunc models (`mlflow.pyfunc.PyFuncModel`).
|
|
1353
|
+
* Model Development: Input dataframes can now be joined against data loaded from staged files.
|
|
1354
|
+
* Model Development: Added support for non-English languages.
|
|
1305
1355
|
|
|
1306
1356
|
### Bug Fixes
|
|
1307
1357
|
|
|
1308
|
-
|
|
1358
|
+
* Model Registry: Fix an issue that model dependencies are incorrectly reported as unresolvable on certain platforms.
|
|
1309
1359
|
|
|
1310
1360
|
## 1.0.3 (2023-07-14)
|
|
1311
1361
|
|
|
1312
1362
|
### Behavior Changes
|
|
1313
1363
|
|
|
1314
|
-
|
|
1364
|
+
* Model Registry: When predicting a model whose output is a list of NumPy ndarray, the output would not be flattened,
|
|
1315
1365
|
instead, every ndarray will act as a feature(column) in the output.
|
|
1316
1366
|
|
|
1317
1367
|
### New Features
|
|
1318
1368
|
|
|
1319
|
-
|
|
1369
|
+
* Model Registry: Added support save/load/deploy PyTorch models (`torch.nn.Module` and `torch.jit.ScriptModule`).
|
|
1320
1370
|
|
|
1321
1371
|
### Bug Fixes
|
|
1322
1372
|
|
|
1323
|
-
|
|
1373
|
+
* Model Registry: Fix an issue that when database or schema name provided to `create_model_registry` contains special
|
|
1324
1374
|
characters, the model registry cannot be created.
|
|
1325
|
-
|
|
1326
|
-
|
|
1327
|
-
|
|
1328
|
-
|
|
1375
|
+
* Model Registry: Fix an issue that `get_model_description` returns with additional quotes.
|
|
1376
|
+
* Model Registry: Fix incorrect error message when attempting to remove a unset tag of a model.
|
|
1377
|
+
* Model Registry: Fix a typo in the default deployment table name.
|
|
1378
|
+
* Model Registry: Snowpark dataframe for sample input or input for `predict` method that contains a column with
|
|
1329
1379
|
Snowflake `NUMBER(precision, scale)` data type where `scale = 0` will not lead to error, and will now correctly
|
|
1330
1380
|
recognized as `INT64` data type in model signature.
|
|
1331
|
-
|
|
1381
|
+
* Model Registry: Fix an issue that prevent model logged in the system whose default encoding is not UTF-8 compatible
|
|
1332
1382
|
from deploying.
|
|
1333
|
-
|
|
1383
|
+
* Model Registry: Added earlier and better error message when any file name in the model or the file name of model
|
|
1334
1384
|
itself contains characters that are unable to be encoded using ASCII. It is currently not supported to deploy such a
|
|
1335
1385
|
model.
|
|
1336
1386
|
|
|
@@ -1338,181 +1388,181 @@ not readable by new SDK.
|
|
|
1338
1388
|
|
|
1339
1389
|
### Behavior Changes
|
|
1340
1390
|
|
|
1341
|
-
|
|
1342
|
-
|
|
1343
|
-
|
|
1391
|
+
* Model Registry: Prohibit non-snowflake-native models from being logged.
|
|
1392
|
+
* Model Registry: `_use_local_snowml` parameter in options of `deploy()` has been removed.
|
|
1393
|
+
* Model Registry: A default `False` `embed_local_ml_library` parameter has been added to the options of `log_model()`.
|
|
1344
1394
|
With this set to `False` (default), the version of the local snowflake-ml-python library will be recorded and used when
|
|
1345
1395
|
deploying the model. With this set to `True`, local snowflake-ml-python library will be embedded into the logged model,
|
|
1346
1396
|
and will be used when you load or deploy the model.
|
|
1347
1397
|
|
|
1348
1398
|
### New Features
|
|
1349
1399
|
|
|
1350
|
-
|
|
1400
|
+
* Model Registry: A new optional argument named `code_paths` has been added to the arguments of `log_model()` for users
|
|
1351
1401
|
to specify additional code paths to be imported when loading and deploying the model.
|
|
1352
|
-
|
|
1402
|
+
* Model Registry: A new optional argument named `options` has been added to the arguments of `log_model()` to specify
|
|
1353
1403
|
any additional options when saving the model.
|
|
1354
|
-
|
|
1355
|
-
|
|
1356
|
-
|
|
1357
|
-
|
|
1358
|
-
|
|
1359
|
-
|
|
1360
|
-
|
|
1404
|
+
* Model Development: Added metrics:
|
|
1405
|
+
* d2_absolute_error_score
|
|
1406
|
+
* d2_pinball_score
|
|
1407
|
+
* explained_variance_score
|
|
1408
|
+
* mean_absolute_error
|
|
1409
|
+
* mean_absolute_percentage_error
|
|
1410
|
+
* mean_squared_error
|
|
1361
1411
|
|
|
1362
1412
|
### Bug Fixes
|
|
1363
1413
|
|
|
1364
|
-
|
|
1414
|
+
* Model Development: `accuracy_score()` now works when given label column names are lists of a single value.
|
|
1365
1415
|
|
|
1366
1416
|
## 1.0.1 (2023-06-16)
|
|
1367
1417
|
|
|
1368
1418
|
### Behavior Changes
|
|
1369
1419
|
|
|
1370
|
-
|
|
1371
|
-
|
|
1420
|
+
* Model Development: Changed Metrics APIs to imitate sklearn metrics modules:
|
|
1421
|
+
* `accuracy_score()`, `confusion_matrix()`, `precision_recall_fscore_support()`, `precision_score()` methods move from
|
|
1372
1422
|
respective modules to `metrics.classification`.
|
|
1373
|
-
|
|
1374
|
-
|
|
1423
|
+
* Model Registry: The default table/stage created by the Registry now uses "_SYSTEM_" as a prefix.
|
|
1424
|
+
* Model Registry: `get_model_history()` method as been enhanced to include the history of model deployment.
|
|
1375
1425
|
|
|
1376
1426
|
### New Features
|
|
1377
1427
|
|
|
1378
|
-
|
|
1428
|
+
* Model Registry: A default `False` flag named `replace_udf` has been added to the options of `deploy()`. Setting this
|
|
1379
1429
|
to `True` will allow overwrite existing UDF with the same name when deploying.
|
|
1380
|
-
|
|
1381
|
-
|
|
1382
|
-
|
|
1383
|
-
|
|
1384
|
-
|
|
1385
|
-
|
|
1386
|
-
|
|
1387
|
-
|
|
1388
|
-
|
|
1430
|
+
* Model Development: Added metrics:
|
|
1431
|
+
* f1_score
|
|
1432
|
+
* fbeta_score
|
|
1433
|
+
* recall_score
|
|
1434
|
+
* roc_auc_score
|
|
1435
|
+
* roc_curve
|
|
1436
|
+
* log_loss
|
|
1437
|
+
* precision_recall_curve
|
|
1438
|
+
* Model Registry: A new argument named `permanent` has been added to the argument of `deploy()`. Setting this to `True`
|
|
1389
1439
|
allows the creation of a permanent deployment without needing to specify the UDF location.
|
|
1390
|
-
|
|
1440
|
+
* Model Registry: A new method `list_deployments()` has been added to enumerate all permanent deployments originating
|
|
1391
1441
|
from a specific model.
|
|
1392
|
-
|
|
1393
|
-
|
|
1442
|
+
* Model Registry: A new method `get_deployment()` has been added to fetch a deployment by its deployment name.
|
|
1443
|
+
* Model Registry: A new method `delete_deployment()` has been added to remove an existing permanent deployment.
|
|
1394
1444
|
|
|
1395
1445
|
## 1.0.0 (2023-06-09)
|
|
1396
1446
|
|
|
1397
1447
|
### Behavior Changes
|
|
1398
1448
|
|
|
1399
|
-
|
|
1400
|
-
|
|
1449
|
+
* Model Registry: `predict()` method moves from Registry to ModelReference.
|
|
1450
|
+
* Model Registry: `_snowml_wheel_path` parameter in options of `deploy()`, is replaced with `_use_local_snowml` with
|
|
1401
1451
|
default value of `False`. Setting this to `True` will have the same effect of uploading local SnowML code when executing
|
|
1402
1452
|
model in the warehouse.
|
|
1403
|
-
|
|
1404
|
-
|
|
1453
|
+
* Model Registry: Removed `id` field from `ModelReference` constructor.
|
|
1454
|
+
* Model Development: Preprocessing and Metrics move to the modeling package: `snowflake.ml.modeling.preprocessing` and
|
|
1405
1455
|
`snowflake.ml.modeling.metrics`.
|
|
1406
|
-
|
|
1456
|
+
* Model Development: `get_sklearn_object()` method is renamed to `to_sklearn()`, `to_xgboost()`, and `to_lightgbm()` for
|
|
1407
1457
|
respective native models.
|
|
1408
1458
|
|
|
1409
1459
|
### New Features
|
|
1410
1460
|
|
|
1411
|
-
|
|
1412
|
-
|
|
1413
|
-
|
|
1414
|
-
|
|
1415
|
-
|
|
1416
|
-
|
|
1461
|
+
* Added PolynomialFeatures transformer to the snowflake.ml.modeling.preprocessing module.
|
|
1462
|
+
* Added metrics:
|
|
1463
|
+
* accuracy_score
|
|
1464
|
+
* confusion_matrix
|
|
1465
|
+
* precision_recall_fscore_support
|
|
1466
|
+
* precision_score
|
|
1417
1467
|
|
|
1418
1468
|
### Bug Fixes
|
|
1419
1469
|
|
|
1420
|
-
|
|
1421
|
-
|
|
1470
|
+
* Model Registry: Model version can now be any string (not required to be a valid identifier)
|
|
1471
|
+
* Model Deployment: `deploy()` & `predict()` methods now correctly escapes identifiers
|
|
1422
1472
|
|
|
1423
1473
|
## 0.3.2 (2023-05-23)
|
|
1424
1474
|
|
|
1425
1475
|
### Behavior Changes
|
|
1426
1476
|
|
|
1427
|
-
|
|
1477
|
+
* Use cloudpickle to serialize and deserialize models throughout the codebase and removed dependency on joblib.
|
|
1428
1478
|
|
|
1429
1479
|
### New Features
|
|
1430
1480
|
|
|
1431
|
-
|
|
1481
|
+
* Model Deployment: Added support for snowflake.ml models.
|
|
1432
1482
|
|
|
1433
1483
|
## 0.3.1 (2023-05-18)
|
|
1434
1484
|
|
|
1435
1485
|
### Behavior Changes
|
|
1436
1486
|
|
|
1437
|
-
|
|
1438
|
-
|
|
1439
|
-
|
|
1440
|
-
|
|
1487
|
+
* Standardized registry API with following
|
|
1488
|
+
* Create & open registry taking same set of arguments
|
|
1489
|
+
* Create & Open can choose schema to use
|
|
1490
|
+
* Set_tag, set_metric, etc now explicitly calls out arg name as metric_name, tag_name, metric_name, etc.
|
|
1441
1491
|
|
|
1442
1492
|
### New Features
|
|
1443
1493
|
|
|
1444
|
-
|
|
1445
|
-
|
|
1446
|
-
|
|
1494
|
+
* Changes to support python 3.9, 3.10
|
|
1495
|
+
* Added kBinsDiscretizer
|
|
1496
|
+
* Support for deployment of XGBoost models & int8 types of data
|
|
1447
1497
|
|
|
1448
1498
|
## 0.3.0 (2023-05-11)
|
|
1449
1499
|
|
|
1450
1500
|
### Behavior Changes
|
|
1451
1501
|
|
|
1452
|
-
|
|
1453
|
-
|
|
1454
|
-
|
|
1502
|
+
* Big Model Registry Refresh
|
|
1503
|
+
* Fixed API discrepancies between register_model & log_model.
|
|
1504
|
+
* Model can be referred by Name + Version (no opaque internal id is required)
|
|
1455
1505
|
|
|
1456
1506
|
### New Features
|
|
1457
1507
|
|
|
1458
|
-
|
|
1508
|
+
* Model Registry: Added support save/load/deploy SKL & XGB Models
|
|
1459
1509
|
|
|
1460
1510
|
## 0.2.3 (2023-04-27)
|
|
1461
1511
|
|
|
1462
1512
|
### Bug Fixes
|
|
1463
1513
|
|
|
1464
|
-
|
|
1514
|
+
* Allow using OneHotEncoder along with sklearn style estimators in a pipeline.
|
|
1465
1515
|
|
|
1466
1516
|
### New Features
|
|
1467
1517
|
|
|
1468
|
-
|
|
1518
|
+
* Model Registry: Added support for delete_model. Use delete_artifact = False to not delete the underlying model data
|
|
1469
1519
|
but just unregister.
|
|
1470
1520
|
|
|
1471
1521
|
## 0.2.2 (2023-04-11)
|
|
1472
1522
|
|
|
1473
1523
|
### New Features
|
|
1474
1524
|
|
|
1475
|
-
|
|
1476
|
-
|
|
1525
|
+
* Initial version of snowflake-ml modeling package.
|
|
1526
|
+
* Provide support for training most of scikit-learn and xgboost estimators and transformers.
|
|
1477
1527
|
|
|
1478
1528
|
### Bug Fixes
|
|
1479
1529
|
|
|
1480
|
-
|
|
1530
|
+
* Minor fixes in preprocessing package.
|
|
1481
1531
|
|
|
1482
1532
|
## 0.2.1 (2023-03-23)
|
|
1483
1533
|
|
|
1484
1534
|
### New Features
|
|
1485
1535
|
|
|
1486
|
-
|
|
1487
|
-
|
|
1488
|
-
|
|
1489
|
-
|
|
1536
|
+
* New in Preprocessing:
|
|
1537
|
+
* SimpleImputer
|
|
1538
|
+
* Covariance Matrix
|
|
1539
|
+
* Optimization of Ordinal Encoder client computations.
|
|
1490
1540
|
|
|
1491
1541
|
### Bug Fixes
|
|
1492
1542
|
|
|
1493
|
-
|
|
1543
|
+
* Minor fixes in OneHotEncoder.
|
|
1494
1544
|
|
|
1495
1545
|
## 0.2.0 (2023-02-27)
|
|
1496
1546
|
|
|
1497
1547
|
### New Features
|
|
1498
1548
|
|
|
1499
|
-
|
|
1500
|
-
|
|
1501
|
-
|
|
1502
|
-
|
|
1503
|
-
|
|
1504
|
-
|
|
1505
|
-
|
|
1549
|
+
* Model Registry
|
|
1550
|
+
* PyTorch & Tensorflow connector file generic FileSet API
|
|
1551
|
+
* New to Preprocessing:
|
|
1552
|
+
* Binarizer
|
|
1553
|
+
* Normalizer
|
|
1554
|
+
* Pearson correlation Matrix
|
|
1555
|
+
* Optimization in Ordinal Encoder to cache vocabulary in temp tables.
|
|
1506
1556
|
|
|
1507
1557
|
## 0.1.3 (2023-02-02)
|
|
1508
1558
|
|
|
1509
1559
|
### New Features
|
|
1510
1560
|
|
|
1511
|
-
|
|
1512
|
-
|
|
1513
|
-
|
|
1514
|
-
|
|
1515
|
-
|
|
1516
|
-
|
|
1517
|
-
|
|
1518
|
-
|
|
1561
|
+
* Initial version of transformers including:
|
|
1562
|
+
* Label Encoder
|
|
1563
|
+
* Max Abs Scaler
|
|
1564
|
+
* Min Max Scaler
|
|
1565
|
+
* One Hot Encoder
|
|
1566
|
+
* Ordinal Encoder
|
|
1567
|
+
* Robust Scaler
|
|
1568
|
+
* Standard Scaler
|