snowflake-ml-python 1.9.1__tar.gz → 1.10.0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (448) hide show
  1. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/CHANGELOG.md +538 -488
  2. {snowflake_ml_python-1.9.1/snowflake_ml_python.egg-info → snowflake_ml_python-1.10.0}/PKG-INFO +542 -491
  3. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/pyproject.toml +3 -3
  4. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/utils/mixins.py +6 -4
  5. snowflake_ml_python-1.10.0/snowflake/ml/_internal/utils/service_logger.py +179 -0
  6. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/data/_internal/arrow_ingestor.py +4 -1
  7. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/data/data_connector.py +4 -34
  8. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/dataset/dataset.py +1 -1
  9. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/dataset/dataset_reader.py +2 -8
  10. snowflake_ml_python-1.10.0/snowflake/ml/experiment/__init__.py +3 -0
  11. snowflake_ml_python-1.10.0/snowflake/ml/experiment/callback/lightgbm.py +55 -0
  12. snowflake_ml_python-1.10.0/snowflake/ml/experiment/callback/xgboost.py +63 -0
  13. snowflake_ml_python-1.10.0/snowflake/ml/experiment/utils.py +14 -0
  14. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/jobs/_utils/constants.py +15 -4
  15. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/jobs/_utils/payload_utils.py +159 -52
  16. snowflake_ml_python-1.10.0/snowflake/ml/jobs/_utils/scripts/constants.py +4 -0
  17. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/jobs/_utils/scripts/mljob_launcher.py +126 -23
  18. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/jobs/_utils/spec_utils.py +1 -1
  19. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/jobs/_utils/stage_utils.py +30 -14
  20. snowflake_ml_python-1.10.0/snowflake/ml/jobs/_utils/types.py +109 -0
  21. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/jobs/job.py +22 -6
  22. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/jobs/manager.py +5 -3
  23. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_client/model/model_version_impl.py +56 -48
  24. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_client/ops/service_ops.py +194 -14
  25. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_client/sql/service.py +1 -38
  26. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_handlers/sklearn.py +9 -5
  27. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py +1 -0
  28. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_signatures/pandas_handler.py +3 -0
  29. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_signatures/utils.py +4 -0
  30. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/event_handler.py +87 -18
  31. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/model_signature.py +2 -0
  32. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/models/huggingface_pipeline.py +71 -49
  33. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/type_hints.py +26 -1
  34. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/registry/_manager/model_manager.py +30 -35
  35. snowflake_ml_python-1.10.0/snowflake/ml/registry/_manager/model_parameter_reconciler.py +105 -0
  36. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/registry/registry.py +0 -19
  37. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/version.py +1 -1
  38. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0/snowflake_ml_python.egg-info}/PKG-INFO +542 -491
  39. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake_ml_python.egg-info/SOURCES.txt +5 -0
  40. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake_ml_python.egg-info/requires.txt +3 -2
  41. snowflake_ml_python-1.9.1/snowflake/ml/_internal/utils/service_logger.py +0 -65
  42. snowflake_ml_python-1.9.1/snowflake/ml/jobs/_utils/scripts/constants.py +0 -26
  43. snowflake_ml_python-1.9.1/snowflake/ml/jobs/_utils/types.py +0 -49
  44. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/LICENSE.txt +0 -0
  45. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/README.md +0 -0
  46. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/setup.cfg +0 -0
  47. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/cortex/__init__.py +0 -0
  48. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/cortex/_classify_text.py +0 -0
  49. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/cortex/_complete.py +0 -0
  50. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/cortex/_embed_text_1024.py +0 -0
  51. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/cortex/_embed_text_768.py +0 -0
  52. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/cortex/_extract_answer.py +0 -0
  53. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/cortex/_finetune.py +0 -0
  54. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/cortex/_sentiment.py +0 -0
  55. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/cortex/_sse_client.py +0 -0
  56. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/cortex/_summarize.py +0 -0
  57. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/cortex/_translate.py +0 -0
  58. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/cortex/_util.py +0 -0
  59. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/env.py +0 -0
  60. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/env_utils.py +0 -0
  61. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/exceptions/dataset_error_messages.py +0 -0
  62. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/exceptions/dataset_errors.py +0 -0
  63. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/exceptions/error_codes.py +0 -0
  64. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/exceptions/error_messages.py +0 -0
  65. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/exceptions/exceptions.py +0 -0
  66. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/exceptions/fileset_error_messages.py +0 -0
  67. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/exceptions/fileset_errors.py +0 -0
  68. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/exceptions/modeling_error_messages.py +0 -0
  69. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/exceptions/sql_error_codes.py +0 -0
  70. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/file_utils.py +0 -0
  71. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/human_readable_id/adjectives.txt +0 -0
  72. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/human_readable_id/animals.txt +0 -0
  73. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/human_readable_id/hrid_generator.py +0 -0
  74. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +0 -0
  75. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/init_utils.py +0 -0
  76. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/lineage/lineage_utils.py +0 -0
  77. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/migrator_utils.py +0 -0
  78. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/platform_capabilities.py +0 -0
  79. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/relax_version_strategy.py +0 -0
  80. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/telemetry.py +0 -0
  81. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/type_utils.py +0 -0
  82. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/utils/connection_params.py +0 -0
  83. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/utils/db_utils.py +0 -0
  84. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/utils/formatting.py +0 -0
  85. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/utils/identifier.py +0 -0
  86. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/utils/import_utils.py +0 -0
  87. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/utils/jwt_generator.py +0 -0
  88. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/utils/parallelize.py +0 -0
  89. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/utils/pkg_version_utils.py +0 -0
  90. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/utils/query_result_checker.py +0 -0
  91. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/utils/result.py +0 -0
  92. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/utils/snowflake_env.py +0 -0
  93. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/utils/snowpark_dataframe_utils.py +0 -0
  94. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/utils/sql_identifier.py +0 -0
  95. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/utils/table_manager.py +0 -0
  96. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/_internal/utils/temp_file_utils.py +0 -0
  97. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/data/__init__.py +0 -0
  98. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/data/data_ingestor.py +0 -0
  99. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/data/data_source.py +0 -0
  100. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/data/ingestor_utils.py +0 -0
  101. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/data/torch_utils.py +0 -0
  102. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/dataset/__init__.py +0 -0
  103. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/dataset/dataset_factory.py +0 -0
  104. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/dataset/dataset_metadata.py +0 -0
  105. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/experiment/_client/experiment_tracking_sql_client.py +0 -0
  106. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/experiment/_entities/__init__.py +0 -0
  107. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/experiment/_entities/experiment.py +0 -0
  108. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/experiment/_entities/run.py +0 -0
  109. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/experiment/_entities/run_metadata.py +0 -0
  110. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/experiment/_experiment_info.py +0 -0
  111. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/experiment/experiment_tracking.py +0 -0
  112. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/__init__.py +0 -0
  113. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/access_manager.py +0 -0
  114. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/entity.py +0 -0
  115. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/examples/airline_features/entities.py +0 -0
  116. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/examples/airline_features/features/plane_features.py +0 -0
  117. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/examples/airline_features/features/weather_features.py +0 -0
  118. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/examples/airline_features/source.yaml +0 -0
  119. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/examples/citibike_trip_features/entities.py +0 -0
  120. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/examples/citibike_trip_features/features/station_feature.py +0 -0
  121. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/examples/citibike_trip_features/features/trip_feature.py +0 -0
  122. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/examples/citibike_trip_features/source.yaml +0 -0
  123. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/examples/example_helper.py +0 -0
  124. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/examples/new_york_taxi_features/entities.py +0 -0
  125. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/examples/new_york_taxi_features/features/location_features.py +0 -0
  126. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/examples/new_york_taxi_features/features/trip_features.py +0 -0
  127. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/examples/new_york_taxi_features/source.yaml +0 -0
  128. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/examples/source_data/airline.yaml +0 -0
  129. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/examples/source_data/citibike_trips.yaml +0 -0
  130. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/examples/source_data/fraud_transactions.yaml +0 -0
  131. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/examples/source_data/nyc_yellow_trips.yaml +0 -0
  132. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/examples/source_data/winequality_red.yaml +0 -0
  133. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/examples/wine_quality_features/entities.py +0 -0
  134. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/examples/wine_quality_features/features/managed_wine_features.py +0 -0
  135. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/examples/wine_quality_features/features/static_wine_features.py +0 -0
  136. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/examples/wine_quality_features/source.yaml +0 -0
  137. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/feature_store.py +0 -0
  138. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/feature_store/feature_view.py +0 -0
  139. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/fileset/embedded_stage_fs.py +0 -0
  140. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/fileset/fileset.py +0 -0
  141. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/fileset/sfcfs.py +0 -0
  142. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/fileset/snowfs.py +0 -0
  143. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/fileset/stage_fs.py +0 -0
  144. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/jobs/__init__.py +0 -0
  145. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/jobs/_utils/function_payload_utils.py +0 -0
  146. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/jobs/_utils/interop_utils.py +0 -0
  147. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/jobs/_utils/query_helper.py +0 -0
  148. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/jobs/_utils/scripts/get_instance_ip.py +0 -0
  149. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/jobs/_utils/scripts/signal_workers.py +0 -0
  150. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/jobs/_utils/scripts/worker_shutdown_listener.py +0 -0
  151. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/jobs/decorators.py +0 -0
  152. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/lineage/__init__.py +0 -0
  153. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/lineage/lineage_node.py +0 -0
  154. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/__init__.py +0 -0
  155. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_client/model/model_impl.py +0 -0
  156. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_client/ops/metadata_ops.py +0 -0
  157. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_client/ops/model_ops.py +0 -0
  158. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_client/service/model_deployment_spec.py +0 -0
  159. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_client/service/model_deployment_spec_schema.py +0 -0
  160. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_client/sql/_base.py +0 -0
  161. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_client/sql/model.py +0 -0
  162. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_client/sql/model_version.py +0 -0
  163. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_client/sql/stage.py +0 -0
  164. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_client/sql/tag.py +0 -0
  165. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_model_composer/model_composer.py +0 -0
  166. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +0 -0
  167. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +0 -0
  168. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_model_composer/model_method/constants.py +0 -0
  169. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_model_composer/model_method/function_generator.py +0 -0
  170. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_model_composer/model_method/infer_function.py_template +0 -0
  171. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_model_composer/model_method/infer_partitioned.py_template +0 -0
  172. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +0 -0
  173. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_model_composer/model_method/model_method.py +0 -0
  174. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_model_composer/model_user_file/model_user_file.py +0 -0
  175. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_env/model_env.py +0 -0
  176. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_handler.py +0 -0
  177. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_handlers/_base.py +0 -0
  178. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_handlers/_utils.py +0 -0
  179. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_handlers/catboost.py +0 -0
  180. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_handlers/custom.py +0 -0
  181. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +0 -0
  182. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_handlers/keras.py +0 -0
  183. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_handlers/lightgbm.py +0 -0
  184. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_handlers/mlflow.py +0 -0
  185. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_handlers/pytorch.py +0 -0
  186. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_handlers/sentence_transformers.py +0 -0
  187. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +0 -0
  188. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_handlers/tensorflow.py +0 -0
  189. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_handlers/torchscript.py +0 -0
  190. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_handlers/xgboost.py +0 -0
  191. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_handlers_migrator/base_migrator.py +0 -0
  192. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_handlers_migrator/pytorch_migrator_2023_12_01.py +0 -0
  193. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_handlers_migrator/tensorflow_migrator_2023_12_01.py +0 -0
  194. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_handlers_migrator/tensorflow_migrator_2025_01_01.py +0 -0
  195. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_handlers_migrator/torchscript_migrator_2023_12_01.py +0 -0
  196. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_meta/model_blob_meta.py +0 -0
  197. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_meta/model_meta.py +0 -0
  198. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_meta/model_meta_schema.py +0 -0
  199. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_meta_migrator/base_migrator.py +0 -0
  200. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +0 -0
  201. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_meta_migrator/migrator_v1.py +0 -0
  202. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_packager.py +0 -0
  203. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_runtime/model_runtime.py +0 -0
  204. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_packager/model_task/model_task_utils.py +0 -0
  205. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_signatures/base_handler.py +0 -0
  206. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_signatures/builtins_handler.py +0 -0
  207. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_signatures/core.py +0 -0
  208. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_signatures/dmatrix_handler.py +0 -0
  209. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_signatures/numpy_handler.py +0 -0
  210. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_signatures/pytorch_handler.py +0 -0
  211. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_signatures/snowpark_handler.py +0 -0
  212. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/_signatures/tensorflow_handler.py +0 -0
  213. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/custom_model.py +0 -0
  214. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/target_platform.py +0 -0
  215. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/model/task.py +0 -0
  216. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/_internal/estimator_utils.py +0 -0
  217. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +0 -0
  218. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +0 -0
  219. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/_internal/model_specifications.py +0 -0
  220. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/_internal/model_trainer.py +0 -0
  221. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/_internal/model_trainer_builder.py +0 -0
  222. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/_internal/model_transformer_builder.py +0 -0
  223. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +0 -0
  224. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/_internal/snowpark_implementations/distributed_search_udf_file.py +0 -0
  225. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +0 -0
  226. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +0 -0
  227. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/_internal/snowpark_implementations/xgboost_external_memory_trainer.py +0 -0
  228. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/_internal/transformer_protocols.py +0 -0
  229. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/calibration/__init__.py +0 -0
  230. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +0 -0
  231. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/cluster/__init__.py +0 -0
  232. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/cluster/affinity_propagation.py +0 -0
  233. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/cluster/agglomerative_clustering.py +0 -0
  234. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/cluster/birch.py +0 -0
  235. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/cluster/bisecting_k_means.py +0 -0
  236. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/cluster/dbscan.py +0 -0
  237. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/cluster/feature_agglomeration.py +0 -0
  238. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/cluster/k_means.py +0 -0
  239. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/cluster/mean_shift.py +0 -0
  240. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/cluster/mini_batch_k_means.py +0 -0
  241. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/cluster/optics.py +0 -0
  242. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/cluster/spectral_biclustering.py +0 -0
  243. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/cluster/spectral_clustering.py +0 -0
  244. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/cluster/spectral_coclustering.py +0 -0
  245. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/compose/__init__.py +0 -0
  246. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/compose/column_transformer.py +0 -0
  247. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/compose/transformed_target_regressor.py +0 -0
  248. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/covariance/__init__.py +0 -0
  249. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/covariance/elliptic_envelope.py +0 -0
  250. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/covariance/empirical_covariance.py +0 -0
  251. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/covariance/graphical_lasso.py +0 -0
  252. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/covariance/graphical_lasso_cv.py +0 -0
  253. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/covariance/ledoit_wolf.py +0 -0
  254. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/covariance/min_cov_det.py +0 -0
  255. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/covariance/oas.py +0 -0
  256. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/covariance/shrunk_covariance.py +0 -0
  257. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/decomposition/__init__.py +0 -0
  258. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/decomposition/dictionary_learning.py +0 -0
  259. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/decomposition/factor_analysis.py +0 -0
  260. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/decomposition/fast_ica.py +0 -0
  261. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/decomposition/incremental_pca.py +0 -0
  262. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/decomposition/kernel_pca.py +0 -0
  263. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +0 -0
  264. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +0 -0
  265. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/decomposition/pca.py +0 -0
  266. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/decomposition/sparse_pca.py +0 -0
  267. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/decomposition/truncated_svd.py +0 -0
  268. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/discriminant_analysis/__init__.py +0 -0
  269. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +0 -0
  270. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +0 -0
  271. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/ensemble/__init__.py +0 -0
  272. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/ensemble/ada_boost_classifier.py +0 -0
  273. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/ensemble/ada_boost_regressor.py +0 -0
  274. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/ensemble/bagging_classifier.py +0 -0
  275. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/ensemble/bagging_regressor.py +0 -0
  276. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/ensemble/extra_trees_classifier.py +0 -0
  277. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/ensemble/extra_trees_regressor.py +0 -0
  278. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +0 -0
  279. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +0 -0
  280. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +0 -0
  281. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +0 -0
  282. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/ensemble/isolation_forest.py +0 -0
  283. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/ensemble/random_forest_classifier.py +0 -0
  284. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/ensemble/random_forest_regressor.py +0 -0
  285. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/ensemble/stacking_regressor.py +0 -0
  286. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/ensemble/voting_classifier.py +0 -0
  287. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/ensemble/voting_regressor.py +0 -0
  288. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/feature_selection/__init__.py +0 -0
  289. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/feature_selection/generic_univariate_select.py +0 -0
  290. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/feature_selection/select_fdr.py +0 -0
  291. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/feature_selection/select_fpr.py +0 -0
  292. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/feature_selection/select_fwe.py +0 -0
  293. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/feature_selection/select_k_best.py +0 -0
  294. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/feature_selection/select_percentile.py +0 -0
  295. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +0 -0
  296. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/feature_selection/variance_threshold.py +0 -0
  297. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/framework/_utils.py +0 -0
  298. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/framework/base.py +0 -0
  299. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/gaussian_process/__init__.py +0 -0
  300. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +0 -0
  301. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +0 -0
  302. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/impute/__init__.py +0 -0
  303. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/impute/iterative_imputer.py +0 -0
  304. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/impute/knn_imputer.py +0 -0
  305. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/impute/missing_indicator.py +0 -0
  306. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/impute/simple_imputer.py +0 -0
  307. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/kernel_approximation/__init__.py +0 -0
  308. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +0 -0
  309. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/kernel_approximation/nystroem.py +0 -0
  310. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +0 -0
  311. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +0 -0
  312. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +0 -0
  313. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/kernel_ridge/__init__.py +0 -0
  314. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +0 -0
  315. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/lightgbm/__init__.py +0 -0
  316. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/lightgbm/lgbm_classifier.py +0 -0
  317. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/lightgbm/lgbm_regressor.py +0 -0
  318. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/__init__.py +0 -0
  319. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/ard_regression.py +0 -0
  320. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/bayesian_ridge.py +0 -0
  321. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/elastic_net.py +0 -0
  322. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/elastic_net_cv.py +0 -0
  323. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/gamma_regressor.py +0 -0
  324. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/huber_regressor.py +0 -0
  325. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/lars.py +0 -0
  326. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/lars_cv.py +0 -0
  327. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/lasso.py +0 -0
  328. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/lasso_cv.py +0 -0
  329. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/lasso_lars.py +0 -0
  330. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/lasso_lars_cv.py +0 -0
  331. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/lasso_lars_ic.py +0 -0
  332. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/linear_regression.py +0 -0
  333. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/logistic_regression.py +0 -0
  334. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/logistic_regression_cv.py +0 -0
  335. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +0 -0
  336. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +0 -0
  337. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/multi_task_lasso.py +0 -0
  338. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +0 -0
  339. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +0 -0
  340. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +0 -0
  341. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +0 -0
  342. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/perceptron.py +0 -0
  343. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/poisson_regressor.py +0 -0
  344. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/ransac_regressor.py +0 -0
  345. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/ridge.py +0 -0
  346. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/ridge_classifier.py +0 -0
  347. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +0 -0
  348. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/ridge_cv.py +0 -0
  349. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/sgd_classifier.py +0 -0
  350. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +0 -0
  351. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/sgd_regressor.py +0 -0
  352. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/theil_sen_regressor.py +0 -0
  353. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/linear_model/tweedie_regressor.py +0 -0
  354. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/manifold/__init__.py +0 -0
  355. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/manifold/isomap.py +0 -0
  356. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/manifold/mds.py +0 -0
  357. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/manifold/spectral_embedding.py +0 -0
  358. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/manifold/tsne.py +0 -0
  359. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/metrics/__init__.py +0 -0
  360. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/metrics/classification.py +0 -0
  361. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/metrics/correlation.py +0 -0
  362. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/metrics/covariance.py +0 -0
  363. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/metrics/metrics_utils.py +0 -0
  364. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/metrics/ranking.py +0 -0
  365. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/metrics/regression.py +0 -0
  366. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/mixture/__init__.py +0 -0
  367. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +0 -0
  368. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/mixture/gaussian_mixture.py +0 -0
  369. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/model_selection/__init__.py +0 -0
  370. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/model_selection/grid_search_cv.py +0 -0
  371. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/model_selection/randomized_search_cv.py +0 -0
  372. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/multiclass/__init__.py +0 -0
  373. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +0 -0
  374. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +0 -0
  375. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/multiclass/output_code_classifier.py +0 -0
  376. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/naive_bayes/__init__.py +0 -0
  377. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +0 -0
  378. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/naive_bayes/categorical_nb.py +0 -0
  379. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/naive_bayes/complement_nb.py +0 -0
  380. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/naive_bayes/gaussian_nb.py +0 -0
  381. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/naive_bayes/multinomial_nb.py +0 -0
  382. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/neighbors/__init__.py +0 -0
  383. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +0 -0
  384. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +0 -0
  385. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/neighbors/kernel_density.py +0 -0
  386. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/neighbors/local_outlier_factor.py +0 -0
  387. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/neighbors/nearest_centroid.py +0 -0
  388. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/neighbors/nearest_neighbors.py +0 -0
  389. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +0 -0
  390. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +0 -0
  391. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +0 -0
  392. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/neural_network/__init__.py +0 -0
  393. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/neural_network/bernoulli_rbm.py +0 -0
  394. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/neural_network/mlp_classifier.py +0 -0
  395. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/neural_network/mlp_regressor.py +0 -0
  396. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/parameters/disable_distributed_hpo.py +0 -0
  397. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/parameters/disable_model_tracer.py +0 -0
  398. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/parameters/enable_anonymous_sproc.py +0 -0
  399. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/pipeline/__init__.py +0 -0
  400. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/pipeline/pipeline.py +0 -0
  401. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/preprocessing/__init__.py +0 -0
  402. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/preprocessing/binarizer.py +0 -0
  403. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -0
  404. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/preprocessing/label_encoder.py +0 -0
  405. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/preprocessing/max_abs_scaler.py +0 -0
  406. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/preprocessing/min_max_scaler.py +0 -0
  407. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/preprocessing/normalizer.py +0 -0
  408. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/preprocessing/one_hot_encoder.py +0 -0
  409. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/preprocessing/ordinal_encoder.py +0 -0
  410. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/preprocessing/polynomial_features.py +0 -0
  411. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/preprocessing/robust_scaler.py +0 -0
  412. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/preprocessing/standard_scaler.py +0 -0
  413. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/semi_supervised/__init__.py +0 -0
  414. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/semi_supervised/label_propagation.py +0 -0
  415. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/semi_supervised/label_spreading.py +0 -0
  416. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/svm/__init__.py +0 -0
  417. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/svm/linear_svc.py +0 -0
  418. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/svm/linear_svr.py +0 -0
  419. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/svm/nu_svc.py +0 -0
  420. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/svm/nu_svr.py +0 -0
  421. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/svm/svc.py +0 -0
  422. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/svm/svr.py +0 -0
  423. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/tree/__init__.py +0 -0
  424. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/tree/decision_tree_classifier.py +0 -0
  425. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/tree/decision_tree_regressor.py +0 -0
  426. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/tree/extra_tree_classifier.py +0 -0
  427. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/tree/extra_tree_regressor.py +0 -0
  428. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/xgboost/__init__.py +0 -0
  429. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/xgboost/xgb_classifier.py +0 -0
  430. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/xgboost/xgb_regressor.py +0 -0
  431. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/xgboost/xgbrf_classifier.py +0 -0
  432. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/modeling/xgboost/xgbrf_regressor.py +0 -0
  433. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/monitoring/_client/model_monitor_sql_client.py +0 -0
  434. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/monitoring/_client/queries/record_count.ssql +0 -0
  435. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/monitoring/_client/queries/rmse.ssql +0 -0
  436. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/monitoring/_manager/model_monitor_manager.py +0 -0
  437. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/monitoring/entities/model_monitor_config.py +0 -0
  438. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/monitoring/explain_visualize.py +0 -0
  439. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/monitoring/model_monitor.py +0 -0
  440. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/monitoring/shap.py +0 -0
  441. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/registry/__init__.py +0 -0
  442. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/utils/authentication.py +0 -0
  443. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/utils/connection_params.py +0 -0
  444. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/utils/html_utils.py +0 -0
  445. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/utils/sparse.py +0 -0
  446. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake/ml/utils/sql_client.py +0 -0
  447. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake_ml_python.egg-info/dependency_links.txt +0 -0
  448. {snowflake_ml_python-1.9.1 → snowflake_ml_python-1.10.0}/snowflake_ml_python.egg-info/top_level.txt +0 -0
@@ -1,17 +1,67 @@
1
1
  # Release History
2
2
 
3
- ## 1.9.1
3
+ ## 1.10.0
4
4
 
5
5
  ### Bug Fixes
6
6
 
7
- - Registry: Fix a bug when trying to set the PAD token the HuggingFace `text-generation` model had multiple EOS tokens.
7
+ ### Behavior Changes
8
+
9
+ ### New Features
10
+
11
+ * Registry: add progress bars for `ModelVersion.create_service` and `ModelVersion.log_model`.
12
+ * ModelRegistry: Logs emitted during `ModelVersion.create_service` will be written to a file. The file location
13
+ will be shown in the console.
14
+
15
+ ## 1.9.2
16
+
17
+ ### Bug Fixes
18
+
19
+ * DataConnector: Fix `self._session` related errors inside Container Runtime.
20
+ * Registry: Fix a bug when trying to pass `None` to array (`pd.dtype('O')`) in signature and pandas data handler.
21
+
22
+ ### New Features
23
+
24
+ * Experiment Tracking (PrPr): Automatically log the model, metrics, and parameters while training
25
+ XGBoost and LightGBM models.
26
+
27
+ ```python
28
+ from snowflake.ml.experiment import ExperimentTracking
29
+
30
+ exp = ExperimentTracking(session=sp_session, database_name="ML", schema_name="PUBLIC")
31
+
32
+ exp.set_experiment("MY_EXPERIMENT")
33
+
34
+ # XGBoost
35
+ from snowflake.ml.experiment.callback.xgboost import SnowflakeXgboostCallback
36
+ callback = SnowflakeXgboostCallback(
37
+ exp, log_model=True, log_metrics=True, log_params=True, model_name="model_name", model_signature=sig
38
+ )
39
+ model = XGBClassifier(callbacks=[callback])
40
+ with exp.start_run():
41
+ model.fit(X, y, eval_set=[(X_test, y_test)])
42
+
43
+ # LightGBM
44
+ from snowflake.ml.experiment.callback.lightgbm import SnowflakeLightgbmCallback
45
+ callback = SnowflakeLightgbmCallback(
46
+ exp, log_model=True, log_metrics=True, log_params=True, model_name="model_name", model_signature=sig
47
+ )
48
+ model = LGBMClassifier()
49
+ with exp.start_run():
50
+ model.fit(X, y, eval_set=[(X_test, y_test)], callbacks=[callback])
51
+ ```
52
+
53
+ ## 1.9.1 (07-18-2025)
54
+
55
+ ### Bug Fixes
56
+
57
+ * Registry: Fix a bug when trying to set the PAD token the HuggingFace `text-generation` model had multiple EOS tokens.
8
58
  The handler picks the first EOS token as PAD token now.
9
59
 
10
60
  ### New Features
11
61
 
12
- - DataConnector: DataConnector objects can now be pickled
13
- - Dataset: Dataset objects can now be pickled
14
- - Registry (PrPr): Introducing `create_service` function in `snowflake/ml/model/models/huggingface_pipeline.py`
62
+ * DataConnector: DataConnector objects can now be pickled
63
+ * Dataset: Dataset objects can now be pickled
64
+ * Registry (PrPr): Introducing `create_service` function in `snowflake/ml/model/models/huggingface_pipeline.py`
15
65
  which creates a service to log a HF model and upon successful logging, an inference service is created.
16
66
 
17
67
  ```python
@@ -32,7 +82,7 @@ hf_model_ref.create_service(
32
82
  )
33
83
  ```
34
84
 
35
- - Experiment Tracking (PrPr): New module for managing and tracking ML experiments in Snowflake.
85
+ * Experiment Tracking (PrPr): New module for managing and tracking ML experiments in Snowflake.
36
86
 
37
87
  ```python
38
88
  from snowflake.ml.experiment import ExperimentTracking
@@ -47,16 +97,16 @@ with exp.start_run():
47
97
  exp.log_model(my_model, model_name="MY_MODEL")
48
98
  ```
49
99
 
50
- - Registry: Added support for wide input (500+ features) for inference done using SPCS
100
+ * Registry: Added support for wide input (500+ features) for inference done using SPCS
51
101
 
52
102
  ## 1.9.0
53
103
 
54
104
  ### Bug Fixes
55
105
 
56
- - Registry: Fixed bug causing snowpark to pandas dataframe conversion to fail when `QUOTED_IDENTIFIERS_IGNORE_CASE`
106
+ * Registry: Fixed bug causing snowpark to pandas dataframe conversion to fail when `QUOTED_IDENTIFIERS_IGNORE_CASE`
57
107
  parameter is enabled
58
- - Registry: Fixed duplicate UserWarning logs during model packaging
59
- - Registry: If the huggingface pipeline text-generation model doesn't contain a default chat template, a ChatML template
108
+ * Registry: Fixed duplicate UserWarning logs during model packaging
109
+ * Registry: If the huggingface pipeline text-generation model doesn't contain a default chat template, a ChatML template
60
110
  is assigned to the tokenizer.
61
111
 
62
112
  ```shell
@@ -68,40 +118,40 @@ with exp.start_run():
68
118
  {% endif %}"
69
119
  ```
70
120
 
71
- - Registry: Fixed SQL queries during registry initialization that were forcing warehouse requirement
121
+ * Registry: Fixed SQL queries during registry initialization that were forcing warehouse requirement
72
122
 
73
123
  ### Behavior Changes
74
124
 
75
- - ML Job: The `list_jobs()` API has been modified. The `scope` parameter has been removed,
125
+ * ML Job: The `list_jobs()` API has been modified. The `scope` parameter has been removed,
76
126
  optional `database` and `schema` parameters have been added, the return type has changed
77
127
  from `snowpark.DataFrame` to `pandas.DataFrame`, and the returned columns have been updated
78
128
  to `name`, `status`, `message`, `database_name`, `schema_name`, `owner`, `compute_pool`,
79
129
  `target_instances`, `created_time`, and `completed_time`.
80
- - Registry: Set `relax_version` to false when pip_requirements are specified while logging model
81
- - Registry: UserWarning will now be raised based on specified target_platforms (addresses spurious warnings)
130
+ * Registry: Set `relax_version` to false when pip_requirements are specified while logging model
131
+ * Registry: UserWarning will now be raised based on specified target_platforms (addresses spurious warnings)
82
132
 
83
133
  ### New Features
84
134
 
85
- - Registry: `target_platforms` supports `TargetPlatformMode`: `WAREHOUSE_ONLY`, `SNOWPARK_CONTAINER_SERVICES_ONLY`,
135
+ * Registry: `target_platforms` supports `TargetPlatformMode`: `WAREHOUSE_ONLY`, `SNOWPARK_CONTAINER_SERVICES_ONLY`,
86
136
  or `BOTH_WAREHOUSE_AND_SNOWPARK_CONTAINER_SERVICES`.
87
- - Registry: Introduce `snowflake.ml.model.target_platform.TargetPlatform`, target platform constants, and
137
+ * Registry: Introduce `snowflake.ml.model.target_platform.TargetPlatform`, target platform constants, and
88
138
  `snowflake.ml.model.task.Task`.
89
- - ML Job: Single-node ML Jobs are now in GA. Multi-node support is now in PuPr
90
- - Moved less frequently used job submission parameters to `**kwargs`
91
- - Platform metrics are now enabled by default
92
- - `list_jobs()` behavior changed, see [Behavior Changes](#behavior-changes) for more info
139
+ * ML Job: Single-node ML Jobs are now in GA. Multi-node support is now in PuPr
140
+ * Moved less frequently used job submission parameters to `**kwargs`
141
+ * Platform metrics are now enabled by default
142
+ * `list_jobs()` behavior changed, see [Behavior Changes](#behavior-changes) for more info
93
143
 
94
144
  ## 1.8.6
95
145
 
96
146
  ### Bug Fixes
97
147
 
98
- - Fixed fatal errors from internal telemetry wrappers.
148
+ * Fixed fatal errors from internal telemetry wrappers.
99
149
 
100
150
  ### New Features
101
151
 
102
- - Registry: Add service container info to logs.
103
- - ML Job (PuPr): Add new `submit_from_stage()` API for submitting a payload from an existing stage path.
104
- - ML Job (PuPr): Add support for `snowpark.Session` objects in the argument list of
152
+ * Registry: Add service container info to logs.
153
+ * ML Job (PuPr): Add new `submit_from_stage()` API for submitting a payload from an existing stage path.
154
+ * ML Job (PuPr): Add support for `snowpark.Session` objects in the argument list of
105
155
  `@remote` decorated functions. `Session` object will be injected from context in
106
156
  the job execution environment.
107
157
 
@@ -109,75 +159,75 @@ with exp.start_run():
109
159
 
110
160
  ### Bug Fixes
111
161
 
112
- - Registry: Fixed a bug when listing and deleting container services.
113
- - Registry: Fixed explainability issue with scikit-learn pipelines, skipping explain function creation.
114
- - Explainability: bump minimum streamlit version down to 1.30
115
- - Modeling: Make XGBoost a required dependency (xgboost is not a required dependency in snowflake-ml-python 1.8.4).
162
+ * Registry: Fixed a bug when listing and deleting container services.
163
+ * Registry: Fixed explainability issue with scikit-learn pipelines, skipping explain function creation.
164
+ * Explainability: bump minimum streamlit version down to 1.30
165
+ * Modeling: Make XGBoost a required dependency (xgboost is not a required dependency in snowflake-ml-python 1.8.4).
116
166
 
117
167
  ### Behavior Changes
118
168
 
119
- - ML Job (Multi-node PrPr): Rename argument `num_instances` to `target_instances` in job submission APIs and
169
+ * ML Job (Multi-node PrPr): Rename argument `num_instances` to `target_instances` in job submission APIs and
120
170
  change type from `Optional[int]` to `int`
121
171
 
122
172
  ### New Features
123
173
 
124
- - Registry: No longer checks if the snowflake-ml-python version is available in the Snowflake Conda channel when logging
174
+ * Registry: No longer checks if the snowflake-ml-python version is available in the Snowflake Conda channel when logging
125
175
  an SPCS-only model.
126
- - ML Job (PuPr): Add `min_instances` argument to the job decorator to allow waiting for workers to be ready.
127
- - ML Job (PuPr): Adjust polling behavior to reduce number of SQL calls.
176
+ * ML Job (PuPr): Add `min_instances` argument to the job decorator to allow waiting for workers to be ready.
177
+ * ML Job (PuPr): Adjust polling behavior to reduce number of SQL calls.
128
178
 
129
179
  ### Deprecations
130
180
 
131
- - `SnowflakeLoginOptions` is deprecated and will be removed in a future release.
181
+ * `SnowflakeLoginOptions` is deprecated and will be removed in a future release.
132
182
 
133
183
  ## 1.8.4 (2025-05-12)
134
184
 
135
185
  ### Bug Fixes
136
186
 
137
- - Registry: Default `enable_explainability` to True when the model can be deployed to Warehouse.
138
- - Registry: Add `custom_model.partitioned_api` decorator and deprecate `partitioned_inference_api`.
139
- - Registry: Fixed a bug when logging pytroch and tensorflow models that caused
187
+ * Registry: Default `enable_explainability` to True when the model can be deployed to Warehouse.
188
+ * Registry: Add `custom_model.partitioned_api` decorator and deprecate `partitioned_inference_api`.
189
+ * Registry: Fixed a bug when logging pytroch and tensorflow models that caused
140
190
  `UnboundLocalError: local variable 'multiple_inputs' referenced before assignment`.
141
191
 
142
192
  ### Behavior Changes
143
193
 
144
- - ML Job (PuPr) Updated property `id` to be fully qualified name; Introduced new property `name`
194
+ * ML Job (PuPr) Updated property `id` to be fully qualified name; Introduced new property `name`
145
195
  to represent the ML Job name
146
- - ML Job (PuPr) Modified `list_jobs()` to return ML Job `name` instead of `id`
147
- - Registry: Error in `log_model` if `enable_explainability` is True and model is only deployed to
196
+ * ML Job (PuPr) Modified `list_jobs()` to return ML Job `name` instead of `id`
197
+ * Registry: Error in `log_model` if `enable_explainability` is True and model is only deployed to
148
198
  Snowpark Container Services, instead of just user warning.
149
199
 
150
200
  ### New Features
151
201
 
152
- - ML Job (PuPr): Extend `@remote` function decorator, `submit_file()` and `submit_directory()` to accept `database` and
202
+ * ML Job (PuPr): Extend `@remote` function decorator, `submit_file()` and `submit_directory()` to accept `database` and
153
203
  `schema` parameters
154
- - ML Job (PuPr): Support querying by fully qualified name in `get_job()`
155
- - Explainability: Added visualization functions to `snowflake.ml.monitoring` to plot explanations in notebooks.
156
- - Explainability: Support explain for categorical transforms for sklearn pipeline
157
- - Support categorical type for `xgboost.DMatrix` inputs.
204
+ * ML Job (PuPr): Support querying by fully qualified name in `get_job()`
205
+ * Explainability: Added visualization functions to `snowflake.ml.monitoring` to plot explanations in notebooks.
206
+ * Explainability: Support explain for categorical transforms for sklearn pipeline
207
+ * Support categorical type for `xgboost.DMatrix` inputs.
158
208
 
159
209
  ## 1.8.3
160
210
 
161
211
  ### New Features
162
212
 
163
- - Registry: Default to the runtime cuda version if available when logging a GPU model in Container Runtime.
164
- - ML Job (PuPr): Added `as_list` argument to `MLJob.get_logs()` to enable retrieving logs
213
+ * Registry: Default to the runtime cuda version if available when logging a GPU model in Container Runtime.
214
+ * ML Job (PuPr): Added `as_list` argument to `MLJob.get_logs()` to enable retrieving logs
165
215
  as a list of strings
166
- - Registry: Support `ModelVersion.run_job` to run inference with a single-node Snowpark Container Services job.
167
- - DataConnector: Removed PrPr decorators
168
- - Registry: Default the target platform to warehouse when logging a partitioned model.
216
+ * Registry: Support `ModelVersion.run_job` to run inference with a single-node Snowpark Container Services job.
217
+ * DataConnector: Removed PrPr decorators
218
+ * Registry: Default the target platform to warehouse when logging a partitioned model.
169
219
 
170
220
  ## 1.8.2
171
221
 
172
222
  ### New Features
173
223
 
174
- - ML Job now available as a PuPr feature
175
- - Add ability to retrieve results for `@remote` decorated functions using
224
+ * ML Job now available as a PuPr feature
225
+ * Add ability to retrieve results for `@remote` decorated functions using
176
226
  new `MLJobWithResult.result()` API, which will return the unpickled result
177
227
  or raise an exception if the job execution failed.
178
- - Pre-created Snowpark Session is now available inside job payloads using
228
+ * Pre-created Snowpark Session is now available inside job payloads using
179
229
  `snowflake.snowpark.context.get_active_session()`
180
- - Registry: Introducing `save_location` to `log_model` using the `options` argument.
230
+ * Registry: Introducing `save_location` to `log_model` using the `options` argument.
181
231
  Users can use the `save_location` option to specify a local directory where the model files and configuration are written.
182
232
  This is useful when the default temporary directory has space limitations.
183
233
 
@@ -191,44 +241,44 @@ reg.log_model(
191
241
  )
192
242
  ```
193
243
 
194
- - Registry: Include model dependencies in pip requirements by default when logging in Container Runtime.
195
- - Multi-node ML Job (PrPr): Add `instance_id` argument to `get_logs` and `show_logs` method to support multi node log retrieval
196
- - Multi-node ML Job (PrPr): Add `job.get_instance_status(instance_id=...)` API to support multi node status retrieval
244
+ * Registry: Include model dependencies in pip requirements by default when logging in Container Runtime.
245
+ * Multi-node ML Job (PrPr): Add `instance_id` argument to `get_logs` and `show_logs` method to support multi node log retrieval
246
+ * Multi-node ML Job (PrPr): Add `job.get_instance_status(instance_id=...)` API to support multi node status retrieval
197
247
 
198
248
  ## 1.8.1 (03-26-2025)
199
249
 
200
250
  ### Bug Fixes
201
251
 
202
- - Registry: Fix a bug that caused `unsupported model type` error while logging a sklearn model with `score_samples`
252
+ * Registry: Fix a bug that caused `unsupported model type` error while logging a sklearn model with `score_samples`
203
253
  inference method.
204
- - Registry: Fix a bug that model inference service creation fails on an existing and suspended service.
254
+ * Registry: Fix a bug that model inference service creation fails on an existing and suspended service.
205
255
 
206
256
  ### New Features
207
257
 
208
- - ML Job (PrPr): Update Container Runtime image version to `1.0.1`
209
- - ML Job (PrPr): Add `enable_metrics` argument to job submission APIs to enable publishing service metrics to Event Table.
258
+ * ML Job (PrPr): Update Container Runtime image version to `1.0.1`
259
+ * ML Job (PrPr): Add `enable_metrics` argument to job submission APIs to enable publishing service metrics to Event Table.
210
260
  See [Accessing Event Table service metrics](https://docs.snowflake.com/en/developer-guide/snowpark-container-services/monitoring-services#accessing-event-table-service-metrics)
211
261
  for retrieving published metrics
212
262
  and [Costs of telemetry data collection](https://docs.snowflake.com/en/developer-guide/logging-tracing/logging-tracing-billing)
213
263
  for cost implications.
214
- - Registry: When creating a copy of a `ModelVersion` with `log_model`, raise an exception if unsupported arguments are provided.
264
+ * Registry: When creating a copy of a `ModelVersion` with `log_model`, raise an exception if unsupported arguments are provided.
215
265
 
216
266
  ## 1.8.0 (03-20-2025)
217
267
 
218
268
  ### Bug Fixes
219
269
 
220
- - Modeling: Fix a bug in some metrics that allowed an unsupported version of numpy to be installed
270
+ * Modeling: Fix a bug in some metrics that allowed an unsupported version of numpy to be installed
221
271
  automatically in the stored procedure, resulting in a numpy error on execution
222
- - Registry: Fix a bug that leads to incorrect `Model is does not have _is_inference_api` error message when assigning
272
+ * Registry: Fix a bug that leads to incorrect `Model is does not have _is_inference_api` error message when assigning
223
273
  a supported model as a property of a CustomModel.
224
- - Registry: Fix a bug that inference is not working when models with more than 500 input features
274
+ * Registry: Fix a bug that inference is not working when models with more than 500 input features
225
275
  are deployed to SPCS.
226
276
 
227
277
  ### Behavior Change
228
278
 
229
- - Registry: With FeatureGroupSpec support, auto inferred model signature for `transformers.Pipeline` models have been
279
+ * Registry: With FeatureGroupSpec support, auto inferred model signature for `transformers.Pipeline` models have been
230
280
  updated, including:
231
- - Signature for fill-mask task has been changed from
281
+ * Signature for fill-mask task has been changed from
232
282
 
233
283
  ```python
234
284
  ModelSignature(
@@ -263,7 +313,7 @@ reg.log_model(
263
313
  )
264
314
  ```
265
315
 
266
- - Signature for token-classification task has been changed from
316
+ * Signature for token-classification task has been changed from
267
317
 
268
318
  ```python
269
319
  ModelSignature(
@@ -298,7 +348,7 @@ reg.log_model(
298
348
  )
299
349
  ```
300
350
 
301
- - Signature for question-answering task when top_k is larger than 1 has been changed from
351
+ * Signature for question-answering task when top_k is larger than 1 has been changed from
302
352
 
303
353
  ```python
304
354
  ModelSignature(
@@ -335,7 +385,7 @@ reg.log_model(
335
385
  )
336
386
  ```
337
387
 
338
- - Signature for text-classification task when top_k is `None` has been changed from
388
+ * Signature for text-classification task when top_k is `None` has been changed from
339
389
 
340
390
  ```python
341
391
  ModelSignature(
@@ -364,7 +414,7 @@ reg.log_model(
364
414
  )
365
415
  ```
366
416
 
367
- - Signature for text-classification task when top_k is not `None` has been changed from
417
+ * Signature for text-classification task when top_k is not `None` has been changed from
368
418
 
369
419
  ```python
370
420
  ModelSignature(
@@ -398,7 +448,7 @@ reg.log_model(
398
448
  )
399
449
  ```
400
450
 
401
- - Signature for text-generation task has been changed from
451
+ * Signature for text-generation task has been changed from
402
452
 
403
453
  ```python
404
454
  ModelSignature(
@@ -435,7 +485,7 @@ reg.log_model(
435
485
  )
436
486
  ```
437
487
 
438
- - Registry: PyTorch and TensorFlow models now expect a single tensor input/output by default when logging to Model
488
+ * Registry: PyTorch and TensorFlow models now expect a single tensor input/output by default when logging to Model
439
489
  Registry. To use multiple tensors (previous behavior), set `options={"multiple_inputs": True}`.
440
490
 
441
491
  Example with single tensor input:
@@ -481,130 +531,130 @@ reg.log_model(
481
531
  )
482
532
  ```
483
533
 
484
- - Registry: Default `enable_explainability` to False when the model can be deployed to Snowpark Container Services.
534
+ * Registry: Default `enable_explainability` to False when the model can be deployed to Snowpark Container Services.
485
535
 
486
536
  ### New Features
487
537
 
488
- - Registry: Added support to single `torch.Tensor`, `tensorflow.Tensor` and `tensorflow.Variable` as input or output
538
+ * Registry: Added support to single `torch.Tensor`, `tensorflow.Tensor` and `tensorflow.Variable` as input or output
489
539
  data.
490
- - Registry: Support [`xgboost.DMatrix`](https://xgboost.readthedocs.io/en/stable/python/python_api.html#xgboost.DMatrix)
540
+ * Registry: Support [`xgboost.DMatrix`](https://xgboost.readthedocs.io/en/stable/python/python_api.html#xgboost.DMatrix)
491
541
  datatype for XGBoost models.
492
542
 
493
543
  ## 1.7.5 (03-06-2025)
494
544
 
495
- - Support Python 3.12.
496
- - Explainability: Support native and snowflake.ml.modeling sklearn pipeline
545
+ * Support Python 3.12.
546
+ * Explainability: Support native and snowflake.ml.modeling sklearn pipeline
497
547
 
498
548
  ### Bug Fixes
499
549
 
500
- - Registry: Fixed a compatibility issue when using `snowflake-ml-python` 1.7.0 or greater to save a `tensorflow.keras`
550
+ * Registry: Fixed a compatibility issue when using `snowflake-ml-python` 1.7.0 or greater to save a `tensorflow.keras`
501
551
  model with `keras` 2.x, if `relax_version` is set or default to True, and newer version of `snowflake-ml-python`
502
552
  is available in Snowflake Anaconda Channel, model could not be run in Snowflake. If you have such model, you could
503
553
  use the latest version of `snowflake-ml-python` and call `ModelVersion.load` to load it back, and re-log it.
504
554
  Alternatively, you can prevent this issue by setting `relax_version=False` when saving the model.
505
- - Registry: Removed the validation that disallows data that does not have non-null values being passed to
555
+ * Registry: Removed the validation that disallows data that does not have non-null values being passed to
506
556
  `ModelVersion.run`.
507
- - ML Job (PrPr): No longer require CREATE STAGE privilege if `stage_name` points to an existing stage
508
- - ML Job (PrPr): Fixed a bug causing some payload source and entrypoint path
557
+ * ML Job (PrPr): No longer require CREATE STAGE privilege if `stage_name` points to an existing stage
558
+ * ML Job (PrPr): Fixed a bug causing some payload source and entrypoint path
509
559
  combinations to be erroneously rejected with
510
560
  `ValueError(f"{self.entrypoint} must be a subpath of {self.source}")`
511
- - ML Job (PrPr): Fixed a bug in Ray cluster startup config which caused certain Runtime APIs to fail
561
+ * ML Job (PrPr): Fixed a bug in Ray cluster startup config which caused certain Runtime APIs to fail
512
562
 
513
563
  ### New Features
514
564
 
515
- - Registry: Added support for handling Hugging Face model configurations with auto-mapping functionality.
516
- - Registry: Added support for `keras` 3.x model with `tensorflow` and `pytorch` backend
565
+ * Registry: Added support for handling Hugging Face model configurations with auto-mapping functionality.
566
+ * Registry: Added support for `keras` 3.x model with `tensorflow` and `pytorch` backend
517
567
 
518
568
  ## 1.7.4 (01-28-2025)
519
569
 
520
- - FileSet: The `snowflake.ml.fileset.FileSet` has been deprecated and will be removed in a future version.
570
+ * FileSet: The `snowflake.ml.fileset.FileSet` has been deprecated and will be removed in a future version.
521
571
  Use [snowflake.ml.dataset.Dataset](https://docs.snowflake.com/en/developer-guide/snowflake-ml/dataset) and
522
572
  [snowflake.ml.data.DataConnector](https://docs.snowflake.com/en/developer-guide/snowpark-ml/reference/latest/api/data/snowflake.ml.data.data_connector.DataConnector)
523
573
  instead.
524
- - Registry: `ModelVersion.run` on a service would require redeploying the service once account opts into nested function.
574
+ * Registry: `ModelVersion.run` on a service would require redeploying the service once account opts into nested function.
525
575
 
526
576
  ### Bug Fixes
527
577
 
528
- - Registry: Fixed an issue that the hugging face pipeline is loaded using incorrect dtype.
529
- - Registry: Fixed an issue that only 1 row is used when infer the model signature in the modeling model.
578
+ * Registry: Fixed an issue that the hugging face pipeline is loaded using incorrect dtype.
579
+ * Registry: Fixed an issue that only 1 row is used when infer the model signature in the modeling model.
530
580
 
531
581
  ### New Features
532
582
 
533
- - Add new `snowflake.ml.jobs` preview API for running headless workloads on SPCS using
583
+ * Add new `snowflake.ml.jobs` preview API for running headless workloads on SPCS using
534
584
  [Container Runtime for ML](https://docs.snowflake.com/en/developer-guide/snowflake-ml/container-runtime-ml)
535
- - Added `guardrails` option to Cortex `complete` function, enabling
585
+ * Added `guardrails` option to Cortex `complete` function, enabling
536
586
  [Cortex Guard](https://docs.snowflake.com/en/user-guide/snowflake-cortex/llm-functions#cortex-guard) support
537
- - Model Monitoring: Expose Model Monitoring Python API by default.
587
+ * Model Monitoring: Expose Model Monitoring Python API by default.
538
588
 
539
589
  ## 1.7.3 (2025-01-08)
540
590
 
541
- - Added lowercase versions of Cortex functions, added deprecation warning to Capitalized versions.
542
- - Bumped the requirements of `fsspec` and `s3fs` to `>=2024.6.1,<2026`
543
- - Bumped the requirement of `mlflow` to `>=2.16.0, <3`
544
- - Registry: Support 500+ features for model registry
545
- - Feature Store: Add support for `cluster_by` for feature views.
591
+ * Added lowercase versions of Cortex functions, added deprecation warning to Capitalized versions.
592
+ * Bumped the requirements of `fsspec` and `s3fs` to `>=2024.6.1,<2026`
593
+ * Bumped the requirement of `mlflow` to `>=2.16.0, <3`
594
+ * Registry: Support 500+ features for model registry
595
+ * Feature Store: Add support for `cluster_by` for feature views.
546
596
 
547
597
  ### Bug Fixes
548
598
 
549
- - Registry: Fixed a bug when providing non-range index pandas DataFrame as the input to a `ModelVersion.run`.
550
- - Registry: Improved random model version name generation to prevent collisions.
551
- - Registry: Fix an issue when inferring signature or running inference with Snowpark data that has a column whose type
599
+ * Registry: Fixed a bug when providing non-range index pandas DataFrame as the input to a `ModelVersion.run`.
600
+ * Registry: Improved random model version name generation to prevent collisions.
601
+ * Registry: Fix an issue when inferring signature or running inference with Snowpark data that has a column whose type
552
602
  is `ARRAY` and contains `NULL` value.
553
- - Registry: `ModelVersion.run` now accepts fully qualified service name.
554
- - Monitoring: Fix issue in SDK with creating monitors using fully qualified names.
555
- - Registry: Fix error in log_model for any sklearn models with only data pre-processing including pre-processing only
603
+ * Registry: `ModelVersion.run` now accepts fully qualified service name.
604
+ * Monitoring: Fix issue in SDK with creating monitors using fully qualified names.
605
+ * Registry: Fix error in log_model for any sklearn models with only data pre-processing including pre-processing only
556
606
  pipeline models due to default explainability enablement.
557
607
 
558
608
  ### New Features
559
609
 
560
- - Added `user_files` argument to `Registry.log_model` for including images or any extra file with the model.
561
- - Registry: Added support for handling Hugging Face model configurations with auto-mapping functionality
562
- - DataConnector: Add new `DataConnector.from_sql()` constructor
563
- - Registry: Provided new arguments to `snowflake.ml.model.model_signature.infer_signature` method to specify rows limit
610
+ * Added `user_files` argument to `Registry.log_model` for including images or any extra file with the model.
611
+ * Registry: Added support for handling Hugging Face model configurations with auto-mapping functionality
612
+ * DataConnector: Add new `DataConnector.from_sql()` constructor
613
+ * Registry: Provided new arguments to `snowflake.ml.model.model_signature.infer_signature` method to specify rows limit
564
614
  to be used when inferring the signature.
565
615
 
566
616
  ## 1.7.2 (2024-11-21)
567
617
 
568
618
  ### Bug Fixes
569
619
 
570
- - Model Explainability: Fix issue that explain is enabled for scikit-learn pipeline
620
+ * Model Explainability: Fix issue that explain is enabled for scikit-learn pipeline
571
621
  whose task is UNKNOWN and fails later when invoked.
572
622
 
573
623
  ### New Features
574
624
 
575
- - Registry: Support asynchronous model inference service creation with the `block` option
625
+ * Registry: Support asynchronous model inference service creation with the `block` option
576
626
  in `ModelVersion.create_service()` set to True by default.
577
- - Registry: Allow specify `batch_size` when inferencing using sentence-transformers model.
627
+ * Registry: Allow specify `batch_size` when inferencing using sentence-transformers model.
578
628
 
579
629
  ## 1.7.1 (2024-11-05)
580
630
 
581
631
  ### Bug Fixes
582
632
 
583
- - Registry: Null value is now allowed in the dataframe used in model signature inference. Null values will be ignored
633
+ * Registry: Null value is now allowed in the dataframe used in model signature inference. Null values will be ignored
584
634
  and others will be used to infer the signature.
585
- - Registry: Pandas Extension DTypes (`pandas.StringDType()`, `pandas.BooleanDType()`, etc.) are now supported in model
635
+ * Registry: Pandas Extension DTypes (`pandas.StringDType()`, `pandas.BooleanDType()`, etc.) are now supported in model
586
636
  signature inference.
587
- - Registry: Null value is now allowed in the dataframe used to predict.
588
- - Data: Fix missing `snowflake.ml.data.*` module exports in wheel
589
- - Dataset: Fix missing `snowflake.ml.dataset.*` module exports in wheel.
590
- - Registry: Fix the issue that `tf_keras.Model` is not recognized as keras model when logging.
637
+ * Registry: Null value is now allowed in the dataframe used to predict.
638
+ * Data: Fix missing `snowflake.ml.data.*` module exports in wheel
639
+ * Dataset: Fix missing `snowflake.ml.dataset.*` module exports in wheel.
640
+ * Registry: Fix the issue that `tf_keras.Model` is not recognized as keras model when logging.
591
641
 
592
642
  ### New Features
593
643
 
594
- - Registry: Option to `enable_monitoring` set to False by default. This will gate access to preview features of Model Monitoring.
595
- - Model Monitoring: `show_model_monitors` Registry method. This feature is still in Private Preview.
596
- - Registry: Support `pd.Series` in input and output data.
597
- - Model Monitoring: `add_monitor` Registry method. This feature is still in Private Preview.
598
- - Model Monitoring: `resume` and `suspend` ModelMonitor. This feature is still in Private Preview.
599
- - Model Monitoring: `get_monitor` Registry method. This feature is still in Private Preview.
600
- - Model Monitoring: `delete_monitor` Registry method. This feature is still in Private Preview.
644
+ * Registry: Option to `enable_monitoring` set to False by default. This will gate access to preview features of Model Monitoring.
645
+ * Model Monitoring: `show_model_monitors` Registry method. This feature is still in Private Preview.
646
+ * Registry: Support `pd.Series` in input and output data.
647
+ * Model Monitoring: `add_monitor` Registry method. This feature is still in Private Preview.
648
+ * Model Monitoring: `resume` and `suspend` ModelMonitor. This feature is still in Private Preview.
649
+ * Model Monitoring: `get_monitor` Registry method. This feature is still in Private Preview.
650
+ * Model Monitoring: `delete_monitor` Registry method. This feature is still in Private Preview.
601
651
 
602
652
  ## 1.7.0 (10-22-2024)
603
653
 
604
654
  ### Behavior Change
605
655
 
606
- - Generic: Require python >= 3.9.
607
- - Data Connector: Update `to_torch_dataset` and `to_torch_datapipe` to add a dimension for scalar data.
656
+ * Generic: Require python >= 3.9.
657
+ * Data Connector: Update `to_torch_dataset` and `to_torch_datapipe` to add a dimension for scalar data.
608
658
  This allows for more seamless integration with PyTorch `DataLoader`, which creates batches by stacking inputs of each batch.
609
659
 
610
660
  Examples:
@@ -613,30 +663,30 @@ Examples:
613
663
  ds = connector.to_torch_dataset(shuffle=False, batch_size=3)
614
664
  ```
615
665
 
616
- - Input: "col1": [10, 11, 12]
617
- - Previous batch: array([10., 11., 12.]) with shape (3,)
618
- - New batch: array([[10.], [11.], [12.]]) with shape (3, 1)
666
+ * Input: "col1": [10, 11, 12]
667
+ * Previous batch: array([10., 11., 12.]) with shape (3,)
668
+ * New batch: array([[10.], [11.], [12.]]) with shape (3, 1)
619
669
 
620
- - Input: "col2": [[0, 100], [1, 110], [2, 200]]
621
- - Previous batch: array([[ 0, 100], [ 1, 110], [ 2, 200]]) with shape (3,2)
622
- - New batch: No change
670
+ * Input: "col2": [[0, 100], [1, 110], [2, 200]]
671
+ * Previous batch: array([[ 0, 100], [ 1, 110], [ 2, 200]]) with shape (3,2)
672
+ * New batch: No change
623
673
 
624
- - Model Registry: External access integrations are optional when creating a model inference service in
674
+ * Model Registry: External access integrations are optional when creating a model inference service in
625
675
  Snowflake >= 8.40.0.
626
- - Model Registry: Deprecate `build_external_access_integration` with `build_external_access_integrations` in
676
+ * Model Registry: Deprecate `build_external_access_integration` with `build_external_access_integrations` in
627
677
  `ModelVersion.create_service()`.
628
678
 
629
679
  ### Bug Fixes
630
680
 
631
- - Registry: Updated `log_model` API to accept both signature and sample_input_data parameters.
632
- - Feature Store: ExampleHelper uses fully qualified path for table name. change weather features aggregation from 1d to 1h.
633
- - Data Connector: Return numpy array with appropriate object type instead of list for multi-dimensional
681
+ * Registry: Updated `log_model` API to accept both signature and sample_input_data parameters.
682
+ * Feature Store: ExampleHelper uses fully qualified path for table name. change weather features aggregation from 1d to 1h.
683
+ * Data Connector: Return numpy array with appropriate object type instead of list for multi-dimensional
634
684
  data from `to_torch_dataset` and `to_torch_datapipe`
635
- - Model explainability: Incompatibility between SHAP 0.42.1 and XGB 2.1.1 resolved by using latest SHAP 0.46.0.
685
+ * Model explainability: Incompatibility between SHAP 0.42.1 and XGB 2.1.1 resolved by using latest SHAP 0.46.0.
636
686
 
637
687
  ### New Features
638
688
 
639
- - Registry: Provide pass keyworded variable length of arguments to class ModelContext. Example usage:
689
+ * Registry: Provide pass keyworded variable length of arguments to class ModelContext. Example usage:
640
690
 
641
691
  ```python
642
692
  mc = custom_model.ModelContext(
@@ -656,106 +706,106 @@ class ExamplePipelineModel(custom_model.CustomModel):
656
706
  return pd.DataFrame({'output': model_output + self.bias})
657
707
  ```
658
708
 
659
- - Model Development: Upgrade scikit-learn in UDTF backend for log_loss metric. As a result, `eps` argument is now ignored.
660
- - Data Connector: Add the option of passing a `None` sized batch to `to_torch_dataset` for better
709
+ * Model Development: Upgrade scikit-learn in UDTF backend for log_loss metric. As a result, `eps` argument is now ignored.
710
+ * Data Connector: Add the option of passing a `None` sized batch to `to_torch_dataset` for better
661
711
  interoperability with PyTorch DataLoader.
662
- - Model Registry: Support [pandas.CategoricalDtype](https://pandas.pydata.org/docs/reference/api/pandas.CategoricalDtype.html#pandas-categoricaldtype)
663
- - Limitations:
664
- - The native categorical data handling handling by XGBoost using `enable_categorical=True` is not supported.
712
+ * Model Registry: Support [pandas.CategoricalDtype](https://pandas.pydata.org/docs/reference/api/pandas.CategoricalDtype.html#pandas-categoricaldtype)
713
+ * Limitations:
714
+ * The native categorical data handling handling by XGBoost using `enable_categorical=True` is not supported.
665
715
  Instead please use [`sklearn.pipeline`](https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html)
666
716
  to preprocess the categorical datatype and log the pipeline with the XGBoost model.
667
- - Registry: It is now possible to pass `signatures` and `sample_input_data` at the same time to capture background
717
+ * Registry: It is now possible to pass `signatures` and `sample_input_data` at the same time to capture background
668
718
  data from explainablity and data lineage.
669
719
 
670
720
  ## 1.6.4 (2024-10-17)
671
721
 
672
722
  ### Bug Fixes
673
723
 
674
- - Registry: Fix an issue that leads to incident when using `ModelVersion.run` with service.
724
+ * Registry: Fix an issue that leads to incident when using `ModelVersion.run` with service.
675
725
 
676
726
  ## 1.6.3 (2024-10-07)
677
727
 
678
- - Model Registry (PrPr) has been removed.
728
+ * Model Registry (PrPr) has been removed.
679
729
 
680
730
  ### Bug Fixes
681
731
 
682
- - Registry: Fix a bug that when package whose name does not follow PEP-508 is provided when logging the model,
732
+ * Registry: Fix a bug that when package whose name does not follow PEP-508 is provided when logging the model,
683
733
  an unexpected normalization is happening.
684
- - Registry: Fix `not a valid remote uri` error when logging mlflow models.
685
- - Registry: Fix a bug that `ModelVersion.run` is called in a nested way.
686
- - Registry: Fix an issue that leads to `log_model` failure when local package version contains parts other than
734
+ * Registry: Fix `not a valid remote uri` error when logging mlflow models.
735
+ * Registry: Fix a bug that `ModelVersion.run` is called in a nested way.
736
+ * Registry: Fix an issue that leads to `log_model` failure when local package version contains parts other than
687
737
  base version.
688
- - Fix issue where `sample_weights` were not being applied to search estimators.
689
- - Model explainability: Fix bug which creates explain as a function instead of table function when enabling by default.
690
- - Model explainability: Update lightgbm binary classification to return non-json values, from customer feedback.
738
+ * Fix issue where `sample_weights` were not being applied to search estimators.
739
+ * Model explainability: Fix bug which creates explain as a function instead of table function when enabling by default.
740
+ * Model explainability: Update lightgbm binary classification to return non-json values, from customer feedback.
691
741
 
692
742
  ### New Features
693
743
 
694
- - Data: Improve `DataConnector.to_pandas()` performance when loading from Snowpark DataFrames.
695
- - Model Registry: Allow users to set a model task while using `log_model`.
696
- - Feature Store: FeatureView supports ON_CREATE or ON_SCHEDULE initialize mode.
744
+ * Data: Improve `DataConnector.to_pandas()` performance when loading from Snowpark DataFrames.
745
+ * Model Registry: Allow users to set a model task while using `log_model`.
746
+ * Feature Store: FeatureView supports ON_CREATE or ON_SCHEDULE initialize mode.
697
747
 
698
748
  ## 1.6.2 (2024-09-04)
699
749
 
700
750
  ### Bug Fixes
701
751
 
702
- - Modeling: Support XGBoost version that is larger than 2.
752
+ * Modeling: Support XGBoost version that is larger than 2.
703
753
 
704
- - Data: Fix multiple epoch iteration over `DataConnector.to_torch_datapipe()` DataPipes.
705
- - Generic: Fix a bug that when an invalid name is provided to argument where fully qualified name is expected, it will
754
+ * Data: Fix multiple epoch iteration over `DataConnector.to_torch_datapipe()` DataPipes.
755
+ * Generic: Fix a bug that when an invalid name is provided to argument where fully qualified name is expected, it will
706
756
  be parsed wrongly. Now it raises an exception correctly.
707
- - Model Explainability: Handle explanations for multiclass XGBoost classification models
708
- - Model Explainability: Workarounds and better error handling for XGB>2.1.0 not working with SHAP==0.42.1
757
+ * Model Explainability: Handle explanations for multiclass XGBoost classification models
758
+ * Model Explainability: Workarounds and better error handling for XGB>2.1.0 not working with SHAP==0.42.1
709
759
 
710
760
  ### New Features
711
761
 
712
- - Data: Add top-level exports for `DataConnector` and `DataSource` to `snowflake.ml.data`.
713
- - Data: Add native batching support via `batch_size` and `drop_last_batch` arguments to `DataConnector.to_torch_dataset()`
714
- - Feature Store: update_feature_view() supports taking feature view object as argument.
762
+ * Data: Add top-level exports for `DataConnector` and `DataSource` to `snowflake.ml.data`.
763
+ * Data: Add native batching support via `batch_size` and `drop_last_batch` arguments to `DataConnector.to_torch_dataset()`
764
+ * Feature Store: update_feature_view() supports taking feature view object as argument.
715
765
 
716
766
  ## 1.6.1 (2024-08-12)
717
767
 
718
768
  ### Bug Fixes
719
769
 
720
- - Feature Store: Support large metadata blob when generating dataset
721
- - Feature Store: Added a hidden knob in FeatureView as kargs for setting customized
770
+ * Feature Store: Support large metadata blob when generating dataset
771
+ * Feature Store: Added a hidden knob in FeatureView as kargs for setting customized
722
772
  refresh_mode
723
- - Registry: Fix an error message in Model Version `run` when `function_name` is not mentioned and model has multiple
773
+ * Registry: Fix an error message in Model Version `run` when `function_name` is not mentioned and model has multiple
724
774
  target methods.
725
- - Cortex inference: snowflake.cortex.Complete now only uses the REST API for streaming and the use_rest_api_experimental
775
+ * Cortex inference: snowflake.cortex.Complete now only uses the REST API for streaming and the use_rest_api_experimental
726
776
  is no longer needed.
727
- - Feature Store: Add a new API: FeatureView.list_columns() which list all column information.
728
- - Data: Fix `DataFrame` ingestion with `ArrowIngestor`.
777
+ * Feature Store: Add a new API: FeatureView.list_columns() which list all column information.
778
+ * Data: Fix `DataFrame` ingestion with `ArrowIngestor`.
729
779
 
730
780
  ### New Features
731
781
 
732
- - Enable `set_params` to set the parameters of the underlying sklearn estimator, if the snowflake-ml model has been fit.
733
- - Data: Add `snowflake.ml.data.ingestor_utils` module with utility functions helpful for `DataIngestor` implementations.
734
- - Data: Add new `to_torch_dataset()` connector to `DataConnector` to replace deprecated DataPipe.
735
- - Registry: Option to `enable_explainability` set to True by default for XGBoost, LightGBM and CatBoost as PuPr feature.
736
- - Registry: Option to `enable_explainability` when registering SHAP supported sklearn models.
782
+ * Enable `set_params` to set the parameters of the underlying sklearn estimator, if the snowflake-ml model has been fit.
783
+ * Data: Add `snowflake.ml.data.ingestor_utils` module with utility functions helpful for `DataIngestor` implementations.
784
+ * Data: Add new `to_torch_dataset()` connector to `DataConnector` to replace deprecated DataPipe.
785
+ * Registry: Option to `enable_explainability` set to True by default for XGBoost, LightGBM and CatBoost as PuPr feature.
786
+ * Registry: Option to `enable_explainability` when registering SHAP supported sklearn models.
737
787
 
738
788
  ## 1.6.0 (2024-07-29)
739
789
 
740
790
  ### Bug Fixes
741
791
 
742
- - Modeling: `SimpleImputer` can impute integer columns with integer values.
743
- - Registry: Fix an issue when providing a pandas Dataframe whose index is not starting from 0 as the input to
792
+ * Modeling: `SimpleImputer` can impute integer columns with integer values.
793
+ * Registry: Fix an issue when providing a pandas Dataframe whose index is not starting from 0 as the input to
744
794
  the `ModelVersion.run`.
745
795
 
746
796
  ### New Features
747
797
 
748
- - Feature Store: Add overloads to APIs accept both object and name/version. Impacted APIs include read_feature_view(),
798
+ * Feature Store: Add overloads to APIs accept both object and name/version. Impacted APIs include read_feature_view(),
749
799
  refresh_feature_view(), get_refresh_history(), resume_feature_view(), suspend_feature_view(), delete_feature_view().
750
- - Feature Store: Add docstring inline examples for all public APIs.
751
- - Feature Store: Add new utility class `ExampleHelper` to help with load source data to simplify public notebooks.
752
- - Registry: Option to `enable_explainability` when registering XGBoost models as a pre-PuPr feature.
753
- - Feature Store: add new API `update_entity()`.
754
- - Registry: Option to `enable_explainability` when registering Catboost models as a pre-PuPr feature.
755
- - Feature Store: Add new argument warehouse to FeatureView constructor to overwrite the default warehouse. Also add
800
+ * Feature Store: Add docstring inline examples for all public APIs.
801
+ * Feature Store: Add new utility class `ExampleHelper` to help with load source data to simplify public notebooks.
802
+ * Registry: Option to `enable_explainability` when registering XGBoost models as a pre-PuPr feature.
803
+ * Feature Store: add new API `update_entity()`.
804
+ * Registry: Option to `enable_explainability` when registering Catboost models as a pre-PuPr feature.
805
+ * Feature Store: Add new argument warehouse to FeatureView constructor to overwrite the default warehouse. Also add
756
806
  a new column 'warehouse' to the output of list_feature_views().
757
- - Registry: Add support for logging model from a model version.
758
- - Modeling: Distributed Hyperparameter Optimization now announce GA refresh version. The latest memory efficient version
807
+ * Registry: Add support for logging model from a model version.
808
+ * Modeling: Distributed Hyperparameter Optimization now announce GA refresh version. The latest memory efficient version
759
809
  will not have the 10GB training limitation for dataset any more. To turn off, please run
760
810
  `
761
811
  from snowflake.ml.modeling._internal.snowpark_implementations import (
@@ -763,106 +813,106 @@ data from explainablity and data lineage.
763
813
  )
764
814
  distributed_hpo_trainer.ENABLE_EFFICIENT_MEMORY_USAGE = False
765
815
  `
766
- - Registry: Option to `enable_explainability` when registering LightGBM models as a pre-PuPr feature.
767
- - Data: Add new `snowflake.ml.data` preview module which contains data reading utilities like `DataConnector`
768
- - `DataConnector` provides efficient connectors from Snowpark `DataFrame`
816
+ * Registry: Option to `enable_explainability` when registering LightGBM models as a pre-PuPr feature.
817
+ * Data: Add new `snowflake.ml.data` preview module which contains data reading utilities like `DataConnector`
818
+ * `DataConnector` provides efficient connectors from Snowpark `DataFrame`
769
819
  and Snowpark ML `Dataset` to external frameworks like PyTorch, TensorFlow, and Pandas. Create `DataConnector`
770
820
  instances using the classmethod constructors `DataConnector.from_dataset()` and `DataConnector.from_dataframe()`.
771
- - Data: Add new `DataConnector.from_sources()` classmethod constructor for constructing from `DataSource` objects.
772
- - Data: Add new `ingestor_class` arg to `DataConnector` classmethod constructors for easier `DataIngestor` injection.
773
- - Dataset: `DatasetReader` now subclasses new `DataConnector` class.
774
- - Add optional `limit` arg to `DatasetReader.to_pandas()`
821
+ * Data: Add new `DataConnector.from_sources()` classmethod constructor for constructing from `DataSource` objects.
822
+ * Data: Add new `ingestor_class` arg to `DataConnector` classmethod constructors for easier `DataIngestor` injection.
823
+ * Dataset: `DatasetReader` now subclasses new `DataConnector` class.
824
+ * Add optional `limit` arg to `DatasetReader.to_pandas()`
775
825
 
776
826
  ### Behavior Changes
777
827
 
778
- - Feature Store: change some positional parameters to keyword arguments in following APIs:
779
- - Entity(): desc.
780
- - FeatureView(): timestamp_col, refresh_freq, desc.
781
- - FeatureStore(): creation_mode.
782
- - update_entity(): desc.
783
- - register_feature_view(): block, overwrite.
784
- - list_feature_views(): entity_name, feature_view_name.
785
- - get_refresh_history(): verbose.
786
- - retrieve_feature_values(): spine_timestamp_col, exclude_columns, include_feature_view_timestamp_col.
787
- - generate_training_set(): save_as, spine_timestamp_col, spine_label_cols, exclude_columns,
828
+ * Feature Store: change some positional parameters to keyword arguments in following APIs:
829
+ * Entity(): desc.
830
+ * FeatureView(): timestamp_col, refresh_freq, desc.
831
+ * FeatureStore(): creation_mode.
832
+ * update_entity(): desc.
833
+ * register_feature_view(): block, overwrite.
834
+ * list_feature_views(): entity_name, feature_view_name.
835
+ * get_refresh_history(): verbose.
836
+ * retrieve_feature_values(): spine_timestamp_col, exclude_columns, include_feature_view_timestamp_col.
837
+ * generate_training_set(): save_as, spine_timestamp_col, spine_label_cols, exclude_columns,
788
838
  include_feature_view_timestamp_col.
789
- - generate_dataset(): version, spine_timestamp_col, spine_label_cols, exclude_columns,
839
+ * generate_dataset(): version, spine_timestamp_col, spine_label_cols, exclude_columns,
790
840
  include_feature_view_timestamp_col, desc, output_type.
791
841
 
792
842
  ## 1.5.4 (2024-07-11)
793
843
 
794
844
  ### Bug Fixes
795
845
 
796
- - Model Registry (PrPr): Fix 401 Unauthorized issue when deploying model to SPCS.
797
- - Feature Store: Downgrades exceptions to warnings for few property setters in feature view. Now you can set
846
+ * Model Registry (PrPr): Fix 401 Unauthorized issue when deploying model to SPCS.
847
+ * Feature Store: Downgrades exceptions to warnings for few property setters in feature view. Now you can set
798
848
  desc, refresh_freq and warehouse for draft feature views.
799
- - Modeling: Fix an issue with calling `OrdinalEncoder` with `categories` as a dictionary and a pandas DataFrame
800
- - Modeling: Fix an issue with calling `OneHotEncoder` with `categories` as a dictionary and a pandas DataFrame
849
+ * Modeling: Fix an issue with calling `OrdinalEncoder` with `categories` as a dictionary and a pandas DataFrame
850
+ * Modeling: Fix an issue with calling `OneHotEncoder` with `categories` as a dictionary and a pandas DataFrame
801
851
 
802
852
  ### New Features
803
853
 
804
- - Registry: Allow overriding `device_map` and `device` when loading huggingface pipeline models.
805
- - Registry: Add `set_alias` method to `ModelVersion` instance to set an alias to model version.
806
- - Registry: Add `unset_alias` method to `ModelVersion` instance to unset an alias to model version.
807
- - Registry: Add `partitioned_inference_api` allowing users to create partitioned inference functions in registered
854
+ * Registry: Allow overriding `device_map` and `device` when loading huggingface pipeline models.
855
+ * Registry: Add `set_alias` method to `ModelVersion` instance to set an alias to model version.
856
+ * Registry: Add `unset_alias` method to `ModelVersion` instance to unset an alias to model version.
857
+ * Registry: Add `partitioned_inference_api` allowing users to create partitioned inference functions in registered
808
858
  models. Enable model inference methods with table functions with vectorized process methods in registered models.
809
- - Feature Store: add 3 more columns: refresh_freq, refresh_mode and scheduling_state to the result of
859
+ * Feature Store: add 3 more columns: refresh_freq, refresh_mode and scheduling_state to the result of
810
860
  `list_feature_views()`.
811
- - Feature Store: `update_feature_view()` supports updating description.
812
- - Feature Store: add new API `refresh_feature_view()`.
813
- - Feature Store: add new API `get_refresh_history()`.
814
- - Feature Store: Add `generate_training_set()` API for generating table-backed feature snapshots.
815
- - Feature Store: Add `DeprecationWarning` for `generate_dataset(..., output_type="table")`.
816
- - Feature Store: `update_feature_view()` supports updating description.
817
- - Feature Store: add new API `refresh_feature_view()`.
818
- - Feature Store: add new API `get_refresh_history()`.
819
- - Model Development: OrdinalEncoder supports a list of array-likes for `categories` argument.
820
- - Model Development: OneHotEncoder supports a list of array-likes for `categories` argument.
861
+ * Feature Store: `update_feature_view()` supports updating description.
862
+ * Feature Store: add new API `refresh_feature_view()`.
863
+ * Feature Store: add new API `get_refresh_history()`.
864
+ * Feature Store: Add `generate_training_set()` API for generating table-backed feature snapshots.
865
+ * Feature Store: Add `DeprecationWarning` for `generate_dataset(..., output_type="table")`.
866
+ * Feature Store: `update_feature_view()` supports updating description.
867
+ * Feature Store: add new API `refresh_feature_view()`.
868
+ * Feature Store: add new API `get_refresh_history()`.
869
+ * Model Development: OrdinalEncoder supports a list of array-likes for `categories` argument.
870
+ * Model Development: OneHotEncoder supports a list of array-likes for `categories` argument.
821
871
 
822
872
  ## 1.5.3 (06-17-2024)
823
873
 
824
874
  ### Bug Fixes
825
875
 
826
- - Modeling: Fix an issue causing lineage information to be missing for
876
+ * Modeling: Fix an issue causing lineage information to be missing for
827
877
  `Pipeline`, `GridSearchCV` , `SimpleImputer`, and `RandomizedSearchCV`
828
- - Registry: Fix an issue that leads to incorrect result when using pandas Dataframe with over 100, 000 rows as the input
878
+ * Registry: Fix an issue that leads to incorrect result when using pandas Dataframe with over 100, 000 rows as the input
829
879
  of `ModelVersion.run` method in Stored Procedure.
830
880
 
831
881
  ### New Features
832
882
 
833
- - Registry: Add support for TIMESTAMP_NTZ model signature data type, allowing timestamp input and output.
834
- - Dataset: Add `DatasetVersion.label_cols` and `DatasetVersion.exclude_cols` properties.
883
+ * Registry: Add support for TIMESTAMP_NTZ model signature data type, allowing timestamp input and output.
884
+ * Dataset: Add `DatasetVersion.label_cols` and `DatasetVersion.exclude_cols` properties.
835
885
 
836
886
  ## 1.5.2 (06-10-2024)
837
887
 
838
888
  ### Bug Fixes
839
889
 
840
- - Registry: Fix an issue that leads to unable to log model in store procedure.
841
- - Modeling: Quick fix `import snowflake.ml.modeling.parameters.enable_anonymous_sproc` cannot be imported due to package
890
+ * Registry: Fix an issue that leads to unable to log model in store procedure.
891
+ * Modeling: Quick fix `import snowflake.ml.modeling.parameters.enable_anonymous_sproc` cannot be imported due to package
842
892
  dependency error.
843
893
 
844
894
  ## 1.5.1 (05-22-2024)
845
895
 
846
896
  ### Bug Fixes
847
897
 
848
- - Dataset: Fix `snowflake.connector.errors.DataError: Query Result did not match expected number of rows` when accessing
898
+ * Dataset: Fix `snowflake.connector.errors.DataError: Query Result did not match expected number of rows` when accessing
849
899
  DatasetVersion properties when case insensitive `SHOW VERSIONS IN DATASET` check matches multiple version names.
850
- - Dataset: Fix bug in SnowFS bulk file read when used with DuckDB
851
- - Registry: Fixed a bug when loading old models.
852
- - Lineage: Fix Dataset source lineage propagation through `snowpark.DataFrame` transformations
900
+ * Dataset: Fix bug in SnowFS bulk file read when used with DuckDB
901
+ * Registry: Fixed a bug when loading old models.
902
+ * Lineage: Fix Dataset source lineage propagation through `snowpark.DataFrame` transformations
853
903
 
854
904
  ### Behavior Changes
855
905
 
856
- - Feature Store: convert clear() into a private function. Also make it deletes feature views and entities only.
857
- - Feature Store: Use NULL as default value for timestamp tag value.
906
+ * Feature Store: convert clear() into a private function. Also make it deletes feature views and entities only.
907
+ * Feature Store: Use NULL as default value for timestamp tag value.
858
908
 
859
909
  ### New Features
860
910
 
861
- - Feature Store: Added new `snowflake.ml.feature_store.setup_feature_store()` API to assist Feature Store RBAC setup.
862
- - Feature Store: Add `output_type` argument to `FeatureStore.generate_dataset()` to allow generating data snapshots
911
+ * Feature Store: Added new `snowflake.ml.feature_store.setup_feature_store()` API to assist Feature Store RBAC setup.
912
+ * Feature Store: Add `output_type` argument to `FeatureStore.generate_dataset()` to allow generating data snapshots
863
913
  as Datasets or Tables.
864
- - Registry: `log_model`, `get_model`, `delete_model` now supports fully qualified name.
865
- - Modeling: Supports anonymous stored procedure during fit calls so that modeling would not require sufficient
914
+ * Registry: `log_model`, `get_model`, `delete_model` now supports fully qualified name.
915
+ * Modeling: Supports anonymous stored procedure during fit calls so that modeling would not require sufficient
866
916
  permissions to operate on schema. Please call
867
917
  `import snowflake.ml.modeling.parameters.enable_anonymous_sproc # noqa: F401`
868
918
 
@@ -870,11 +920,11 @@ data from explainablity and data lineage.
870
920
 
871
921
  ### Bug Fixes
872
922
 
873
- - Registry: Fix invalid parameter 'SHOW_MODEL_DETAILS_IN_SHOW_VERSIONS_IN_MODEL' error.
923
+ * Registry: Fix invalid parameter 'SHOW_MODEL_DETAILS_IN_SHOW_VERSIONS_IN_MODEL' error.
874
924
 
875
925
  ### Behavior Changes
876
926
 
877
- - Model Development: The behavior of `fit_transform` for all estimators is changed.
927
+ * Model Development: The behavior of `fit_transform` for all estimators is changed.
878
928
  Firstly, it will cover all the estimator that contains this function,
879
929
  secondly, the output would be the union of pandas DataFrame and snowpark DataFrame.
880
930
 
@@ -882,167 +932,167 @@ data from explainablity and data lineage.
882
932
 
883
933
  `snowflake.ml.registry.artifact` and related `snowflake.ml.model_registry.ModelRegistry` APIs have been removed.
884
934
 
885
- - Removed `snowflake.ml.registry.artifact` module.
886
- - Removed `ModelRegistry.log_artifact()`, `ModelRegistry.list_artifacts()`, `ModelRegistry.get_artifact()`
887
- - Removed `artifacts` argument from `ModelRegistry.log_model()`
935
+ * Removed `snowflake.ml.registry.artifact` module.
936
+ * Removed `ModelRegistry.log_artifact()`, `ModelRegistry.list_artifacts()`, `ModelRegistry.get_artifact()`
937
+ * Removed `artifacts` argument from `ModelRegistry.log_model()`
888
938
 
889
939
  #### Dataset (PrPr)
890
940
 
891
941
  `snowflake.ml.dataset.Dataset` has been redesigned to be backed by Snowflake Dataset entities.
892
942
 
893
- - New `Dataset`s can be created with `Dataset.create()` and existing `Dataset`s may be loaded
943
+ * New `Dataset`s can be created with `Dataset.create()` and existing `Dataset`s may be loaded
894
944
  with `Dataset.load()`.
895
- - `Dataset`s now maintain an immutable `selected_version` state. The `Dataset.create_version()` and
945
+ * `Dataset`s now maintain an immutable `selected_version` state. The `Dataset.create_version()` and
896
946
  `Dataset.load_version()` APIs return new `Dataset` objects with the requested `selected_version` state.
897
- - Added `dataset.create_from_dataframe()` and `dataset.load_dataset()` convenience APIs as a shortcut
947
+ * Added `dataset.create_from_dataframe()` and `dataset.load_dataset()` convenience APIs as a shortcut
898
948
  to creating and loading `Dataset`s with a pre-selected version.
899
- - `Dataset.materialized_table` and `Dataset.snapshot_table` no longer exist with `Dataset.fully_qualified_name`
949
+ * `Dataset.materialized_table` and `Dataset.snapshot_table` no longer exist with `Dataset.fully_qualified_name`
900
950
  as the closest equivalent.
901
- - `Dataset.df` no longer exists. Instead, use `DatasetReader.read.to_snowpark_dataframe()`.
902
- - `Dataset.owner` has been moved to `Dataset.selected_version.owner`
903
- - `Dataset.desc` has been moved to `DatasetVersion.selected_version.comment`
904
- - `Dataset.timestamp_col`, `Dataset.label_cols`, `Dataset.feature_store_metadata`, and
951
+ * `Dataset.df` no longer exists. Instead, use `DatasetReader.read.to_snowpark_dataframe()`.
952
+ * `Dataset.owner` has been moved to `Dataset.selected_version.owner`
953
+ * `Dataset.desc` has been moved to `DatasetVersion.selected_version.comment`
954
+ * `Dataset.timestamp_col`, `Dataset.label_cols`, `Dataset.feature_store_metadata`, and
905
955
  `Dataset.schema_version` have been removed.
906
956
 
907
957
  #### Feature Store (PrPr)
908
958
 
909
- - `FeatureStore.generate_dataset` argument list has been changed to match the new
959
+ * `FeatureStore.generate_dataset` argument list has been changed to match the new
910
960
  `snowflake.ml.dataset.Dataset` definition
911
961
 
912
- - `materialized_table` has been removed and replaced with `name` and `version`.
913
- - `name` moved to first positional argument
914
- - `save_mode` has been removed as `merge` behavior is no longer supported. The new behavior is always `errorifexists`.
962
+ * `materialized_table` has been removed and replaced with `name` and `version`.
963
+ * `name` moved to first positional argument
964
+ * `save_mode` has been removed as `merge` behavior is no longer supported. The new behavior is always `errorifexists`.
915
965
 
916
- - Change feature view version type from str to `FeatureViewVersion`. It is a restricted string literal.
966
+ * Change feature view version type from str to `FeatureViewVersion`. It is a restricted string literal.
917
967
 
918
- - Remove as_dataframe arg from FeatureStore.list_feature_views(), now always returns result as DataFrame.
968
+ * Remove as_dataframe arg from FeatureStore.list_feature_views(), now always returns result as DataFrame.
919
969
 
920
- - Combines few metadata tags into a new tag: SNOWML_FEATURE_VIEW_METADATA. This will make previously created feature views
970
+ * Combines few metadata tags into a new tag: SNOWML_FEATURE_VIEW_METADATA. This will make previously created feature views
921
971
  not readable by new SDK.
922
972
 
923
973
  ### New Features
924
974
 
925
- - Registry: Add `export` method to `ModelVersion` instance to export model files.
926
- - Registry: Add `load` method to `ModelVersion` instance to load the underlying object from the model.
927
- - Registry: Add `Model.rename` method to `Model` instance to rename or move a model.
975
+ * Registry: Add `export` method to `ModelVersion` instance to export model files.
976
+ * Registry: Add `load` method to `ModelVersion` instance to load the underlying object from the model.
977
+ * Registry: Add `Model.rename` method to `Model` instance to rename or move a model.
928
978
 
929
979
  #### Dataset (PrPr)
930
980
 
931
- - Added Snowpark DataFrame integration using `Dataset.read.to_snowpark_dataframe()`
932
- - Added Pandas DataFrame integration using `Dataset.read.to_pandas()`
933
- - Added PyTorch and TensorFlow integrations using `Dataset.read.to_torch_datapipe()`
981
+ * Added Snowpark DataFrame integration using `Dataset.read.to_snowpark_dataframe()`
982
+ * Added Pandas DataFrame integration using `Dataset.read.to_pandas()`
983
+ * Added PyTorch and TensorFlow integrations using `Dataset.read.to_torch_datapipe()`
934
984
  and `Dataset.read.to_tf_dataset()` respectively.
935
- - Added `fsspec` style file integration using `Dataset.read.files()` and `Dataset.read.filesystem()`
985
+ * Added `fsspec` style file integration using `Dataset.read.files()` and `Dataset.read.filesystem()`
936
986
 
937
987
  #### Feature Store
938
988
 
939
- - use new tag_reference_internal to speed up metadata lookup.
989
+ * use new tag_reference_internal to speed up metadata lookup.
940
990
 
941
991
  ## 1.4.1 (2024-04-18)
942
992
 
943
993
  ### New Features
944
994
 
945
- - Registry: Add support for `catboost` model (`catboost.CatBoostClassifier`, `catboost.CatBoostRegressor`).
946
- - Registry: Add support for `lightgbm` model (`lightgbm.Booster`, `lightgbm.LightGBMClassifier`, `lightgbm.LightGBMRegressor`).
995
+ * Registry: Add support for `catboost` model (`catboost.CatBoostClassifier`, `catboost.CatBoostRegressor`).
996
+ * Registry: Add support for `lightgbm` model (`lightgbm.Booster`, `lightgbm.LightGBMClassifier`, `lightgbm.LightGBMRegressor`).
947
997
 
948
998
  ### Bug Fixes
949
999
 
950
- - Registry: Fix a bug that leads to relax_version option is not working.
1000
+ * Registry: Fix a bug that leads to relax_version option is not working.
951
1001
 
952
1002
  ### Behavior changes
953
1003
 
954
- - Feature Store: update_feature_view takes refresh_freq and warehouse as argument.
1004
+ * Feature Store: update_feature_view takes refresh_freq and warehouse as argument.
955
1005
 
956
1006
  ## 1.4.0 (2024-04-08)
957
1007
 
958
1008
  ### Bug Fixes
959
1009
 
960
- - Registry: Fix a bug when multiple models are being called from the same query, models other than the first one will
1010
+ * Registry: Fix a bug when multiple models are being called from the same query, models other than the first one will
961
1011
  have incorrect result. This fix only works for newly logged model.
962
- - Modeling: When registering a model, only method(s) that is mentioned in `save_model` would be added to model signature
1012
+ * Modeling: When registering a model, only method(s) that is mentioned in `save_model` would be added to model signature
963
1013
  in SnowML models.
964
- - Modeling: Fix a bug that when n_jobs is not 1, model cannot execute methods such as
1014
+ * Modeling: Fix a bug that when n_jobs is not 1, model cannot execute methods such as
965
1015
  predict, predict_log_proba, and other batch inference methods. The n_jobs would automatically
966
1016
  set to 1 because vectorized udf currently doesn't support joblib parallel backend.
967
- - Modeling: Fix a bug that batch inference methods cannot infer the datatype when the first row of data contains NULL.
968
- - Modeling: Matches Distributed HPO output column names with the snowflake identifier.
969
- - Modeling: Relax package versions for all Distributed HPO methods if the installed version
1017
+ * Modeling: Fix a bug that batch inference methods cannot infer the datatype when the first row of data contains NULL.
1018
+ * Modeling: Matches Distributed HPO output column names with the snowflake identifier.
1019
+ * Modeling: Relax package versions for all Distributed HPO methods if the installed version
970
1020
  is not available in the Snowflake conda channel
971
- - Modeling: Add sklearn as required dependency for LightGBM package.
1021
+ * Modeling: Add sklearn as required dependency for LightGBM package.
972
1022
 
973
1023
  ### Behavior Changes
974
1024
 
975
- - Registry: `apply` method is no longer by default logged when logging a xgboost model. If that is required, it could
1025
+ * Registry: `apply` method is no longer by default logged when logging a xgboost model. If that is required, it could
976
1026
  be specified manually when logging the model by `log_model(..., options={"target_methods": ["apply", ...]})`.
977
- - Feature Store: register_entity returns an entity object.
978
- - Feature Store: register_feature_view `block=true` becomes default.
1027
+ * Feature Store: register_entity returns an entity object.
1028
+ * Feature Store: register_feature_view `block=true` becomes default.
979
1029
 
980
1030
  ### New Features
981
1031
 
982
- - Registry: Add support for `sentence-transformers` model (`sentence_transformers.SentenceTransformer`).
983
- - Registry: Now version name is no longer required when logging a model. If not provided, a random human readable ID
1032
+ * Registry: Add support for `sentence-transformers` model (`sentence_transformers.SentenceTransformer`).
1033
+ * Registry: Now version name is no longer required when logging a model. If not provided, a random human readable ID
984
1034
  will be generated.
985
1035
 
986
1036
  ## 1.3.1 (2024-03-21)
987
1037
 
988
1038
  ### New Features
989
1039
 
990
- - FileSet: `snowflake.ml.fileset.sfcfs.SFFileSystem` can now be used in UDFs and stored procedures.
1040
+ * FileSet: `snowflake.ml.fileset.sfcfs.SFFileSystem` can now be used in UDFs and stored procedures.
991
1041
 
992
1042
  ## 1.3.0 (2024-03-12)
993
1043
 
994
1044
  ### Bug Fixes
995
1045
 
996
- - Registry: Fix a bug that leads to module in `code_paths` when `log_model` cannot be correctly imported.
997
- - Registry: Fix incorrect error message when validating input Snowpark DataFrame with array feature.
998
- - Model Registry: Fix an issue when deploying a model to SPCS that some files do not have proper permission.
999
- - Model Development: Relax package versions for all inference methods if the installed version
1046
+ * Registry: Fix a bug that leads to module in `code_paths` when `log_model` cannot be correctly imported.
1047
+ * Registry: Fix incorrect error message when validating input Snowpark DataFrame with array feature.
1048
+ * Model Registry: Fix an issue when deploying a model to SPCS that some files do not have proper permission.
1049
+ * Model Development: Relax package versions for all inference methods if the installed version
1000
1050
  is not available in the Snowflake conda channel
1001
1051
 
1002
1052
  ### Behavior Changes
1003
1053
 
1004
- - Registry: When running the method of a model, the value range based input validation to avoid input from overflowing
1054
+ * Registry: When running the method of a model, the value range based input validation to avoid input from overflowing
1005
1055
  is now optional rather than enforced, this should improve the performance and should not lead to problem for most
1006
1056
  kinds of model. If you want to enable this check as previous, specify `strict_input_validation=True` when
1007
1057
  calling `run`.
1008
- - Registry: By default `relax_version=True` when logging a model instead of using the specific local dependency versions.
1058
+ * Registry: By default `relax_version=True` when logging a model instead of using the specific local dependency versions.
1009
1059
  This improves dependency versioning by using versions available in Snowflake. To switch back to the previous behavior
1010
1060
  and use specific local dependency versions, specify `relax_version=False` when calling `log_model`.
1011
- - Model Development: The behavior of `fit_predict` for all estimators is changed.
1061
+ * Model Development: The behavior of `fit_predict` for all estimators is changed.
1012
1062
  Firstly, it will cover all the estimator that contains this function,
1013
1063
  secondly, the output would be the union of pandas DataFrame and snowpark DataFrame.
1014
1064
 
1015
1065
  ### New Features
1016
1066
 
1017
- - FileSet: `snowflake.ml.fileset.sfcfs.SFFileSystem` can now be serialized with `pickle`.
1067
+ * FileSet: `snowflake.ml.fileset.sfcfs.SFFileSystem` can now be serialized with `pickle`.
1018
1068
 
1019
1069
  ## 1.2.3 (2024-02-26)
1020
1070
 
1021
1071
  ### Bug Fixes
1022
1072
 
1023
- - Registry: Now when providing Decimal Type column to a DOUBLE or FLOAT feature will not error out but auto cast with
1073
+ * Registry: Now when providing Decimal Type column to a DOUBLE or FLOAT feature will not error out but auto cast with
1024
1074
  warnings.
1025
- - Registry: Improve the error message when specifying currently unsupported `pip_requirements` argument.
1026
- - Model Development: Fix precision_recall_fscore_support incorrect results when `average="samples"`.
1027
- - Model Registry: Fix an issue that leads to description, metrics or tags are not correctly returned in newly created
1075
+ * Registry: Improve the error message when specifying currently unsupported `pip_requirements` argument.
1076
+ * Model Development: Fix precision_recall_fscore_support incorrect results when `average="samples"`.
1077
+ * Model Registry: Fix an issue that leads to description, metrics or tags are not correctly returned in newly created
1028
1078
  Model Registry (PrPr) due to Snowflake BCR [2024_01](https://docs.snowflake.com/en/release-notes/bcr-bundles/2024_01/bcr-1483)
1029
1079
 
1030
1080
  ### Behavior Changes
1031
1081
 
1032
- - Feature Store: `FeatureStore.suspend_feature_view` and `FeatureStore.resume_feature_view` doesn't mutate input feature
1082
+ * Feature Store: `FeatureStore.suspend_feature_view` and `FeatureStore.resume_feature_view` doesn't mutate input feature
1033
1083
  view argument any more. The updated status only reflected in the returned feature view object.
1034
1084
 
1035
1085
  ### New Features
1036
1086
 
1037
- - Model Development: support `score_samples` method for all the classes, including Pipeline,
1087
+ * Model Development: support `score_samples` method for all the classes, including Pipeline,
1038
1088
  GridSearchCV, RandomizedSearchCV, PCA, IsolationForest, ...
1039
- - Registry: Support deleting a version of a model.
1089
+ * Registry: Support deleting a version of a model.
1040
1090
 
1041
1091
  ## 1.2.2 (2024-02-13)
1042
1092
 
1043
1093
  ### New Features
1044
1094
 
1045
- - Model Registry: Support providing external access integrations when deploying a model to SPCS. This will help and be
1095
+ * Model Registry: Support providing external access integrations when deploying a model to SPCS. This will help and be
1046
1096
  required to make sure the deploying process work as long as SPCS will by default deny all network connections. The
1047
1097
  following endpoints must be allowed to make deployment work: docker.com:80, docker.com:443, anaconda.com:80,
1048
1098
  anaconda.com:443, anaconda.org:80, anaconda.org:443, pypi.org:80, pypi.org:443. If you are using
@@ -1053,30 +1103,30 @@ not readable by new SDK.
1053
1103
 
1054
1104
  ### New Features
1055
1105
 
1056
- - Model Development: Infers output column data type for transformers when possible.
1057
- - Registry: `relax_version` option is available in the `options` argument when logging the model.
1106
+ * Model Development: Infers output column data type for transformers when possible.
1107
+ * Registry: `relax_version` option is available in the `options` argument when logging the model.
1058
1108
 
1059
1109
  ## 1.2.0 (2024-01-11)
1060
1110
 
1061
1111
  ### Bug Fixes
1062
1112
 
1063
- - Model Registry: Fix "XGBoost version not compiled with GPU support" error when running CPU inference against open-source
1113
+ * Model Registry: Fix "XGBoost version not compiled with GPU support" error when running CPU inference against open-source
1064
1114
  XGBoost models deployed to SPCS.
1065
- - Model Registry: Fix model deployment to SPCS on Windows machines.
1115
+ * Model Registry: Fix model deployment to SPCS on Windows machines.
1066
1116
 
1067
1117
  ### New Features
1068
1118
 
1069
- - Model Development: Introduced XGBoost external memory training feature. This feature enables training XGBoost models
1119
+ * Model Development: Introduced XGBoost external memory training feature. This feature enables training XGBoost models
1070
1120
  on large datasets that don't fit into memory.
1071
- - Registry: New Registry class named `snowflake.ml.registry.Registry` providing similar APIs as the old one but works
1121
+ * Registry: New Registry class named `snowflake.ml.registry.Registry` providing similar APIs as the old one but works
1072
1122
  with new MODEL object in Snowflake SQL. Also, we are providing`snowflake.ml.model.Model` and
1073
1123
  `snowflake.ml.model.ModelVersion` to represent a model and a specific version of a model.
1074
- - Model Development: Add support for `fit_predict` method in `AgglomerativeClustering`, `DBSCAN`, and `OPTICS` classes;
1075
- - Model Development: Add support for `fit_transform` method in `MDS`, `SpectralEmbedding` and `TSNE` class.
1124
+ * Model Development: Add support for `fit_predict` method in `AgglomerativeClustering`, `DBSCAN`, and `OPTICS` classes;
1125
+ * Model Development: Add support for `fit_transform` method in `MDS`, `SpectralEmbedding` and `TSNE` class.
1076
1126
 
1077
1127
  ### Additional Notes
1078
1128
 
1079
- - Model Registry: The `snowflake.ml.registry.model_registry.ModelRegistry` has been deprecated starting from version
1129
+ * Model Registry: The `snowflake.ml.registry.model_registry.ModelRegistry` has been deprecated starting from version
1080
1130
  1.2.0. It will stay in the Private Preview phase. For future implementations, kindly utilize
1081
1131
  `snowflake.ml.registry.Registry`, except when specifically required. The old model registry will be removed once all
1082
1132
  its primary functionalities are fully integrated into the new registry.
@@ -1085,30 +1135,30 @@ not readable by new SDK.
1085
1135
 
1086
1136
  ### Bug Fixes
1087
1137
 
1088
- - Generic: Fix the issue that stack trace is hidden by telemetry unexpectedly.
1089
- - Model Development: Execute model signature inference without materializing full dataframe in memory.
1090
- - Model Registry: Fix occasional 'snowflake-ml-python library does not exist' error when deploying to SPCS.
1138
+ * Generic: Fix the issue that stack trace is hidden by telemetry unexpectedly.
1139
+ * Model Development: Execute model signature inference without materializing full dataframe in memory.
1140
+ * Model Registry: Fix occasional 'snowflake-ml-python library does not exist' error when deploying to SPCS.
1091
1141
 
1092
1142
  ### Behavior Changes
1093
1143
 
1094
- - Model Registry: When calling `predict` with Snowpark DataFrame, both inferred or normalized column names are accepted.
1095
- - Model Registry: When logging a Snowpark ML Modeling Model, sample input data or manually provided signature will be
1144
+ * Model Registry: When calling `predict` with Snowpark DataFrame, both inferred or normalized column names are accepted.
1145
+ * Model Registry: When logging a Snowpark ML Modeling Model, sample input data or manually provided signature will be
1096
1146
  ignored since they are not necessary.
1097
1147
 
1098
1148
  ### New Features
1099
1149
 
1100
- - Model Development: SQL implementation of binary `precision_score` metric.
1150
+ * Model Development: SQL implementation of binary `precision_score` metric.
1101
1151
 
1102
1152
  ## 1.1.1 (2023-12-05)
1103
1153
 
1104
1154
  ### Bug Fixes
1105
1155
 
1106
- - Model Registry: The `predict` target method on registered models is now compatible with unsupervised estimators.
1107
- - Model Development: Fix confusion_matrix incorrect results when the row number cannot be divided by the batch size.
1156
+ * Model Registry: The `predict` target method on registered models is now compatible with unsupervised estimators.
1157
+ * Model Development: Fix confusion_matrix incorrect results when the row number cannot be divided by the batch size.
1108
1158
 
1109
1159
  ### New Features
1110
1160
 
1111
- - Introduced passthrough_col param in Modeling API. This new param is helpful in scenarios
1161
+ * Introduced passthrough_col param in Modeling API. This new param is helpful in scenarios
1112
1162
  requiring automatic input_cols inference, but need to avoid using specific
1113
1163
  columns, like index columns, during training or inference.
1114
1164
 
@@ -1116,165 +1166,165 @@ not readable by new SDK.
1116
1166
 
1117
1167
  ### Bug Fixes
1118
1168
 
1119
- - Model Registry: Fix panda dataframe input not handling first row properly.
1120
- - Model Development: OrdinalEncoder and LabelEncoder output_columns do not need to be valid snowflake identifiers. They
1169
+ * Model Registry: Fix panda dataframe input not handling first row properly.
1170
+ * Model Development: OrdinalEncoder and LabelEncoder output_columns do not need to be valid snowflake identifiers. They
1121
1171
  would previously be excluded if the normalized name did not match the name specified in output_columns.
1122
1172
 
1123
1173
  ### New Features
1124
1174
 
1125
- - Model Registry: Add support for invoking public endpoint on SPCS service, by providing a "enable_ingress" SPCS
1175
+ * Model Registry: Add support for invoking public endpoint on SPCS service, by providing a "enable_ingress" SPCS
1126
1176
  deployment option.
1127
- - Model Development: Add support for distributed HPO - GridSearchCV and RandomizedSearchCV execution will be
1177
+ * Model Development: Add support for distributed HPO - GridSearchCV and RandomizedSearchCV execution will be
1128
1178
  distributed on multi-node warehouses.
1129
1179
 
1130
1180
  ## 1.0.12 (2023-11-13)
1131
1181
 
1132
1182
  ### Bug Fixes
1133
1183
 
1134
- - Model Registry: Fix regression issue that container logging is not shown during model deployment to SPCS.
1135
- - Model Development: Enhance the column capacity of OrdinalEncoder.
1136
- - Model Registry: Fix unbound `batch_size` error when deploying a model other than Hugging Face Pipeline
1184
+ * Model Registry: Fix regression issue that container logging is not shown during model deployment to SPCS.
1185
+ * Model Development: Enhance the column capacity of OrdinalEncoder.
1186
+ * Model Registry: Fix unbound `batch_size` error when deploying a model other than Hugging Face Pipeline
1137
1187
  and LLM with GPU on SPCS.
1138
1188
 
1139
1189
  ### Behavior Changes
1140
1190
 
1141
- - Model Registry: Raise early error when deploying to SPCS with db/schema that starts with underscore.
1142
- - Model Registry: `conda-forge` channel is now automatically added to channel lists when deploying to SPCS.
1143
- - Model Registry: `relax_version` will not strip all version specifier, instead it will relax `==x.y.z` specifier to
1191
+ * Model Registry: Raise early error when deploying to SPCS with db/schema that starts with underscore.
1192
+ * Model Registry: `conda-forge` channel is now automatically added to channel lists when deploying to SPCS.
1193
+ * Model Registry: `relax_version` will not strip all version specifier, instead it will relax `==x.y.z` specifier to
1144
1194
  `>=x.y,<(x+1)`.
1145
- - Model Registry: Python with different patchlevel but the same major and minor will not result a warning when loading
1195
+ * Model Registry: Python with different patchlevel but the same major and minor will not result a warning when loading
1146
1196
  the model via Model Registry and would be considered to use when deploying to SPCS.
1147
- - Model Registry: When logging a `snowflake.ml.model.models.huggingface_pipeline.HuggingFacePipelineModel` object,
1197
+ * Model Registry: When logging a `snowflake.ml.model.models.huggingface_pipeline.HuggingFacePipelineModel` object,
1148
1198
  versions of local installed libraries won't be picked as dependencies of models, instead it will pick up some pre-
1149
1199
  defined dependencies to improve user experience.
1150
1200
 
1151
1201
  ### New Features
1152
1202
 
1153
- - Model Registry: Enable best-effort SPCS job/service log streaming when logging level is set to INFO.
1203
+ * Model Registry: Enable best-effort SPCS job/service log streaming when logging level is set to INFO.
1154
1204
 
1155
1205
  ## 1.0.11 (2023-10-27)
1156
1206
 
1157
1207
  ### New Features
1158
1208
 
1159
- - Model Registry: Add log_artifact() public method.
1160
- - Model Development: Add support for `kneighbors`.
1209
+ * Model Registry: Add log_artifact() public method.
1210
+ * Model Development: Add support for `kneighbors`.
1161
1211
 
1162
1212
  ### Behavior Changes
1163
1213
 
1164
- - Model Registry: Change log_model() argument from TrainingDataset to List of Artifact.
1165
- - Model Registry: Change get_training_dataset() to get_artifact().
1214
+ * Model Registry: Change log_model() argument from TrainingDataset to List of Artifact.
1215
+ * Model Registry: Change get_training_dataset() to get_artifact().
1166
1216
 
1167
1217
  ### Bug Fixes
1168
1218
 
1169
- - Model Development: Fix support for XGBoost and LightGBM models using SKLearn Grid Search and Randomized Search model selectors.
1170
- - Model Development: DecimalType is now supported as a DataType.
1171
- - Model Development: Fix metrics compatibility with Snowpark Dataframes that use Snowflake identifiers
1172
- - Model Registry: Resolve 'delete_deployment' not deleting the SPCS service in certain cases.
1219
+ * Model Development: Fix support for XGBoost and LightGBM models using SKLearn Grid Search and Randomized Search model selectors.
1220
+ * Model Development: DecimalType is now supported as a DataType.
1221
+ * Model Development: Fix metrics compatibility with Snowpark Dataframes that use Snowflake identifiers
1222
+ * Model Registry: Resolve 'delete_deployment' not deleting the SPCS service in certain cases.
1173
1223
 
1174
1224
  ## 1.0.10 (2023-10-13)
1175
1225
 
1176
1226
  ### Behavior Changes
1177
1227
 
1178
- - Model Development: precision_score, recall_score, f1_score, fbeta_score, precision_recall_fscore_support,
1228
+ * Model Development: precision_score, recall_score, f1_score, fbeta_score, precision_recall_fscore_support,
1179
1229
  mean_absolute_error, mean_squared_error, and mean_absolute_percentage_error metric calculations are now distributed.
1180
- - Model Registry: `deploy` will now return `Deployment` for deployment information.
1230
+ * Model Registry: `deploy` will now return `Deployment` for deployment information.
1181
1231
 
1182
1232
  ### New Features
1183
1233
 
1184
- - Model Registry: When the model signature is auto-inferred, it will be printed to the log for reference.
1185
- - Model Registry: For SPCS deployment, `Deployment` details will contains `image_name`, `service_spec` and `service_function_sql`.
1234
+ * Model Registry: When the model signature is auto-inferred, it will be printed to the log for reference.
1235
+ * Model Registry: For SPCS deployment, `Deployment` details will contains `image_name`, `service_spec` and `service_function_sql`.
1186
1236
 
1187
1237
  ### Bug Fixes
1188
1238
 
1189
- - Model Development: Fix an issue that leading to UTF-8 decoding errors when using modeling modules on Windows.
1190
- - Model Development: Fix an issue that alias definitions cause `SnowparkSQLUnexpectedAliasException` in inference.
1191
- - Model Registry: Fix an issue that signature inference could be incorrect when using Snowpark DataFrame as sample input.
1192
- - Model Registry: Fix too strict data type validation when predicting. Now, for example, if you have a INT8
1239
+ * Model Development: Fix an issue that leading to UTF-8 decoding errors when using modeling modules on Windows.
1240
+ * Model Development: Fix an issue that alias definitions cause `SnowparkSQLUnexpectedAliasException` in inference.
1241
+ * Model Registry: Fix an issue that signature inference could be incorrect when using Snowpark DataFrame as sample input.
1242
+ * Model Registry: Fix too strict data type validation when predicting. Now, for example, if you have a INT8
1193
1243
  type feature in the signature, if providing a INT64 dataframe but all values are within the range, it would not fail.
1194
1244
 
1195
1245
  ## 1.0.9 (2023-09-28)
1196
1246
 
1197
1247
  ### Behavior Changes
1198
1248
 
1199
- - Model Development: log_loss metric calculation is now distributed.
1249
+ * Model Development: log_loss metric calculation is now distributed.
1200
1250
 
1201
1251
  ### Bug Fixes
1202
1252
 
1203
- - Model Registry: Fix an issue that building images fails with specific docker setup.
1204
- - Model Registry: Fix an issue that unable to embed local ML library when the library is imported by `zipimport`.
1205
- - Model Registry: Fix out-of-date doc about `platform` argument in the `deploy` function.
1206
- - Model Registry: Fix an issue that unable to deploy a GPU-trained PyTorch model to a platform where GPU is not available.
1253
+ * Model Registry: Fix an issue that building images fails with specific docker setup.
1254
+ * Model Registry: Fix an issue that unable to embed local ML library when the library is imported by `zipimport`.
1255
+ * Model Registry: Fix out-of-date doc about `platform` argument in the `deploy` function.
1256
+ * Model Registry: Fix an issue that unable to deploy a GPU-trained PyTorch model to a platform where GPU is not available.
1207
1257
 
1208
1258
  ## 1.0.8 (2023-09-15)
1209
1259
 
1210
1260
  ### Bug Fixes
1211
1261
 
1212
- - Model Development: Ordinal encoder can be used with mixed input column types.
1213
- - Model Development: Fix an issue when the sklearn default value is `np.nan`.
1214
- - Model Registry: Fix an issue that incorrect docker executable is used when building images.
1215
- - Model Registry: Fix an issue that specifying `token` argument when using
1262
+ * Model Development: Ordinal encoder can be used with mixed input column types.
1263
+ * Model Development: Fix an issue when the sklearn default value is `np.nan`.
1264
+ * Model Registry: Fix an issue that incorrect docker executable is used when building images.
1265
+ * Model Registry: Fix an issue that specifying `token` argument when using
1216
1266
  `snowflake.ml.model.models.huggingface_pipeline.HuggingFacePipelineModel` with `transformers < 4.32.0` is not effective.
1217
- - Model Registry: Fix an issue that incorrect system function call is used when deploying to SPCS.
1218
- - Model Registry: Fix an issue when using a `transformers.pipeline` that does not have a `tokenizer`.
1219
- - Model Registry: Fix incorrectly-inferred image repository name during model deployment to SPCS.
1220
- - Model Registry: Fix GPU resource retention issue caused by failed or stuck previous deployments in SPCS.
1267
+ * Model Registry: Fix an issue that incorrect system function call is used when deploying to SPCS.
1268
+ * Model Registry: Fix an issue when using a `transformers.pipeline` that does not have a `tokenizer`.
1269
+ * Model Registry: Fix incorrectly-inferred image repository name during model deployment to SPCS.
1270
+ * Model Registry: Fix GPU resource retention issue caused by failed or stuck previous deployments in SPCS.
1221
1271
 
1222
1272
  ## 1.0.7 (2023-09-05)
1223
1273
 
1224
1274
  ### Bug Fixes
1225
1275
 
1226
- - Model Development & Model Registry: Fix an error related to `pandas.io.json.json_normalize`.
1227
- - Allow disabling telemetry.
1276
+ * Model Development & Model Registry: Fix an error related to `pandas.io.json.json_normalize`.
1277
+ * Allow disabling telemetry.
1228
1278
 
1229
1279
  ## 1.0.6 (2023-09-01)
1230
1280
 
1231
1281
  ### New Features
1232
1282
 
1233
- - Model Registry: add `create_if_not_exists` parameter in constructor.
1234
- - Model Registry: Added get_or_create_model_registry API.
1235
- - Model Registry: Added support for using GPU inference when deploying XGBoost (`xgboost.XGBModel` and `xgboost.Booster`
1283
+ * Model Registry: add `create_if_not_exists` parameter in constructor.
1284
+ * Model Registry: Added get_or_create_model_registry API.
1285
+ * Model Registry: Added support for using GPU inference when deploying XGBoost (`xgboost.XGBModel` and `xgboost.Booster`
1236
1286
  ), PyTorch (`torch.nn.Module` and `torch.jit.ScriptModule`) and TensorFlow (`tensorflow.Module` and
1237
1287
  `tensorflow.keras.Model`) models to Snowpark Container Services.
1238
- - Model Registry: When inferring model signature, `Sequence` of built-in types, `Sequence` of `numpy.ndarray`,
1288
+ * Model Registry: When inferring model signature, `Sequence` of built-in types, `Sequence` of `numpy.ndarray`,
1239
1289
  `Sequence` of `torch.Tensor`, `Sequence` of `tensorflow.Tensor` and `Sequence` of `tensorflow.Tensor` can be used
1240
1290
  instead of only `List` of them.
1241
- - Model Registry: Added `get_training_dataset` API.
1242
- - Model Development: Size of metrics result can exceed previous 8MB limit.
1243
- - Model Registry: Added support save/load/deploy HuggingFace pipeline object (`transformers.Pipeline`) and our wrapper
1291
+ * Model Registry: Added `get_training_dataset` API.
1292
+ * Model Development: Size of metrics result can exceed previous 8MB limit.
1293
+ * Model Registry: Added support save/load/deploy HuggingFace pipeline object (`transformers.Pipeline`) and our wrapper
1244
1294
  (`snowflake.ml.model.models.huggingface_pipeline.HuggingFacePipelineModel`) to it. Using the wrapper to specify
1245
1295
  configurations and the model for the pipeline will be loaded dynamically when deploying. Currently, following tasks
1246
1296
  are supported to log without manually specifying model signatures:
1247
- - "conversational"
1248
- - "fill-mask"
1249
- - "question-answering"
1250
- - "summarization"
1251
- - "table-question-answering"
1252
- - "text2text-generation"
1253
- - "text-classification" (alias "sentiment-analysis" available)
1254
- - "text-generation"
1255
- - "token-classification" (alias "ner" available)
1256
- - "translation"
1257
- - "translation_xx_to_yy"
1258
- - "zero-shot-classification"
1297
+ * "conversational"
1298
+ * "fill-mask"
1299
+ * "question-answering"
1300
+ * "summarization"
1301
+ * "table-question-answering"
1302
+ * "text2text-generation"
1303
+ * "text-classification" (alias "sentiment-analysis" available)
1304
+ * "text-generation"
1305
+ * "token-classification" (alias "ner" available)
1306
+ * "translation"
1307
+ * "translation_xx_to_yy"
1308
+ * "zero-shot-classification"
1259
1309
 
1260
1310
  ### Bug Fixes
1261
1311
 
1262
- - Model Development: Fixed a bug when using simple imputer with numpy >= 1.25.
1263
- - Model Development: Fixed a bug when inferring the type of label columns.
1312
+ * Model Development: Fixed a bug when using simple imputer with numpy >= 1.25.
1313
+ * Model Development: Fixed a bug when inferring the type of label columns.
1264
1314
 
1265
1315
  ### Behavior Changes
1266
1316
 
1267
- - Model Registry: `log_model()` now return a `ModelReference` object instead of a model ID.
1268
- - Model Registry: When deploying a model with 1 `target method` only, the `target_method` argument can be omitted.
1269
- - Model Registry: When using the snowflake-ml-python with version newer than what is available in Snowflake Anaconda
1317
+ * Model Registry: `log_model()` now return a `ModelReference` object instead of a model ID.
1318
+ * Model Registry: When deploying a model with 1 `target method` only, the `target_method` argument can be omitted.
1319
+ * Model Registry: When using the snowflake-ml-python with version newer than what is available in Snowflake Anaconda
1270
1320
  Channel, `embed_local_ml_library` option will be set as `True` automatically if not.
1271
- - Model Registry: When deploying a model to Snowpark Container Services and using GPU, the default value of num_workers
1321
+ * Model Registry: When deploying a model to Snowpark Container Services and using GPU, the default value of num_workers
1272
1322
  will be 1.
1273
- - Model Registry: `keep_order` and `output_with_input_features` in the deploy options have been removed. Now the
1323
+ * Model Registry: `keep_order` and `output_with_input_features` in the deploy options have been removed. Now the
1274
1324
  behavior is controlled by the type of the input when calling `model.predict()`. If the input is a `pandas.DataFrame`,
1275
1325
  the behavior will be the same as `keep_order=True` and `output_with_input_features=False` before. If the input is a
1276
1326
  `snowpark.DataFrame`, the behavior will be the same as `keep_order=False` and `output_with_input_features=True` before.
1277
- - Model Registry: When logging and deploying PyTorch (`torch.nn.Module` and `torch.jit.ScriptModule`) and TensorFlow
1327
+ * Model Registry: When logging and deploying PyTorch (`torch.nn.Module` and `torch.jit.ScriptModule`) and TensorFlow
1278
1328
  (`tensorflow.Module` and `tensorflow.keras.Model`) models, we no longer accept models whose input is a list of tensor
1279
1329
  and output is a list of tensors. Instead, now we accept models whose input is 1 or more tensors as positional arguments,
1280
1330
  and output is a tensor or a tuple of tensors. The input and output dataframe when predicting keep the same as before,
@@ -1284,53 +1334,53 @@ not readable by new SDK.
1284
1334
 
1285
1335
  ### New Features
1286
1336
 
1287
- - Model Registry: Added support save/load/deploy xgboost Booster model.
1288
- - Model Registry: Added support to get the model name and the model version from model references.
1337
+ * Model Registry: Added support save/load/deploy xgboost Booster model.
1338
+ * Model Registry: Added support to get the model name and the model version from model references.
1289
1339
 
1290
1340
  ### Bug Fixes
1291
1341
 
1292
- - Model Registry: Restore the db/schema back to the session after `create_model_registry()`.
1293
- - Model Registry: Fixed an issue that the UDF name created when deploying a model is not identical to what is provided
1342
+ * Model Registry: Restore the db/schema back to the session after `create_model_registry()`.
1343
+ * Model Registry: Fixed an issue that the UDF name created when deploying a model is not identical to what is provided
1294
1344
  and cannot be correctly dropped when deployment getting dropped.
1295
- - connection_params.SnowflakeLoginOptions(): Added support for `private_key_path`.
1345
+ * connection_params.SnowflakeLoginOptions(): Added support for `private_key_path`.
1296
1346
 
1297
1347
  ## 1.0.4 (2023-07-28)
1298
1348
 
1299
1349
  ### New Features
1300
1350
 
1301
- - Model Registry: Added support save/load/deploy Tensorflow models (`tensorflow.Module`).
1302
- - Model Registry: Added support save/load/deploy MLFlow PyFunc models (`mlflow.pyfunc.PyFuncModel`).
1303
- - Model Development: Input dataframes can now be joined against data loaded from staged files.
1304
- - Model Development: Added support for non-English languages.
1351
+ * Model Registry: Added support save/load/deploy Tensorflow models (`tensorflow.Module`).
1352
+ * Model Registry: Added support save/load/deploy MLFlow PyFunc models (`mlflow.pyfunc.PyFuncModel`).
1353
+ * Model Development: Input dataframes can now be joined against data loaded from staged files.
1354
+ * Model Development: Added support for non-English languages.
1305
1355
 
1306
1356
  ### Bug Fixes
1307
1357
 
1308
- - Model Registry: Fix an issue that model dependencies are incorrectly reported as unresolvable on certain platforms.
1358
+ * Model Registry: Fix an issue that model dependencies are incorrectly reported as unresolvable on certain platforms.
1309
1359
 
1310
1360
  ## 1.0.3 (2023-07-14)
1311
1361
 
1312
1362
  ### Behavior Changes
1313
1363
 
1314
- - Model Registry: When predicting a model whose output is a list of NumPy ndarray, the output would not be flattened,
1364
+ * Model Registry: When predicting a model whose output is a list of NumPy ndarray, the output would not be flattened,
1315
1365
  instead, every ndarray will act as a feature(column) in the output.
1316
1366
 
1317
1367
  ### New Features
1318
1368
 
1319
- - Model Registry: Added support save/load/deploy PyTorch models (`torch.nn.Module` and `torch.jit.ScriptModule`).
1369
+ * Model Registry: Added support save/load/deploy PyTorch models (`torch.nn.Module` and `torch.jit.ScriptModule`).
1320
1370
 
1321
1371
  ### Bug Fixes
1322
1372
 
1323
- - Model Registry: Fix an issue that when database or schema name provided to `create_model_registry` contains special
1373
+ * Model Registry: Fix an issue that when database or schema name provided to `create_model_registry` contains special
1324
1374
  characters, the model registry cannot be created.
1325
- - Model Registry: Fix an issue that `get_model_description` returns with additional quotes.
1326
- - Model Registry: Fix incorrect error message when attempting to remove a unset tag of a model.
1327
- - Model Registry: Fix a typo in the default deployment table name.
1328
- - Model Registry: Snowpark dataframe for sample input or input for `predict` method that contains a column with
1375
+ * Model Registry: Fix an issue that `get_model_description` returns with additional quotes.
1376
+ * Model Registry: Fix incorrect error message when attempting to remove a unset tag of a model.
1377
+ * Model Registry: Fix a typo in the default deployment table name.
1378
+ * Model Registry: Snowpark dataframe for sample input or input for `predict` method that contains a column with
1329
1379
  Snowflake `NUMBER(precision, scale)` data type where `scale = 0` will not lead to error, and will now correctly
1330
1380
  recognized as `INT64` data type in model signature.
1331
- - Model Registry: Fix an issue that prevent model logged in the system whose default encoding is not UTF-8 compatible
1381
+ * Model Registry: Fix an issue that prevent model logged in the system whose default encoding is not UTF-8 compatible
1332
1382
  from deploying.
1333
- - Model Registry: Added earlier and better error message when any file name in the model or the file name of model
1383
+ * Model Registry: Added earlier and better error message when any file name in the model or the file name of model
1334
1384
  itself contains characters that are unable to be encoded using ASCII. It is currently not supported to deploy such a
1335
1385
  model.
1336
1386
 
@@ -1338,181 +1388,181 @@ not readable by new SDK.
1338
1388
 
1339
1389
  ### Behavior Changes
1340
1390
 
1341
- - Model Registry: Prohibit non-snowflake-native models from being logged.
1342
- - Model Registry: `_use_local_snowml` parameter in options of `deploy()` has been removed.
1343
- - Model Registry: A default `False` `embed_local_ml_library` parameter has been added to the options of `log_model()`.
1391
+ * Model Registry: Prohibit non-snowflake-native models from being logged.
1392
+ * Model Registry: `_use_local_snowml` parameter in options of `deploy()` has been removed.
1393
+ * Model Registry: A default `False` `embed_local_ml_library` parameter has been added to the options of `log_model()`.
1344
1394
  With this set to `False` (default), the version of the local snowflake-ml-python library will be recorded and used when
1345
1395
  deploying the model. With this set to `True`, local snowflake-ml-python library will be embedded into the logged model,
1346
1396
  and will be used when you load or deploy the model.
1347
1397
 
1348
1398
  ### New Features
1349
1399
 
1350
- - Model Registry: A new optional argument named `code_paths` has been added to the arguments of `log_model()` for users
1400
+ * Model Registry: A new optional argument named `code_paths` has been added to the arguments of `log_model()` for users
1351
1401
  to specify additional code paths to be imported when loading and deploying the model.
1352
- - Model Registry: A new optional argument named `options` has been added to the arguments of `log_model()` to specify
1402
+ * Model Registry: A new optional argument named `options` has been added to the arguments of `log_model()` to specify
1353
1403
  any additional options when saving the model.
1354
- - Model Development: Added metrics:
1355
- - d2_absolute_error_score
1356
- - d2_pinball_score
1357
- - explained_variance_score
1358
- - mean_absolute_error
1359
- - mean_absolute_percentage_error
1360
- - mean_squared_error
1404
+ * Model Development: Added metrics:
1405
+ * d2_absolute_error_score
1406
+ * d2_pinball_score
1407
+ * explained_variance_score
1408
+ * mean_absolute_error
1409
+ * mean_absolute_percentage_error
1410
+ * mean_squared_error
1361
1411
 
1362
1412
  ### Bug Fixes
1363
1413
 
1364
- - Model Development: `accuracy_score()` now works when given label column names are lists of a single value.
1414
+ * Model Development: `accuracy_score()` now works when given label column names are lists of a single value.
1365
1415
 
1366
1416
  ## 1.0.1 (2023-06-16)
1367
1417
 
1368
1418
  ### Behavior Changes
1369
1419
 
1370
- - Model Development: Changed Metrics APIs to imitate sklearn metrics modules:
1371
- - `accuracy_score()`, `confusion_matrix()`, `precision_recall_fscore_support()`, `precision_score()` methods move from
1420
+ * Model Development: Changed Metrics APIs to imitate sklearn metrics modules:
1421
+ * `accuracy_score()`, `confusion_matrix()`, `precision_recall_fscore_support()`, `precision_score()` methods move from
1372
1422
  respective modules to `metrics.classification`.
1373
- - Model Registry: The default table/stage created by the Registry now uses "_SYSTEM_" as a prefix.
1374
- - Model Registry: `get_model_history()` method as been enhanced to include the history of model deployment.
1423
+ * Model Registry: The default table/stage created by the Registry now uses "_SYSTEM_" as a prefix.
1424
+ * Model Registry: `get_model_history()` method as been enhanced to include the history of model deployment.
1375
1425
 
1376
1426
  ### New Features
1377
1427
 
1378
- - Model Registry: A default `False` flag named `replace_udf` has been added to the options of `deploy()`. Setting this
1428
+ * Model Registry: A default `False` flag named `replace_udf` has been added to the options of `deploy()`. Setting this
1379
1429
  to `True` will allow overwrite existing UDF with the same name when deploying.
1380
- - Model Development: Added metrics:
1381
- - f1_score
1382
- - fbeta_score
1383
- - recall_score
1384
- - roc_auc_score
1385
- - roc_curve
1386
- - log_loss
1387
- - precision_recall_curve
1388
- - Model Registry: A new argument named `permanent` has been added to the argument of `deploy()`. Setting this to `True`
1430
+ * Model Development: Added metrics:
1431
+ * f1_score
1432
+ * fbeta_score
1433
+ * recall_score
1434
+ * roc_auc_score
1435
+ * roc_curve
1436
+ * log_loss
1437
+ * precision_recall_curve
1438
+ * Model Registry: A new argument named `permanent` has been added to the argument of `deploy()`. Setting this to `True`
1389
1439
  allows the creation of a permanent deployment without needing to specify the UDF location.
1390
- - Model Registry: A new method `list_deployments()` has been added to enumerate all permanent deployments originating
1440
+ * Model Registry: A new method `list_deployments()` has been added to enumerate all permanent deployments originating
1391
1441
  from a specific model.
1392
- - Model Registry: A new method `get_deployment()` has been added to fetch a deployment by its deployment name.
1393
- - Model Registry: A new method `delete_deployment()` has been added to remove an existing permanent deployment.
1442
+ * Model Registry: A new method `get_deployment()` has been added to fetch a deployment by its deployment name.
1443
+ * Model Registry: A new method `delete_deployment()` has been added to remove an existing permanent deployment.
1394
1444
 
1395
1445
  ## 1.0.0 (2023-06-09)
1396
1446
 
1397
1447
  ### Behavior Changes
1398
1448
 
1399
- - Model Registry: `predict()` method moves from Registry to ModelReference.
1400
- - Model Registry: `_snowml_wheel_path` parameter in options of `deploy()`, is replaced with `_use_local_snowml` with
1449
+ * Model Registry: `predict()` method moves from Registry to ModelReference.
1450
+ * Model Registry: `_snowml_wheel_path` parameter in options of `deploy()`, is replaced with `_use_local_snowml` with
1401
1451
  default value of `False`. Setting this to `True` will have the same effect of uploading local SnowML code when executing
1402
1452
  model in the warehouse.
1403
- - Model Registry: Removed `id` field from `ModelReference` constructor.
1404
- - Model Development: Preprocessing and Metrics move to the modeling package: `snowflake.ml.modeling.preprocessing` and
1453
+ * Model Registry: Removed `id` field from `ModelReference` constructor.
1454
+ * Model Development: Preprocessing and Metrics move to the modeling package: `snowflake.ml.modeling.preprocessing` and
1405
1455
  `snowflake.ml.modeling.metrics`.
1406
- - Model Development: `get_sklearn_object()` method is renamed to `to_sklearn()`, `to_xgboost()`, and `to_lightgbm()` for
1456
+ * Model Development: `get_sklearn_object()` method is renamed to `to_sklearn()`, `to_xgboost()`, and `to_lightgbm()` for
1407
1457
  respective native models.
1408
1458
 
1409
1459
  ### New Features
1410
1460
 
1411
- - Added PolynomialFeatures transformer to the snowflake.ml.modeling.preprocessing module.
1412
- - Added metrics:
1413
- - accuracy_score
1414
- - confusion_matrix
1415
- - precision_recall_fscore_support
1416
- - precision_score
1461
+ * Added PolynomialFeatures transformer to the snowflake.ml.modeling.preprocessing module.
1462
+ * Added metrics:
1463
+ * accuracy_score
1464
+ * confusion_matrix
1465
+ * precision_recall_fscore_support
1466
+ * precision_score
1417
1467
 
1418
1468
  ### Bug Fixes
1419
1469
 
1420
- - Model Registry: Model version can now be any string (not required to be a valid identifier)
1421
- - Model Deployment: `deploy()` & `predict()` methods now correctly escapes identifiers
1470
+ * Model Registry: Model version can now be any string (not required to be a valid identifier)
1471
+ * Model Deployment: `deploy()` & `predict()` methods now correctly escapes identifiers
1422
1472
 
1423
1473
  ## 0.3.2 (2023-05-23)
1424
1474
 
1425
1475
  ### Behavior Changes
1426
1476
 
1427
- - Use cloudpickle to serialize and deserialize models throughout the codebase and removed dependency on joblib.
1477
+ * Use cloudpickle to serialize and deserialize models throughout the codebase and removed dependency on joblib.
1428
1478
 
1429
1479
  ### New Features
1430
1480
 
1431
- - Model Deployment: Added support for snowflake.ml models.
1481
+ * Model Deployment: Added support for snowflake.ml models.
1432
1482
 
1433
1483
  ## 0.3.1 (2023-05-18)
1434
1484
 
1435
1485
  ### Behavior Changes
1436
1486
 
1437
- - Standardized registry API with following
1438
- - Create & open registry taking same set of arguments
1439
- - Create & Open can choose schema to use
1440
- - Set_tag, set_metric, etc now explicitly calls out arg name as metric_name, tag_name, metric_name, etc.
1487
+ * Standardized registry API with following
1488
+ * Create & open registry taking same set of arguments
1489
+ * Create & Open can choose schema to use
1490
+ * Set_tag, set_metric, etc now explicitly calls out arg name as metric_name, tag_name, metric_name, etc.
1441
1491
 
1442
1492
  ### New Features
1443
1493
 
1444
- - Changes to support python 3.9, 3.10
1445
- - Added kBinsDiscretizer
1446
- - Support for deployment of XGBoost models & int8 types of data
1494
+ * Changes to support python 3.9, 3.10
1495
+ * Added kBinsDiscretizer
1496
+ * Support for deployment of XGBoost models & int8 types of data
1447
1497
 
1448
1498
  ## 0.3.0 (2023-05-11)
1449
1499
 
1450
1500
  ### Behavior Changes
1451
1501
 
1452
- - Big Model Registry Refresh
1453
- - Fixed API discrepancies between register_model & log_model.
1454
- - Model can be referred by Name + Version (no opaque internal id is required)
1502
+ * Big Model Registry Refresh
1503
+ * Fixed API discrepancies between register_model & log_model.
1504
+ * Model can be referred by Name + Version (no opaque internal id is required)
1455
1505
 
1456
1506
  ### New Features
1457
1507
 
1458
- - Model Registry: Added support save/load/deploy SKL & XGB Models
1508
+ * Model Registry: Added support save/load/deploy SKL & XGB Models
1459
1509
 
1460
1510
  ## 0.2.3 (2023-04-27)
1461
1511
 
1462
1512
  ### Bug Fixes
1463
1513
 
1464
- - Allow using OneHotEncoder along with sklearn style estimators in a pipeline.
1514
+ * Allow using OneHotEncoder along with sklearn style estimators in a pipeline.
1465
1515
 
1466
1516
  ### New Features
1467
1517
 
1468
- - Model Registry: Added support for delete_model. Use delete_artifact = False to not delete the underlying model data
1518
+ * Model Registry: Added support for delete_model. Use delete_artifact = False to not delete the underlying model data
1469
1519
  but just unregister.
1470
1520
 
1471
1521
  ## 0.2.2 (2023-04-11)
1472
1522
 
1473
1523
  ### New Features
1474
1524
 
1475
- - Initial version of snowflake-ml modeling package.
1476
- - Provide support for training most of scikit-learn and xgboost estimators and transformers.
1525
+ * Initial version of snowflake-ml modeling package.
1526
+ * Provide support for training most of scikit-learn and xgboost estimators and transformers.
1477
1527
 
1478
1528
  ### Bug Fixes
1479
1529
 
1480
- - Minor fixes in preprocessing package.
1530
+ * Minor fixes in preprocessing package.
1481
1531
 
1482
1532
  ## 0.2.1 (2023-03-23)
1483
1533
 
1484
1534
  ### New Features
1485
1535
 
1486
- - New in Preprocessing:
1487
- - SimpleImputer
1488
- - Covariance Matrix
1489
- - Optimization of Ordinal Encoder client computations.
1536
+ * New in Preprocessing:
1537
+ * SimpleImputer
1538
+ * Covariance Matrix
1539
+ * Optimization of Ordinal Encoder client computations.
1490
1540
 
1491
1541
  ### Bug Fixes
1492
1542
 
1493
- - Minor fixes in OneHotEncoder.
1543
+ * Minor fixes in OneHotEncoder.
1494
1544
 
1495
1545
  ## 0.2.0 (2023-02-27)
1496
1546
 
1497
1547
  ### New Features
1498
1548
 
1499
- - Model Registry
1500
- - PyTorch & Tensorflow connector file generic FileSet API
1501
- - New to Preprocessing:
1502
- - Binarizer
1503
- - Normalizer
1504
- - Pearson correlation Matrix
1505
- - Optimization in Ordinal Encoder to cache vocabulary in temp tables.
1549
+ * Model Registry
1550
+ * PyTorch & Tensorflow connector file generic FileSet API
1551
+ * New to Preprocessing:
1552
+ * Binarizer
1553
+ * Normalizer
1554
+ * Pearson correlation Matrix
1555
+ * Optimization in Ordinal Encoder to cache vocabulary in temp tables.
1506
1556
 
1507
1557
  ## 0.1.3 (2023-02-02)
1508
1558
 
1509
1559
  ### New Features
1510
1560
 
1511
- - Initial version of transformers including:
1512
- - Label Encoder
1513
- - Max Abs Scaler
1514
- - Min Max Scaler
1515
- - One Hot Encoder
1516
- - Ordinal Encoder
1517
- - Robust Scaler
1518
- - Standard Scaler
1561
+ * Initial version of transformers including:
1562
+ * Label Encoder
1563
+ * Max Abs Scaler
1564
+ * Min Max Scaler
1565
+ * One Hot Encoder
1566
+ * Ordinal Encoder
1567
+ * Robust Scaler
1568
+ * Standard Scaler