snowflake-ml-python 1.8.3__py3-none-any.whl → 1.8.5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (196) hide show
  1. snowflake/cortex/__init__.py +7 -1
  2. snowflake/ml/_internal/platform_capabilities.py +13 -11
  3. snowflake/ml/_internal/telemetry.py +42 -13
  4. snowflake/ml/_internal/utils/identifier.py +2 -2
  5. snowflake/ml/data/data_connector.py +1 -1
  6. snowflake/ml/jobs/_utils/constants.py +10 -1
  7. snowflake/ml/jobs/_utils/interop_utils.py +1 -1
  8. snowflake/ml/jobs/_utils/payload_utils.py +51 -34
  9. snowflake/ml/jobs/_utils/scripts/constants.py +6 -0
  10. snowflake/ml/jobs/_utils/scripts/get_instance_ip.py +4 -4
  11. snowflake/ml/jobs/_utils/scripts/mljob_launcher.py +86 -3
  12. snowflake/ml/jobs/_utils/spec_utils.py +8 -6
  13. snowflake/ml/jobs/decorators.py +13 -3
  14. snowflake/ml/jobs/job.py +206 -26
  15. snowflake/ml/jobs/manager.py +78 -34
  16. snowflake/ml/model/_client/model/model_version_impl.py +1 -1
  17. snowflake/ml/model/_client/ops/service_ops.py +31 -17
  18. snowflake/ml/model/_client/service/model_deployment_spec.py +351 -170
  19. snowflake/ml/model/_client/service/model_deployment_spec_schema.py +25 -0
  20. snowflake/ml/model/_client/sql/model_version.py +1 -1
  21. snowflake/ml/model/_client/sql/service.py +20 -32
  22. snowflake/ml/model/_model_composer/model_composer.py +44 -19
  23. snowflake/ml/model/_packager/model_handlers/_utils.py +32 -2
  24. snowflake/ml/model/_packager/model_handlers/custom.py +1 -1
  25. snowflake/ml/model/_packager/model_handlers/pytorch.py +1 -2
  26. snowflake/ml/model/_packager/model_handlers/sklearn.py +100 -41
  27. snowflake/ml/model/_packager/model_handlers/tensorflow.py +7 -4
  28. snowflake/ml/model/_packager/model_handlers/torchscript.py +2 -2
  29. snowflake/ml/model/_packager/model_handlers/xgboost.py +16 -7
  30. snowflake/ml/model/_packager/model_meta/model_meta.py +2 -1
  31. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +1 -0
  32. snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py +5 -4
  33. snowflake/ml/model/_signatures/dmatrix_handler.py +15 -2
  34. snowflake/ml/model/custom_model.py +17 -4
  35. snowflake/ml/model/model_signature.py +3 -3
  36. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +9 -1
  37. snowflake/ml/modeling/cluster/affinity_propagation.py +9 -1
  38. snowflake/ml/modeling/cluster/agglomerative_clustering.py +9 -1
  39. snowflake/ml/modeling/cluster/birch.py +9 -1
  40. snowflake/ml/modeling/cluster/bisecting_k_means.py +9 -1
  41. snowflake/ml/modeling/cluster/dbscan.py +9 -1
  42. snowflake/ml/modeling/cluster/feature_agglomeration.py +9 -1
  43. snowflake/ml/modeling/cluster/k_means.py +9 -1
  44. snowflake/ml/modeling/cluster/mean_shift.py +9 -1
  45. snowflake/ml/modeling/cluster/mini_batch_k_means.py +9 -1
  46. snowflake/ml/modeling/cluster/optics.py +9 -1
  47. snowflake/ml/modeling/cluster/spectral_biclustering.py +9 -1
  48. snowflake/ml/modeling/cluster/spectral_clustering.py +9 -1
  49. snowflake/ml/modeling/cluster/spectral_coclustering.py +9 -1
  50. snowflake/ml/modeling/compose/column_transformer.py +9 -1
  51. snowflake/ml/modeling/compose/transformed_target_regressor.py +9 -1
  52. snowflake/ml/modeling/covariance/elliptic_envelope.py +9 -1
  53. snowflake/ml/modeling/covariance/empirical_covariance.py +9 -1
  54. snowflake/ml/modeling/covariance/graphical_lasso.py +9 -1
  55. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +9 -1
  56. snowflake/ml/modeling/covariance/ledoit_wolf.py +9 -1
  57. snowflake/ml/modeling/covariance/min_cov_det.py +9 -1
  58. snowflake/ml/modeling/covariance/oas.py +9 -1
  59. snowflake/ml/modeling/covariance/shrunk_covariance.py +9 -1
  60. snowflake/ml/modeling/decomposition/dictionary_learning.py +9 -1
  61. snowflake/ml/modeling/decomposition/factor_analysis.py +9 -1
  62. snowflake/ml/modeling/decomposition/fast_ica.py +9 -1
  63. snowflake/ml/modeling/decomposition/incremental_pca.py +9 -1
  64. snowflake/ml/modeling/decomposition/kernel_pca.py +9 -1
  65. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +9 -1
  66. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +9 -1
  67. snowflake/ml/modeling/decomposition/pca.py +9 -1
  68. snowflake/ml/modeling/decomposition/sparse_pca.py +9 -1
  69. snowflake/ml/modeling/decomposition/truncated_svd.py +9 -1
  70. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +9 -1
  71. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +9 -1
  72. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +9 -1
  73. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +9 -1
  74. snowflake/ml/modeling/ensemble/bagging_classifier.py +9 -1
  75. snowflake/ml/modeling/ensemble/bagging_regressor.py +9 -1
  76. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +9 -1
  77. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +9 -1
  78. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +9 -1
  79. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +9 -1
  80. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +9 -1
  81. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +9 -1
  82. snowflake/ml/modeling/ensemble/isolation_forest.py +9 -1
  83. snowflake/ml/modeling/ensemble/random_forest_classifier.py +9 -1
  84. snowflake/ml/modeling/ensemble/random_forest_regressor.py +9 -1
  85. snowflake/ml/modeling/ensemble/stacking_regressor.py +9 -1
  86. snowflake/ml/modeling/ensemble/voting_classifier.py +9 -1
  87. snowflake/ml/modeling/ensemble/voting_regressor.py +9 -1
  88. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +9 -1
  89. snowflake/ml/modeling/feature_selection/select_fdr.py +9 -1
  90. snowflake/ml/modeling/feature_selection/select_fpr.py +9 -1
  91. snowflake/ml/modeling/feature_selection/select_fwe.py +9 -1
  92. snowflake/ml/modeling/feature_selection/select_k_best.py +9 -1
  93. snowflake/ml/modeling/feature_selection/select_percentile.py +9 -1
  94. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +9 -1
  95. snowflake/ml/modeling/feature_selection/variance_threshold.py +9 -1
  96. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +9 -1
  97. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +9 -1
  98. snowflake/ml/modeling/impute/iterative_imputer.py +9 -1
  99. snowflake/ml/modeling/impute/knn_imputer.py +9 -1
  100. snowflake/ml/modeling/impute/missing_indicator.py +9 -1
  101. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +9 -1
  102. snowflake/ml/modeling/kernel_approximation/nystroem.py +9 -1
  103. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +9 -1
  104. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +9 -1
  105. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +9 -1
  106. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +9 -1
  107. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +9 -1
  108. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +9 -1
  109. snowflake/ml/modeling/linear_model/ard_regression.py +9 -1
  110. snowflake/ml/modeling/linear_model/bayesian_ridge.py +9 -1
  111. snowflake/ml/modeling/linear_model/elastic_net.py +9 -1
  112. snowflake/ml/modeling/linear_model/elastic_net_cv.py +9 -1
  113. snowflake/ml/modeling/linear_model/gamma_regressor.py +9 -1
  114. snowflake/ml/modeling/linear_model/huber_regressor.py +9 -1
  115. snowflake/ml/modeling/linear_model/lars.py +9 -1
  116. snowflake/ml/modeling/linear_model/lars_cv.py +9 -1
  117. snowflake/ml/modeling/linear_model/lasso.py +9 -1
  118. snowflake/ml/modeling/linear_model/lasso_cv.py +9 -1
  119. snowflake/ml/modeling/linear_model/lasso_lars.py +9 -1
  120. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +9 -1
  121. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +9 -1
  122. snowflake/ml/modeling/linear_model/linear_regression.py +9 -1
  123. snowflake/ml/modeling/linear_model/logistic_regression.py +9 -1
  124. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +9 -1
  125. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +9 -1
  126. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +9 -1
  127. snowflake/ml/modeling/linear_model/multi_task_lasso.py +9 -1
  128. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +9 -1
  129. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +9 -1
  130. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +9 -1
  131. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +9 -1
  132. snowflake/ml/modeling/linear_model/perceptron.py +9 -1
  133. snowflake/ml/modeling/linear_model/poisson_regressor.py +9 -1
  134. snowflake/ml/modeling/linear_model/ransac_regressor.py +9 -1
  135. snowflake/ml/modeling/linear_model/ridge.py +9 -1
  136. snowflake/ml/modeling/linear_model/ridge_classifier.py +9 -1
  137. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +9 -1
  138. snowflake/ml/modeling/linear_model/ridge_cv.py +9 -1
  139. snowflake/ml/modeling/linear_model/sgd_classifier.py +9 -1
  140. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +9 -1
  141. snowflake/ml/modeling/linear_model/sgd_regressor.py +9 -1
  142. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +9 -1
  143. snowflake/ml/modeling/linear_model/tweedie_regressor.py +9 -1
  144. snowflake/ml/modeling/manifold/isomap.py +9 -1
  145. snowflake/ml/modeling/manifold/mds.py +9 -1
  146. snowflake/ml/modeling/manifold/spectral_embedding.py +9 -1
  147. snowflake/ml/modeling/manifold/tsne.py +9 -1
  148. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +9 -1
  149. snowflake/ml/modeling/mixture/gaussian_mixture.py +9 -1
  150. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +9 -1
  151. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +9 -1
  152. snowflake/ml/modeling/multiclass/output_code_classifier.py +9 -1
  153. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +9 -1
  154. snowflake/ml/modeling/naive_bayes/categorical_nb.py +9 -1
  155. snowflake/ml/modeling/naive_bayes/complement_nb.py +9 -1
  156. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +9 -1
  157. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +9 -1
  158. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +9 -1
  159. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +9 -1
  160. snowflake/ml/modeling/neighbors/kernel_density.py +9 -1
  161. snowflake/ml/modeling/neighbors/local_outlier_factor.py +9 -1
  162. snowflake/ml/modeling/neighbors/nearest_centroid.py +9 -1
  163. snowflake/ml/modeling/neighbors/nearest_neighbors.py +9 -1
  164. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +9 -1
  165. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +9 -1
  166. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +9 -1
  167. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +9 -1
  168. snowflake/ml/modeling/neural_network/mlp_classifier.py +9 -1
  169. snowflake/ml/modeling/neural_network/mlp_regressor.py +9 -1
  170. snowflake/ml/modeling/preprocessing/polynomial_features.py +9 -1
  171. snowflake/ml/modeling/semi_supervised/label_propagation.py +9 -1
  172. snowflake/ml/modeling/semi_supervised/label_spreading.py +9 -1
  173. snowflake/ml/modeling/svm/linear_svc.py +9 -1
  174. snowflake/ml/modeling/svm/linear_svr.py +9 -1
  175. snowflake/ml/modeling/svm/nu_svc.py +9 -1
  176. snowflake/ml/modeling/svm/nu_svr.py +9 -1
  177. snowflake/ml/modeling/svm/svc.py +9 -1
  178. snowflake/ml/modeling/svm/svr.py +9 -1
  179. snowflake/ml/modeling/tree/decision_tree_classifier.py +9 -1
  180. snowflake/ml/modeling/tree/decision_tree_regressor.py +9 -1
  181. snowflake/ml/modeling/tree/extra_tree_classifier.py +9 -1
  182. snowflake/ml/modeling/tree/extra_tree_regressor.py +9 -1
  183. snowflake/ml/modeling/xgboost/xgb_classifier.py +9 -1
  184. snowflake/ml/modeling/xgboost/xgb_regressor.py +9 -1
  185. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +9 -1
  186. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +9 -1
  187. snowflake/ml/monitoring/explain_visualize.py +424 -0
  188. snowflake/ml/registry/_manager/model_manager.py +23 -2
  189. snowflake/ml/registry/registry.py +10 -9
  190. snowflake/ml/utils/connection_params.py +8 -2
  191. snowflake/ml/version.py +1 -1
  192. {snowflake_ml_python-1.8.3.dist-info → snowflake_ml_python-1.8.5.dist-info}/METADATA +58 -8
  193. {snowflake_ml_python-1.8.3.dist-info → snowflake_ml_python-1.8.5.dist-info}/RECORD +196 -195
  194. {snowflake_ml_python-1.8.3.dist-info → snowflake_ml_python-1.8.5.dist-info}/WHEEL +1 -1
  195. {snowflake_ml_python-1.8.3.dist-info → snowflake_ml_python-1.8.5.dist-info}/licenses/LICENSE.txt +0 -0
  196. {snowflake_ml_python-1.8.3.dist-info → snowflake_ml_python-1.8.5.dist-info}/top_level.txt +0 -0
@@ -11,7 +11,7 @@ import cloudpickle as cp
11
11
  import numpy as np
12
12
  import pandas as pd
13
13
  from numpy import typing as npt
14
-
14
+ from packaging import version
15
15
 
16
16
  import numpy
17
17
  import sklearn
@@ -60,6 +60,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
64
+ # Modeling library estimators require a smaller sklearn version range.
65
+ if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
+ raise Exception(
67
+ f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
68
+ )
69
+
70
+
63
71
  class VotingRegressor(BaseTransformer):
64
72
  r"""Prediction voting regressor for unfitted estimators
65
73
  For more details on this class, see [sklearn.ensemble.VotingRegressor]
@@ -11,7 +11,7 @@ import cloudpickle as cp
11
11
  import numpy as np
12
12
  import pandas as pd
13
13
  from numpy import typing as npt
14
-
14
+ from packaging import version
15
15
 
16
16
  import numpy
17
17
  import sklearn.feature_selection._univariate_selection
@@ -61,6 +61,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
61
61
 
62
62
  INFER_SIGNATURE_MAX_ROWS = 100
63
63
 
64
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
65
+ # Modeling library estimators require a smaller sklearn version range.
66
+ if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
67
+ raise Exception(
68
+ f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
69
+ )
70
+
71
+
64
72
  class GenericUnivariateSelect(BaseTransformer):
65
73
  r"""Univariate feature selector with configurable strategy
66
74
  For more details on this class, see [sklearn.feature_selection.GenericUnivariateSelect]
@@ -11,7 +11,7 @@ import cloudpickle as cp
11
11
  import numpy as np
12
12
  import pandas as pd
13
13
  from numpy import typing as npt
14
-
14
+ from packaging import version
15
15
 
16
16
  import numpy
17
17
  import sklearn.feature_selection._univariate_selection
@@ -61,6 +61,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
61
61
 
62
62
  INFER_SIGNATURE_MAX_ROWS = 100
63
63
 
64
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
65
+ # Modeling library estimators require a smaller sklearn version range.
66
+ if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
67
+ raise Exception(
68
+ f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
69
+ )
70
+
71
+
64
72
  class SelectFdr(BaseTransformer):
65
73
  r"""Filter: Select the p-values for an estimated false discovery rate
66
74
  For more details on this class, see [sklearn.feature_selection.SelectFdr]
@@ -11,7 +11,7 @@ import cloudpickle as cp
11
11
  import numpy as np
12
12
  import pandas as pd
13
13
  from numpy import typing as npt
14
-
14
+ from packaging import version
15
15
 
16
16
  import numpy
17
17
  import sklearn.feature_selection._univariate_selection
@@ -61,6 +61,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
61
61
 
62
62
  INFER_SIGNATURE_MAX_ROWS = 100
63
63
 
64
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
65
+ # Modeling library estimators require a smaller sklearn version range.
66
+ if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
67
+ raise Exception(
68
+ f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
69
+ )
70
+
71
+
64
72
  class SelectFpr(BaseTransformer):
65
73
  r"""Filter: Select the pvalues below alpha based on a FPR test
66
74
  For more details on this class, see [sklearn.feature_selection.SelectFpr]
@@ -11,7 +11,7 @@ import cloudpickle as cp
11
11
  import numpy as np
12
12
  import pandas as pd
13
13
  from numpy import typing as npt
14
-
14
+ from packaging import version
15
15
 
16
16
  import numpy
17
17
  import sklearn.feature_selection._univariate_selection
@@ -61,6 +61,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
61
61
 
62
62
  INFER_SIGNATURE_MAX_ROWS = 100
63
63
 
64
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
65
+ # Modeling library estimators require a smaller sklearn version range.
66
+ if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
67
+ raise Exception(
68
+ f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
69
+ )
70
+
71
+
64
72
  class SelectFwe(BaseTransformer):
65
73
  r"""Filter: Select the p-values corresponding to Family-wise error rate
66
74
  For more details on this class, see [sklearn.feature_selection.SelectFwe]
@@ -11,7 +11,7 @@ import cloudpickle as cp
11
11
  import numpy as np
12
12
  import pandas as pd
13
13
  from numpy import typing as npt
14
-
14
+ from packaging import version
15
15
 
16
16
  import numpy
17
17
  import sklearn.feature_selection._univariate_selection
@@ -61,6 +61,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
61
61
 
62
62
  INFER_SIGNATURE_MAX_ROWS = 100
63
63
 
64
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
65
+ # Modeling library estimators require a smaller sklearn version range.
66
+ if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
67
+ raise Exception(
68
+ f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
69
+ )
70
+
71
+
64
72
  class SelectKBest(BaseTransformer):
65
73
  r"""Select features according to the k highest scores
66
74
  For more details on this class, see [sklearn.feature_selection.SelectKBest]
@@ -11,7 +11,7 @@ import cloudpickle as cp
11
11
  import numpy as np
12
12
  import pandas as pd
13
13
  from numpy import typing as npt
14
-
14
+ from packaging import version
15
15
 
16
16
  import numpy
17
17
  import sklearn.feature_selection._univariate_selection
@@ -61,6 +61,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
61
61
 
62
62
  INFER_SIGNATURE_MAX_ROWS = 100
63
63
 
64
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
65
+ # Modeling library estimators require a smaller sklearn version range.
66
+ if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
67
+ raise Exception(
68
+ f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
69
+ )
70
+
71
+
64
72
  class SelectPercentile(BaseTransformer):
65
73
  r"""Select features according to a percentile of the highest scores
66
74
  For more details on this class, see [sklearn.feature_selection.SelectPercentile]
@@ -11,7 +11,7 @@ import cloudpickle as cp
11
11
  import numpy as np
12
12
  import pandas as pd
13
13
  from numpy import typing as npt
14
-
14
+ from packaging import version
15
15
 
16
16
  import numpy
17
17
  import sklearn
@@ -60,6 +60,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
64
+ # Modeling library estimators require a smaller sklearn version range.
65
+ if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
+ raise Exception(
67
+ f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
68
+ )
69
+
70
+
63
71
  class SequentialFeatureSelector(BaseTransformer):
64
72
  r"""Transformer that performs Sequential Feature Selection
65
73
  For more details on this class, see [sklearn.feature_selection.SequentialFeatureSelector]
@@ -11,7 +11,7 @@ import cloudpickle as cp
11
11
  import numpy as np
12
12
  import pandas as pd
13
13
  from numpy import typing as npt
14
-
14
+ from packaging import version
15
15
 
16
16
  import numpy
17
17
  import sklearn
@@ -60,6 +60,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
64
+ # Modeling library estimators require a smaller sklearn version range.
65
+ if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
+ raise Exception(
67
+ f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
68
+ )
69
+
70
+
63
71
  class VarianceThreshold(BaseTransformer):
64
72
  r"""Feature selector that removes all low-variance features
65
73
  For more details on this class, see [sklearn.feature_selection.VarianceThreshold]
@@ -11,7 +11,7 @@ import cloudpickle as cp
11
11
  import numpy as np
12
12
  import pandas as pd
13
13
  from numpy import typing as npt
14
-
14
+ from packaging import version
15
15
 
16
16
  import numpy
17
17
  import sklearn
@@ -60,6 +60,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
64
+ # Modeling library estimators require a smaller sklearn version range.
65
+ if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
+ raise Exception(
67
+ f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
68
+ )
69
+
70
+
63
71
  class GaussianProcessClassifier(BaseTransformer):
64
72
  r"""Gaussian process classification (GPC) based on Laplace approximation
65
73
  For more details on this class, see [sklearn.gaussian_process.GaussianProcessClassifier]
@@ -11,7 +11,7 @@ import cloudpickle as cp
11
11
  import numpy as np
12
12
  import pandas as pd
13
13
  from numpy import typing as npt
14
-
14
+ from packaging import version
15
15
 
16
16
  import numpy
17
17
  import sklearn
@@ -60,6 +60,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
64
+ # Modeling library estimators require a smaller sklearn version range.
65
+ if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
+ raise Exception(
67
+ f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
68
+ )
69
+
70
+
63
71
  class GaussianProcessRegressor(BaseTransformer):
64
72
  r"""Gaussian process regression (GPR)
65
73
  For more details on this class, see [sklearn.gaussian_process.GaussianProcessRegressor]
@@ -11,7 +11,7 @@ import cloudpickle as cp
11
11
  import numpy as np
12
12
  import pandas as pd
13
13
  from numpy import typing as npt
14
-
14
+ from packaging import version
15
15
 
16
16
  import numpy
17
17
  from sklearn.experimental import enable_iterative_imputer
@@ -61,6 +61,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
61
61
 
62
62
  INFER_SIGNATURE_MAX_ROWS = 100
63
63
 
64
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
65
+ # Modeling library estimators require a smaller sklearn version range.
66
+ if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
67
+ raise Exception(
68
+ f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
69
+ )
70
+
71
+
64
72
  class IterativeImputer(BaseTransformer):
65
73
  r"""Multivariate imputer that estimates each feature from all the others
66
74
  For more details on this class, see [sklearn.impute.IterativeImputer]
@@ -11,7 +11,7 @@ import cloudpickle as cp
11
11
  import numpy as np
12
12
  import pandas as pd
13
13
  from numpy import typing as npt
14
-
14
+ from packaging import version
15
15
 
16
16
  import numpy
17
17
  import sklearn
@@ -60,6 +60,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
64
+ # Modeling library estimators require a smaller sklearn version range.
65
+ if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
+ raise Exception(
67
+ f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
68
+ )
69
+
70
+
63
71
  class KNNImputer(BaseTransformer):
64
72
  r"""Imputation for completing missing values using k-Nearest Neighbors
65
73
  For more details on this class, see [sklearn.impute.KNNImputer]
@@ -11,7 +11,7 @@ import cloudpickle as cp
11
11
  import numpy as np
12
12
  import pandas as pd
13
13
  from numpy import typing as npt
14
-
14
+ from packaging import version
15
15
 
16
16
  import numpy
17
17
  import sklearn
@@ -60,6 +60,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
64
+ # Modeling library estimators require a smaller sklearn version range.
65
+ if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
+ raise Exception(
67
+ f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
68
+ )
69
+
70
+
63
71
  class MissingIndicator(BaseTransformer):
64
72
  r"""Binary indicators for missing values
65
73
  For more details on this class, see [sklearn.impute.MissingIndicator]
@@ -11,7 +11,7 @@ import cloudpickle as cp
11
11
  import numpy as np
12
12
  import pandas as pd
13
13
  from numpy import typing as npt
14
-
14
+ from packaging import version
15
15
 
16
16
  import numpy
17
17
  import sklearn
@@ -60,6 +60,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
64
+ # Modeling library estimators require a smaller sklearn version range.
65
+ if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
+ raise Exception(
67
+ f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
68
+ )
69
+
70
+
63
71
  class AdditiveChi2Sampler(BaseTransformer):
64
72
  r"""Approximate feature map for additive chi2 kernel
65
73
  For more details on this class, see [sklearn.kernel_approximation.AdditiveChi2Sampler]
@@ -11,7 +11,7 @@ import cloudpickle as cp
11
11
  import numpy as np
12
12
  import pandas as pd
13
13
  from numpy import typing as npt
14
-
14
+ from packaging import version
15
15
 
16
16
  import numpy
17
17
  import sklearn
@@ -60,6 +60,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
64
+ # Modeling library estimators require a smaller sklearn version range.
65
+ if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
+ raise Exception(
67
+ f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
68
+ )
69
+
70
+
63
71
  class Nystroem(BaseTransformer):
64
72
  r"""Approximate a kernel map using a subset of the training data
65
73
  For more details on this class, see [sklearn.kernel_approximation.Nystroem]
@@ -11,7 +11,7 @@ import cloudpickle as cp
11
11
  import numpy as np
12
12
  import pandas as pd
13
13
  from numpy import typing as npt
14
-
14
+ from packaging import version
15
15
 
16
16
  import numpy
17
17
  import sklearn
@@ -60,6 +60,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
64
+ # Modeling library estimators require a smaller sklearn version range.
65
+ if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
+ raise Exception(
67
+ f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
68
+ )
69
+
70
+
63
71
  class PolynomialCountSketch(BaseTransformer):
64
72
  r"""Polynomial kernel approximation via Tensor Sketch
65
73
  For more details on this class, see [sklearn.kernel_approximation.PolynomialCountSketch]
@@ -11,7 +11,7 @@ import cloudpickle as cp
11
11
  import numpy as np
12
12
  import pandas as pd
13
13
  from numpy import typing as npt
14
-
14
+ from packaging import version
15
15
 
16
16
  import numpy
17
17
  import sklearn
@@ -60,6 +60,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
64
+ # Modeling library estimators require a smaller sklearn version range.
65
+ if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
+ raise Exception(
67
+ f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
68
+ )
69
+
70
+
63
71
  class RBFSampler(BaseTransformer):
64
72
  r"""Approximate a RBF kernel feature map using random Fourier features
65
73
  For more details on this class, see [sklearn.kernel_approximation.RBFSampler]
@@ -11,7 +11,7 @@ import cloudpickle as cp
11
11
  import numpy as np
12
12
  import pandas as pd
13
13
  from numpy import typing as npt
14
-
14
+ from packaging import version
15
15
 
16
16
  import numpy
17
17
  import sklearn
@@ -60,6 +60,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
64
+ # Modeling library estimators require a smaller sklearn version range.
65
+ if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
+ raise Exception(
67
+ f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
68
+ )
69
+
70
+
63
71
  class SkewedChi2Sampler(BaseTransformer):
64
72
  r"""Approximate feature map for "skewed chi-squared" kernel
65
73
  For more details on this class, see [sklearn.kernel_approximation.SkewedChi2Sampler]
@@ -11,7 +11,7 @@ import cloudpickle as cp
11
11
  import numpy as np
12
12
  import pandas as pd
13
13
  from numpy import typing as npt
14
-
14
+ from packaging import version
15
15
 
16
16
  import numpy
17
17
  import sklearn
@@ -60,6 +60,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
64
+ # Modeling library estimators require a smaller sklearn version range.
65
+ if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
+ raise Exception(
67
+ f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
68
+ )
69
+
70
+
63
71
  class KernelRidge(BaseTransformer):
64
72
  r"""Kernel ridge regression
65
73
  For more details on this class, see [sklearn.kernel_ridge.KernelRidge]
@@ -11,7 +11,7 @@ import cloudpickle as cp
11
11
  import numpy as np
12
12
  import pandas as pd
13
13
  from numpy import typing as npt
14
-
14
+ from packaging import version
15
15
 
16
16
  import numpy
17
17
  import sklearn
@@ -60,6 +60,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
64
+ # Modeling library estimators require a smaller sklearn version range.
65
+ if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
+ raise Exception(
67
+ f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
68
+ )
69
+
70
+
63
71
  class LGBMClassifier(BaseTransformer):
64
72
  r"""LightGBM classifier
65
73
  For more details on this class, see [lightgbm.LGBMClassifier]
@@ -11,7 +11,7 @@ import cloudpickle as cp
11
11
  import numpy as np
12
12
  import pandas as pd
13
13
  from numpy import typing as npt
14
-
14
+ from packaging import version
15
15
 
16
16
  import numpy
17
17
  import sklearn
@@ -60,6 +60,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
64
+ # Modeling library estimators require a smaller sklearn version range.
65
+ if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
+ raise Exception(
67
+ f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
68
+ )
69
+
70
+
63
71
  class LGBMRegressor(BaseTransformer):
64
72
  r"""LightGBM regressor
65
73
  For more details on this class, see [lightgbm.LGBMRegressor]
@@ -11,7 +11,7 @@ import cloudpickle as cp
11
11
  import numpy as np
12
12
  import pandas as pd
13
13
  from numpy import typing as npt
14
-
14
+ from packaging import version
15
15
 
16
16
  import numpy
17
17
  import sklearn
@@ -60,6 +60,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
64
+ # Modeling library estimators require a smaller sklearn version range.
65
+ if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
+ raise Exception(
67
+ f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
68
+ )
69
+
70
+
63
71
  class ARDRegression(BaseTransformer):
64
72
  r"""Bayesian ARD regression
65
73
  For more details on this class, see [sklearn.linear_model.ARDRegression]
@@ -11,7 +11,7 @@ import cloudpickle as cp
11
11
  import numpy as np
12
12
  import pandas as pd
13
13
  from numpy import typing as npt
14
-
14
+ from packaging import version
15
15
 
16
16
  import numpy
17
17
  import sklearn
@@ -60,6 +60,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
64
+ # Modeling library estimators require a smaller sklearn version range.
65
+ if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
+ raise Exception(
67
+ f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
68
+ )
69
+
70
+
63
71
  class BayesianRidge(BaseTransformer):
64
72
  r"""Bayesian ridge regression
65
73
  For more details on this class, see [sklearn.linear_model.BayesianRidge]
@@ -11,7 +11,7 @@ import cloudpickle as cp
11
11
  import numpy as np
12
12
  import pandas as pd
13
13
  from numpy import typing as npt
14
-
14
+ from packaging import version
15
15
 
16
16
  import numpy
17
17
  import sklearn
@@ -60,6 +60,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
64
+ # Modeling library estimators require a smaller sklearn version range.
65
+ if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
+ raise Exception(
67
+ f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
68
+ )
69
+
70
+
63
71
  class ElasticNet(BaseTransformer):
64
72
  r"""Linear regression with combined L1 and L2 priors as regularizer
65
73
  For more details on this class, see [sklearn.linear_model.ElasticNet]
@@ -11,7 +11,7 @@ import cloudpickle as cp
11
11
  import numpy as np
12
12
  import pandas as pd
13
13
  from numpy import typing as npt
14
-
14
+ from packaging import version
15
15
 
16
16
  import numpy
17
17
  import sklearn
@@ -60,6 +60,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
64
+ # Modeling library estimators require a smaller sklearn version range.
65
+ if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
+ raise Exception(
67
+ f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
68
+ )
69
+
70
+
63
71
  class ElasticNetCV(BaseTransformer):
64
72
  r"""Elastic Net model with iterative fitting along a regularization path
65
73
  For more details on this class, see [sklearn.linear_model.ElasticNetCV]
@@ -11,7 +11,7 @@ import cloudpickle as cp
11
11
  import numpy as np
12
12
  import pandas as pd
13
13
  from numpy import typing as npt
14
-
14
+ from packaging import version
15
15
 
16
16
  import numpy
17
17
  import sklearn
@@ -60,6 +60,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
64
+ # Modeling library estimators require a smaller sklearn version range.
65
+ if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
+ raise Exception(
67
+ f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
68
+ )
69
+
70
+
63
71
  class GammaRegressor(BaseTransformer):
64
72
  r"""Generalized Linear Model with a Gamma distribution
65
73
  For more details on this class, see [sklearn.linear_model.GammaRegressor]