snowflake-ml-python 1.8.3__py3-none-any.whl → 1.8.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/__init__.py +7 -1
- snowflake/ml/_internal/platform_capabilities.py +13 -11
- snowflake/ml/_internal/telemetry.py +42 -13
- snowflake/ml/_internal/utils/identifier.py +2 -2
- snowflake/ml/data/data_connector.py +1 -1
- snowflake/ml/jobs/_utils/constants.py +10 -1
- snowflake/ml/jobs/_utils/interop_utils.py +1 -1
- snowflake/ml/jobs/_utils/payload_utils.py +51 -34
- snowflake/ml/jobs/_utils/scripts/constants.py +6 -0
- snowflake/ml/jobs/_utils/scripts/get_instance_ip.py +4 -4
- snowflake/ml/jobs/_utils/scripts/mljob_launcher.py +86 -3
- snowflake/ml/jobs/_utils/spec_utils.py +8 -6
- snowflake/ml/jobs/decorators.py +13 -3
- snowflake/ml/jobs/job.py +206 -26
- snowflake/ml/jobs/manager.py +78 -34
- snowflake/ml/model/_client/model/model_version_impl.py +1 -1
- snowflake/ml/model/_client/ops/service_ops.py +31 -17
- snowflake/ml/model/_client/service/model_deployment_spec.py +351 -170
- snowflake/ml/model/_client/service/model_deployment_spec_schema.py +25 -0
- snowflake/ml/model/_client/sql/model_version.py +1 -1
- snowflake/ml/model/_client/sql/service.py +20 -32
- snowflake/ml/model/_model_composer/model_composer.py +44 -19
- snowflake/ml/model/_packager/model_handlers/_utils.py +32 -2
- snowflake/ml/model/_packager/model_handlers/custom.py +1 -1
- snowflake/ml/model/_packager/model_handlers/pytorch.py +1 -2
- snowflake/ml/model/_packager/model_handlers/sklearn.py +100 -41
- snowflake/ml/model/_packager/model_handlers/tensorflow.py +7 -4
- snowflake/ml/model/_packager/model_handlers/torchscript.py +2 -2
- snowflake/ml/model/_packager/model_handlers/xgboost.py +16 -7
- snowflake/ml/model/_packager/model_meta/model_meta.py +2 -1
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +1 -0
- snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py +5 -4
- snowflake/ml/model/_signatures/dmatrix_handler.py +15 -2
- snowflake/ml/model/custom_model.py +17 -4
- snowflake/ml/model/model_signature.py +3 -3
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +9 -1
- snowflake/ml/modeling/cluster/affinity_propagation.py +9 -1
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +9 -1
- snowflake/ml/modeling/cluster/birch.py +9 -1
- snowflake/ml/modeling/cluster/bisecting_k_means.py +9 -1
- snowflake/ml/modeling/cluster/dbscan.py +9 -1
- snowflake/ml/modeling/cluster/feature_agglomeration.py +9 -1
- snowflake/ml/modeling/cluster/k_means.py +9 -1
- snowflake/ml/modeling/cluster/mean_shift.py +9 -1
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +9 -1
- snowflake/ml/modeling/cluster/optics.py +9 -1
- snowflake/ml/modeling/cluster/spectral_biclustering.py +9 -1
- snowflake/ml/modeling/cluster/spectral_clustering.py +9 -1
- snowflake/ml/modeling/cluster/spectral_coclustering.py +9 -1
- snowflake/ml/modeling/compose/column_transformer.py +9 -1
- snowflake/ml/modeling/compose/transformed_target_regressor.py +9 -1
- snowflake/ml/modeling/covariance/elliptic_envelope.py +9 -1
- snowflake/ml/modeling/covariance/empirical_covariance.py +9 -1
- snowflake/ml/modeling/covariance/graphical_lasso.py +9 -1
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +9 -1
- snowflake/ml/modeling/covariance/ledoit_wolf.py +9 -1
- snowflake/ml/modeling/covariance/min_cov_det.py +9 -1
- snowflake/ml/modeling/covariance/oas.py +9 -1
- snowflake/ml/modeling/covariance/shrunk_covariance.py +9 -1
- snowflake/ml/modeling/decomposition/dictionary_learning.py +9 -1
- snowflake/ml/modeling/decomposition/factor_analysis.py +9 -1
- snowflake/ml/modeling/decomposition/fast_ica.py +9 -1
- snowflake/ml/modeling/decomposition/incremental_pca.py +9 -1
- snowflake/ml/modeling/decomposition/kernel_pca.py +9 -1
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +9 -1
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +9 -1
- snowflake/ml/modeling/decomposition/pca.py +9 -1
- snowflake/ml/modeling/decomposition/sparse_pca.py +9 -1
- snowflake/ml/modeling/decomposition/truncated_svd.py +9 -1
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +9 -1
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +9 -1
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +9 -1
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +9 -1
- snowflake/ml/modeling/ensemble/bagging_classifier.py +9 -1
- snowflake/ml/modeling/ensemble/bagging_regressor.py +9 -1
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +9 -1
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +9 -1
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +9 -1
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +9 -1
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +9 -1
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +9 -1
- snowflake/ml/modeling/ensemble/isolation_forest.py +9 -1
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +9 -1
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +9 -1
- snowflake/ml/modeling/ensemble/stacking_regressor.py +9 -1
- snowflake/ml/modeling/ensemble/voting_classifier.py +9 -1
- snowflake/ml/modeling/ensemble/voting_regressor.py +9 -1
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +9 -1
- snowflake/ml/modeling/feature_selection/select_fdr.py +9 -1
- snowflake/ml/modeling/feature_selection/select_fpr.py +9 -1
- snowflake/ml/modeling/feature_selection/select_fwe.py +9 -1
- snowflake/ml/modeling/feature_selection/select_k_best.py +9 -1
- snowflake/ml/modeling/feature_selection/select_percentile.py +9 -1
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +9 -1
- snowflake/ml/modeling/feature_selection/variance_threshold.py +9 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +9 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +9 -1
- snowflake/ml/modeling/impute/iterative_imputer.py +9 -1
- snowflake/ml/modeling/impute/knn_imputer.py +9 -1
- snowflake/ml/modeling/impute/missing_indicator.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +9 -1
- snowflake/ml/modeling/kernel_approximation/nystroem.py +9 -1
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +9 -1
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +9 -1
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +9 -1
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +9 -1
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +9 -1
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +9 -1
- snowflake/ml/modeling/linear_model/ard_regression.py +9 -1
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +9 -1
- snowflake/ml/modeling/linear_model/elastic_net.py +9 -1
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +9 -1
- snowflake/ml/modeling/linear_model/gamma_regressor.py +9 -1
- snowflake/ml/modeling/linear_model/huber_regressor.py +9 -1
- snowflake/ml/modeling/linear_model/lars.py +9 -1
- snowflake/ml/modeling/linear_model/lars_cv.py +9 -1
- snowflake/ml/modeling/linear_model/lasso.py +9 -1
- snowflake/ml/modeling/linear_model/lasso_cv.py +9 -1
- snowflake/ml/modeling/linear_model/lasso_lars.py +9 -1
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +9 -1
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +9 -1
- snowflake/ml/modeling/linear_model/linear_regression.py +9 -1
- snowflake/ml/modeling/linear_model/logistic_regression.py +9 -1
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +9 -1
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +9 -1
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +9 -1
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +9 -1
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +9 -1
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +9 -1
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +9 -1
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +9 -1
- snowflake/ml/modeling/linear_model/perceptron.py +9 -1
- snowflake/ml/modeling/linear_model/poisson_regressor.py +9 -1
- snowflake/ml/modeling/linear_model/ransac_regressor.py +9 -1
- snowflake/ml/modeling/linear_model/ridge.py +9 -1
- snowflake/ml/modeling/linear_model/ridge_classifier.py +9 -1
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +9 -1
- snowflake/ml/modeling/linear_model/ridge_cv.py +9 -1
- snowflake/ml/modeling/linear_model/sgd_classifier.py +9 -1
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +9 -1
- snowflake/ml/modeling/linear_model/sgd_regressor.py +9 -1
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +9 -1
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +9 -1
- snowflake/ml/modeling/manifold/isomap.py +9 -1
- snowflake/ml/modeling/manifold/mds.py +9 -1
- snowflake/ml/modeling/manifold/spectral_embedding.py +9 -1
- snowflake/ml/modeling/manifold/tsne.py +9 -1
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +9 -1
- snowflake/ml/modeling/mixture/gaussian_mixture.py +9 -1
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +9 -1
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +9 -1
- snowflake/ml/modeling/multiclass/output_code_classifier.py +9 -1
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +9 -1
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +9 -1
- snowflake/ml/modeling/naive_bayes/complement_nb.py +9 -1
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +9 -1
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +9 -1
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +9 -1
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +9 -1
- snowflake/ml/modeling/neighbors/kernel_density.py +9 -1
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +9 -1
- snowflake/ml/modeling/neighbors/nearest_centroid.py +9 -1
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +9 -1
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +9 -1
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +9 -1
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +9 -1
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +9 -1
- snowflake/ml/modeling/neural_network/mlp_classifier.py +9 -1
- snowflake/ml/modeling/neural_network/mlp_regressor.py +9 -1
- snowflake/ml/modeling/preprocessing/polynomial_features.py +9 -1
- snowflake/ml/modeling/semi_supervised/label_propagation.py +9 -1
- snowflake/ml/modeling/semi_supervised/label_spreading.py +9 -1
- snowflake/ml/modeling/svm/linear_svc.py +9 -1
- snowflake/ml/modeling/svm/linear_svr.py +9 -1
- snowflake/ml/modeling/svm/nu_svc.py +9 -1
- snowflake/ml/modeling/svm/nu_svr.py +9 -1
- snowflake/ml/modeling/svm/svc.py +9 -1
- snowflake/ml/modeling/svm/svr.py +9 -1
- snowflake/ml/modeling/tree/decision_tree_classifier.py +9 -1
- snowflake/ml/modeling/tree/decision_tree_regressor.py +9 -1
- snowflake/ml/modeling/tree/extra_tree_classifier.py +9 -1
- snowflake/ml/modeling/tree/extra_tree_regressor.py +9 -1
- snowflake/ml/modeling/xgboost/xgb_classifier.py +9 -1
- snowflake/ml/modeling/xgboost/xgb_regressor.py +9 -1
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +9 -1
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +9 -1
- snowflake/ml/monitoring/explain_visualize.py +424 -0
- snowflake/ml/registry/_manager/model_manager.py +23 -2
- snowflake/ml/registry/registry.py +10 -9
- snowflake/ml/utils/connection_params.py +8 -2
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.8.3.dist-info → snowflake_ml_python-1.8.5.dist-info}/METADATA +58 -8
- {snowflake_ml_python-1.8.3.dist-info → snowflake_ml_python-1.8.5.dist-info}/RECORD +196 -195
- {snowflake_ml_python-1.8.3.dist-info → snowflake_ml_python-1.8.5.dist-info}/WHEEL +1 -1
- {snowflake_ml_python-1.8.3.dist-info → snowflake_ml_python-1.8.5.dist-info}/licenses/LICENSE.txt +0 -0
- {snowflake_ml_python-1.8.3.dist-info → snowflake_ml_python-1.8.5.dist-info}/top_level.txt +0 -0
@@ -11,7 +11,7 @@ import cloudpickle as cp
|
|
11
11
|
import numpy as np
|
12
12
|
import pandas as pd
|
13
13
|
from numpy import typing as npt
|
14
|
-
|
14
|
+
from packaging import version
|
15
15
|
|
16
16
|
import numpy
|
17
17
|
import sklearn
|
@@ -60,6 +60,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
|
60
60
|
|
61
61
|
INFER_SIGNATURE_MAX_ROWS = 100
|
62
62
|
|
63
|
+
SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
|
64
|
+
# Modeling library estimators require a smaller sklearn version range.
|
65
|
+
if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
|
66
|
+
raise Exception(
|
67
|
+
f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
|
68
|
+
)
|
69
|
+
|
70
|
+
|
63
71
|
class VotingRegressor(BaseTransformer):
|
64
72
|
r"""Prediction voting regressor for unfitted estimators
|
65
73
|
For more details on this class, see [sklearn.ensemble.VotingRegressor]
|
@@ -11,7 +11,7 @@ import cloudpickle as cp
|
|
11
11
|
import numpy as np
|
12
12
|
import pandas as pd
|
13
13
|
from numpy import typing as npt
|
14
|
-
|
14
|
+
from packaging import version
|
15
15
|
|
16
16
|
import numpy
|
17
17
|
import sklearn.feature_selection._univariate_selection
|
@@ -61,6 +61,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
|
61
61
|
|
62
62
|
INFER_SIGNATURE_MAX_ROWS = 100
|
63
63
|
|
64
|
+
SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
|
65
|
+
# Modeling library estimators require a smaller sklearn version range.
|
66
|
+
if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
|
67
|
+
raise Exception(
|
68
|
+
f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
|
69
|
+
)
|
70
|
+
|
71
|
+
|
64
72
|
class GenericUnivariateSelect(BaseTransformer):
|
65
73
|
r"""Univariate feature selector with configurable strategy
|
66
74
|
For more details on this class, see [sklearn.feature_selection.GenericUnivariateSelect]
|
@@ -11,7 +11,7 @@ import cloudpickle as cp
|
|
11
11
|
import numpy as np
|
12
12
|
import pandas as pd
|
13
13
|
from numpy import typing as npt
|
14
|
-
|
14
|
+
from packaging import version
|
15
15
|
|
16
16
|
import numpy
|
17
17
|
import sklearn.feature_selection._univariate_selection
|
@@ -61,6 +61,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
|
61
61
|
|
62
62
|
INFER_SIGNATURE_MAX_ROWS = 100
|
63
63
|
|
64
|
+
SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
|
65
|
+
# Modeling library estimators require a smaller sklearn version range.
|
66
|
+
if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
|
67
|
+
raise Exception(
|
68
|
+
f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
|
69
|
+
)
|
70
|
+
|
71
|
+
|
64
72
|
class SelectFdr(BaseTransformer):
|
65
73
|
r"""Filter: Select the p-values for an estimated false discovery rate
|
66
74
|
For more details on this class, see [sklearn.feature_selection.SelectFdr]
|
@@ -11,7 +11,7 @@ import cloudpickle as cp
|
|
11
11
|
import numpy as np
|
12
12
|
import pandas as pd
|
13
13
|
from numpy import typing as npt
|
14
|
-
|
14
|
+
from packaging import version
|
15
15
|
|
16
16
|
import numpy
|
17
17
|
import sklearn.feature_selection._univariate_selection
|
@@ -61,6 +61,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
|
61
61
|
|
62
62
|
INFER_SIGNATURE_MAX_ROWS = 100
|
63
63
|
|
64
|
+
SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
|
65
|
+
# Modeling library estimators require a smaller sklearn version range.
|
66
|
+
if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
|
67
|
+
raise Exception(
|
68
|
+
f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
|
69
|
+
)
|
70
|
+
|
71
|
+
|
64
72
|
class SelectFpr(BaseTransformer):
|
65
73
|
r"""Filter: Select the pvalues below alpha based on a FPR test
|
66
74
|
For more details on this class, see [sklearn.feature_selection.SelectFpr]
|
@@ -11,7 +11,7 @@ import cloudpickle as cp
|
|
11
11
|
import numpy as np
|
12
12
|
import pandas as pd
|
13
13
|
from numpy import typing as npt
|
14
|
-
|
14
|
+
from packaging import version
|
15
15
|
|
16
16
|
import numpy
|
17
17
|
import sklearn.feature_selection._univariate_selection
|
@@ -61,6 +61,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
|
61
61
|
|
62
62
|
INFER_SIGNATURE_MAX_ROWS = 100
|
63
63
|
|
64
|
+
SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
|
65
|
+
# Modeling library estimators require a smaller sklearn version range.
|
66
|
+
if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
|
67
|
+
raise Exception(
|
68
|
+
f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
|
69
|
+
)
|
70
|
+
|
71
|
+
|
64
72
|
class SelectFwe(BaseTransformer):
|
65
73
|
r"""Filter: Select the p-values corresponding to Family-wise error rate
|
66
74
|
For more details on this class, see [sklearn.feature_selection.SelectFwe]
|
@@ -11,7 +11,7 @@ import cloudpickle as cp
|
|
11
11
|
import numpy as np
|
12
12
|
import pandas as pd
|
13
13
|
from numpy import typing as npt
|
14
|
-
|
14
|
+
from packaging import version
|
15
15
|
|
16
16
|
import numpy
|
17
17
|
import sklearn.feature_selection._univariate_selection
|
@@ -61,6 +61,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
|
61
61
|
|
62
62
|
INFER_SIGNATURE_MAX_ROWS = 100
|
63
63
|
|
64
|
+
SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
|
65
|
+
# Modeling library estimators require a smaller sklearn version range.
|
66
|
+
if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
|
67
|
+
raise Exception(
|
68
|
+
f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
|
69
|
+
)
|
70
|
+
|
71
|
+
|
64
72
|
class SelectKBest(BaseTransformer):
|
65
73
|
r"""Select features according to the k highest scores
|
66
74
|
For more details on this class, see [sklearn.feature_selection.SelectKBest]
|
@@ -11,7 +11,7 @@ import cloudpickle as cp
|
|
11
11
|
import numpy as np
|
12
12
|
import pandas as pd
|
13
13
|
from numpy import typing as npt
|
14
|
-
|
14
|
+
from packaging import version
|
15
15
|
|
16
16
|
import numpy
|
17
17
|
import sklearn.feature_selection._univariate_selection
|
@@ -61,6 +61,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
|
61
61
|
|
62
62
|
INFER_SIGNATURE_MAX_ROWS = 100
|
63
63
|
|
64
|
+
SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
|
65
|
+
# Modeling library estimators require a smaller sklearn version range.
|
66
|
+
if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
|
67
|
+
raise Exception(
|
68
|
+
f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
|
69
|
+
)
|
70
|
+
|
71
|
+
|
64
72
|
class SelectPercentile(BaseTransformer):
|
65
73
|
r"""Select features according to a percentile of the highest scores
|
66
74
|
For more details on this class, see [sklearn.feature_selection.SelectPercentile]
|
@@ -11,7 +11,7 @@ import cloudpickle as cp
|
|
11
11
|
import numpy as np
|
12
12
|
import pandas as pd
|
13
13
|
from numpy import typing as npt
|
14
|
-
|
14
|
+
from packaging import version
|
15
15
|
|
16
16
|
import numpy
|
17
17
|
import sklearn
|
@@ -60,6 +60,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
|
60
60
|
|
61
61
|
INFER_SIGNATURE_MAX_ROWS = 100
|
62
62
|
|
63
|
+
SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
|
64
|
+
# Modeling library estimators require a smaller sklearn version range.
|
65
|
+
if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
|
66
|
+
raise Exception(
|
67
|
+
f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
|
68
|
+
)
|
69
|
+
|
70
|
+
|
63
71
|
class SequentialFeatureSelector(BaseTransformer):
|
64
72
|
r"""Transformer that performs Sequential Feature Selection
|
65
73
|
For more details on this class, see [sklearn.feature_selection.SequentialFeatureSelector]
|
@@ -11,7 +11,7 @@ import cloudpickle as cp
|
|
11
11
|
import numpy as np
|
12
12
|
import pandas as pd
|
13
13
|
from numpy import typing as npt
|
14
|
-
|
14
|
+
from packaging import version
|
15
15
|
|
16
16
|
import numpy
|
17
17
|
import sklearn
|
@@ -60,6 +60,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
|
60
60
|
|
61
61
|
INFER_SIGNATURE_MAX_ROWS = 100
|
62
62
|
|
63
|
+
SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
|
64
|
+
# Modeling library estimators require a smaller sklearn version range.
|
65
|
+
if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
|
66
|
+
raise Exception(
|
67
|
+
f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
|
68
|
+
)
|
69
|
+
|
70
|
+
|
63
71
|
class VarianceThreshold(BaseTransformer):
|
64
72
|
r"""Feature selector that removes all low-variance features
|
65
73
|
For more details on this class, see [sklearn.feature_selection.VarianceThreshold]
|
@@ -11,7 +11,7 @@ import cloudpickle as cp
|
|
11
11
|
import numpy as np
|
12
12
|
import pandas as pd
|
13
13
|
from numpy import typing as npt
|
14
|
-
|
14
|
+
from packaging import version
|
15
15
|
|
16
16
|
import numpy
|
17
17
|
import sklearn
|
@@ -60,6 +60,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
|
60
60
|
|
61
61
|
INFER_SIGNATURE_MAX_ROWS = 100
|
62
62
|
|
63
|
+
SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
|
64
|
+
# Modeling library estimators require a smaller sklearn version range.
|
65
|
+
if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
|
66
|
+
raise Exception(
|
67
|
+
f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
|
68
|
+
)
|
69
|
+
|
70
|
+
|
63
71
|
class GaussianProcessClassifier(BaseTransformer):
|
64
72
|
r"""Gaussian process classification (GPC) based on Laplace approximation
|
65
73
|
For more details on this class, see [sklearn.gaussian_process.GaussianProcessClassifier]
|
@@ -11,7 +11,7 @@ import cloudpickle as cp
|
|
11
11
|
import numpy as np
|
12
12
|
import pandas as pd
|
13
13
|
from numpy import typing as npt
|
14
|
-
|
14
|
+
from packaging import version
|
15
15
|
|
16
16
|
import numpy
|
17
17
|
import sklearn
|
@@ -60,6 +60,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
|
60
60
|
|
61
61
|
INFER_SIGNATURE_MAX_ROWS = 100
|
62
62
|
|
63
|
+
SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
|
64
|
+
# Modeling library estimators require a smaller sklearn version range.
|
65
|
+
if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
|
66
|
+
raise Exception(
|
67
|
+
f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
|
68
|
+
)
|
69
|
+
|
70
|
+
|
63
71
|
class GaussianProcessRegressor(BaseTransformer):
|
64
72
|
r"""Gaussian process regression (GPR)
|
65
73
|
For more details on this class, see [sklearn.gaussian_process.GaussianProcessRegressor]
|
@@ -11,7 +11,7 @@ import cloudpickle as cp
|
|
11
11
|
import numpy as np
|
12
12
|
import pandas as pd
|
13
13
|
from numpy import typing as npt
|
14
|
-
|
14
|
+
from packaging import version
|
15
15
|
|
16
16
|
import numpy
|
17
17
|
from sklearn.experimental import enable_iterative_imputer
|
@@ -61,6 +61,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
|
61
61
|
|
62
62
|
INFER_SIGNATURE_MAX_ROWS = 100
|
63
63
|
|
64
|
+
SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
|
65
|
+
# Modeling library estimators require a smaller sklearn version range.
|
66
|
+
if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
|
67
|
+
raise Exception(
|
68
|
+
f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
|
69
|
+
)
|
70
|
+
|
71
|
+
|
64
72
|
class IterativeImputer(BaseTransformer):
|
65
73
|
r"""Multivariate imputer that estimates each feature from all the others
|
66
74
|
For more details on this class, see [sklearn.impute.IterativeImputer]
|
@@ -11,7 +11,7 @@ import cloudpickle as cp
|
|
11
11
|
import numpy as np
|
12
12
|
import pandas as pd
|
13
13
|
from numpy import typing as npt
|
14
|
-
|
14
|
+
from packaging import version
|
15
15
|
|
16
16
|
import numpy
|
17
17
|
import sklearn
|
@@ -60,6 +60,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
|
60
60
|
|
61
61
|
INFER_SIGNATURE_MAX_ROWS = 100
|
62
62
|
|
63
|
+
SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
|
64
|
+
# Modeling library estimators require a smaller sklearn version range.
|
65
|
+
if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
|
66
|
+
raise Exception(
|
67
|
+
f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
|
68
|
+
)
|
69
|
+
|
70
|
+
|
63
71
|
class KNNImputer(BaseTransformer):
|
64
72
|
r"""Imputation for completing missing values using k-Nearest Neighbors
|
65
73
|
For more details on this class, see [sklearn.impute.KNNImputer]
|
@@ -11,7 +11,7 @@ import cloudpickle as cp
|
|
11
11
|
import numpy as np
|
12
12
|
import pandas as pd
|
13
13
|
from numpy import typing as npt
|
14
|
-
|
14
|
+
from packaging import version
|
15
15
|
|
16
16
|
import numpy
|
17
17
|
import sklearn
|
@@ -60,6 +60,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
|
60
60
|
|
61
61
|
INFER_SIGNATURE_MAX_ROWS = 100
|
62
62
|
|
63
|
+
SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
|
64
|
+
# Modeling library estimators require a smaller sklearn version range.
|
65
|
+
if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
|
66
|
+
raise Exception(
|
67
|
+
f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
|
68
|
+
)
|
69
|
+
|
70
|
+
|
63
71
|
class MissingIndicator(BaseTransformer):
|
64
72
|
r"""Binary indicators for missing values
|
65
73
|
For more details on this class, see [sklearn.impute.MissingIndicator]
|
@@ -11,7 +11,7 @@ import cloudpickle as cp
|
|
11
11
|
import numpy as np
|
12
12
|
import pandas as pd
|
13
13
|
from numpy import typing as npt
|
14
|
-
|
14
|
+
from packaging import version
|
15
15
|
|
16
16
|
import numpy
|
17
17
|
import sklearn
|
@@ -60,6 +60,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
|
60
60
|
|
61
61
|
INFER_SIGNATURE_MAX_ROWS = 100
|
62
62
|
|
63
|
+
SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
|
64
|
+
# Modeling library estimators require a smaller sklearn version range.
|
65
|
+
if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
|
66
|
+
raise Exception(
|
67
|
+
f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
|
68
|
+
)
|
69
|
+
|
70
|
+
|
63
71
|
class AdditiveChi2Sampler(BaseTransformer):
|
64
72
|
r"""Approximate feature map for additive chi2 kernel
|
65
73
|
For more details on this class, see [sklearn.kernel_approximation.AdditiveChi2Sampler]
|
@@ -11,7 +11,7 @@ import cloudpickle as cp
|
|
11
11
|
import numpy as np
|
12
12
|
import pandas as pd
|
13
13
|
from numpy import typing as npt
|
14
|
-
|
14
|
+
from packaging import version
|
15
15
|
|
16
16
|
import numpy
|
17
17
|
import sklearn
|
@@ -60,6 +60,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
|
60
60
|
|
61
61
|
INFER_SIGNATURE_MAX_ROWS = 100
|
62
62
|
|
63
|
+
SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
|
64
|
+
# Modeling library estimators require a smaller sklearn version range.
|
65
|
+
if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
|
66
|
+
raise Exception(
|
67
|
+
f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
|
68
|
+
)
|
69
|
+
|
70
|
+
|
63
71
|
class Nystroem(BaseTransformer):
|
64
72
|
r"""Approximate a kernel map using a subset of the training data
|
65
73
|
For more details on this class, see [sklearn.kernel_approximation.Nystroem]
|
@@ -11,7 +11,7 @@ import cloudpickle as cp
|
|
11
11
|
import numpy as np
|
12
12
|
import pandas as pd
|
13
13
|
from numpy import typing as npt
|
14
|
-
|
14
|
+
from packaging import version
|
15
15
|
|
16
16
|
import numpy
|
17
17
|
import sklearn
|
@@ -60,6 +60,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
|
60
60
|
|
61
61
|
INFER_SIGNATURE_MAX_ROWS = 100
|
62
62
|
|
63
|
+
SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
|
64
|
+
# Modeling library estimators require a smaller sklearn version range.
|
65
|
+
if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
|
66
|
+
raise Exception(
|
67
|
+
f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
|
68
|
+
)
|
69
|
+
|
70
|
+
|
63
71
|
class PolynomialCountSketch(BaseTransformer):
|
64
72
|
r"""Polynomial kernel approximation via Tensor Sketch
|
65
73
|
For more details on this class, see [sklearn.kernel_approximation.PolynomialCountSketch]
|
@@ -11,7 +11,7 @@ import cloudpickle as cp
|
|
11
11
|
import numpy as np
|
12
12
|
import pandas as pd
|
13
13
|
from numpy import typing as npt
|
14
|
-
|
14
|
+
from packaging import version
|
15
15
|
|
16
16
|
import numpy
|
17
17
|
import sklearn
|
@@ -60,6 +60,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
|
60
60
|
|
61
61
|
INFER_SIGNATURE_MAX_ROWS = 100
|
62
62
|
|
63
|
+
SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
|
64
|
+
# Modeling library estimators require a smaller sklearn version range.
|
65
|
+
if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
|
66
|
+
raise Exception(
|
67
|
+
f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
|
68
|
+
)
|
69
|
+
|
70
|
+
|
63
71
|
class RBFSampler(BaseTransformer):
|
64
72
|
r"""Approximate a RBF kernel feature map using random Fourier features
|
65
73
|
For more details on this class, see [sklearn.kernel_approximation.RBFSampler]
|
@@ -11,7 +11,7 @@ import cloudpickle as cp
|
|
11
11
|
import numpy as np
|
12
12
|
import pandas as pd
|
13
13
|
from numpy import typing as npt
|
14
|
-
|
14
|
+
from packaging import version
|
15
15
|
|
16
16
|
import numpy
|
17
17
|
import sklearn
|
@@ -60,6 +60,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
|
60
60
|
|
61
61
|
INFER_SIGNATURE_MAX_ROWS = 100
|
62
62
|
|
63
|
+
SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
|
64
|
+
# Modeling library estimators require a smaller sklearn version range.
|
65
|
+
if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
|
66
|
+
raise Exception(
|
67
|
+
f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
|
68
|
+
)
|
69
|
+
|
70
|
+
|
63
71
|
class SkewedChi2Sampler(BaseTransformer):
|
64
72
|
r"""Approximate feature map for "skewed chi-squared" kernel
|
65
73
|
For more details on this class, see [sklearn.kernel_approximation.SkewedChi2Sampler]
|
@@ -11,7 +11,7 @@ import cloudpickle as cp
|
|
11
11
|
import numpy as np
|
12
12
|
import pandas as pd
|
13
13
|
from numpy import typing as npt
|
14
|
-
|
14
|
+
from packaging import version
|
15
15
|
|
16
16
|
import numpy
|
17
17
|
import sklearn
|
@@ -60,6 +60,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
|
60
60
|
|
61
61
|
INFER_SIGNATURE_MAX_ROWS = 100
|
62
62
|
|
63
|
+
SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
|
64
|
+
# Modeling library estimators require a smaller sklearn version range.
|
65
|
+
if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
|
66
|
+
raise Exception(
|
67
|
+
f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
|
68
|
+
)
|
69
|
+
|
70
|
+
|
63
71
|
class KernelRidge(BaseTransformer):
|
64
72
|
r"""Kernel ridge regression
|
65
73
|
For more details on this class, see [sklearn.kernel_ridge.KernelRidge]
|
@@ -11,7 +11,7 @@ import cloudpickle as cp
|
|
11
11
|
import numpy as np
|
12
12
|
import pandas as pd
|
13
13
|
from numpy import typing as npt
|
14
|
-
|
14
|
+
from packaging import version
|
15
15
|
|
16
16
|
import numpy
|
17
17
|
import sklearn
|
@@ -60,6 +60,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
|
60
60
|
|
61
61
|
INFER_SIGNATURE_MAX_ROWS = 100
|
62
62
|
|
63
|
+
SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
|
64
|
+
# Modeling library estimators require a smaller sklearn version range.
|
65
|
+
if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
|
66
|
+
raise Exception(
|
67
|
+
f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
|
68
|
+
)
|
69
|
+
|
70
|
+
|
63
71
|
class LGBMClassifier(BaseTransformer):
|
64
72
|
r"""LightGBM classifier
|
65
73
|
For more details on this class, see [lightgbm.LGBMClassifier]
|
@@ -11,7 +11,7 @@ import cloudpickle as cp
|
|
11
11
|
import numpy as np
|
12
12
|
import pandas as pd
|
13
13
|
from numpy import typing as npt
|
14
|
-
|
14
|
+
from packaging import version
|
15
15
|
|
16
16
|
import numpy
|
17
17
|
import sklearn
|
@@ -60,6 +60,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
|
60
60
|
|
61
61
|
INFER_SIGNATURE_MAX_ROWS = 100
|
62
62
|
|
63
|
+
SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
|
64
|
+
# Modeling library estimators require a smaller sklearn version range.
|
65
|
+
if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
|
66
|
+
raise Exception(
|
67
|
+
f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
|
68
|
+
)
|
69
|
+
|
70
|
+
|
63
71
|
class LGBMRegressor(BaseTransformer):
|
64
72
|
r"""LightGBM regressor
|
65
73
|
For more details on this class, see [lightgbm.LGBMRegressor]
|
@@ -11,7 +11,7 @@ import cloudpickle as cp
|
|
11
11
|
import numpy as np
|
12
12
|
import pandas as pd
|
13
13
|
from numpy import typing as npt
|
14
|
-
|
14
|
+
from packaging import version
|
15
15
|
|
16
16
|
import numpy
|
17
17
|
import sklearn
|
@@ -60,6 +60,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
|
60
60
|
|
61
61
|
INFER_SIGNATURE_MAX_ROWS = 100
|
62
62
|
|
63
|
+
SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
|
64
|
+
# Modeling library estimators require a smaller sklearn version range.
|
65
|
+
if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
|
66
|
+
raise Exception(
|
67
|
+
f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
|
68
|
+
)
|
69
|
+
|
70
|
+
|
63
71
|
class ARDRegression(BaseTransformer):
|
64
72
|
r"""Bayesian ARD regression
|
65
73
|
For more details on this class, see [sklearn.linear_model.ARDRegression]
|
@@ -11,7 +11,7 @@ import cloudpickle as cp
|
|
11
11
|
import numpy as np
|
12
12
|
import pandas as pd
|
13
13
|
from numpy import typing as npt
|
14
|
-
|
14
|
+
from packaging import version
|
15
15
|
|
16
16
|
import numpy
|
17
17
|
import sklearn
|
@@ -60,6 +60,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
|
60
60
|
|
61
61
|
INFER_SIGNATURE_MAX_ROWS = 100
|
62
62
|
|
63
|
+
SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
|
64
|
+
# Modeling library estimators require a smaller sklearn version range.
|
65
|
+
if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
|
66
|
+
raise Exception(
|
67
|
+
f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
|
68
|
+
)
|
69
|
+
|
70
|
+
|
63
71
|
class BayesianRidge(BaseTransformer):
|
64
72
|
r"""Bayesian ridge regression
|
65
73
|
For more details on this class, see [sklearn.linear_model.BayesianRidge]
|
@@ -11,7 +11,7 @@ import cloudpickle as cp
|
|
11
11
|
import numpy as np
|
12
12
|
import pandas as pd
|
13
13
|
from numpy import typing as npt
|
14
|
-
|
14
|
+
from packaging import version
|
15
15
|
|
16
16
|
import numpy
|
17
17
|
import sklearn
|
@@ -60,6 +60,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
|
60
60
|
|
61
61
|
INFER_SIGNATURE_MAX_ROWS = 100
|
62
62
|
|
63
|
+
SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
|
64
|
+
# Modeling library estimators require a smaller sklearn version range.
|
65
|
+
if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
|
66
|
+
raise Exception(
|
67
|
+
f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
|
68
|
+
)
|
69
|
+
|
70
|
+
|
63
71
|
class ElasticNet(BaseTransformer):
|
64
72
|
r"""Linear regression with combined L1 and L2 priors as regularizer
|
65
73
|
For more details on this class, see [sklearn.linear_model.ElasticNet]
|
@@ -11,7 +11,7 @@ import cloudpickle as cp
|
|
11
11
|
import numpy as np
|
12
12
|
import pandas as pd
|
13
13
|
from numpy import typing as npt
|
14
|
-
|
14
|
+
from packaging import version
|
15
15
|
|
16
16
|
import numpy
|
17
17
|
import sklearn
|
@@ -60,6 +60,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
|
60
60
|
|
61
61
|
INFER_SIGNATURE_MAX_ROWS = 100
|
62
62
|
|
63
|
+
SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
|
64
|
+
# Modeling library estimators require a smaller sklearn version range.
|
65
|
+
if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
|
66
|
+
raise Exception(
|
67
|
+
f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
|
68
|
+
)
|
69
|
+
|
70
|
+
|
63
71
|
class ElasticNetCV(BaseTransformer):
|
64
72
|
r"""Elastic Net model with iterative fitting along a regularization path
|
65
73
|
For more details on this class, see [sklearn.linear_model.ElasticNetCV]
|
@@ -11,7 +11,7 @@ import cloudpickle as cp
|
|
11
11
|
import numpy as np
|
12
12
|
import pandas as pd
|
13
13
|
from numpy import typing as npt
|
14
|
-
|
14
|
+
from packaging import version
|
15
15
|
|
16
16
|
import numpy
|
17
17
|
import sklearn
|
@@ -60,6 +60,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
|
60
60
|
|
61
61
|
INFER_SIGNATURE_MAX_ROWS = 100
|
62
62
|
|
63
|
+
SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
|
64
|
+
# Modeling library estimators require a smaller sklearn version range.
|
65
|
+
if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
|
66
|
+
raise Exception(
|
67
|
+
f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
|
68
|
+
)
|
69
|
+
|
70
|
+
|
63
71
|
class GammaRegressor(BaseTransformer):
|
64
72
|
r"""Generalized Linear Model with a Gamma distribution
|
65
73
|
For more details on this class, see [sklearn.linear_model.GammaRegressor]
|