snowflake-ml-python 1.8.3__py3-none-any.whl → 1.8.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (190) hide show
  1. snowflake/cortex/__init__.py +7 -1
  2. snowflake/ml/_internal/platform_capabilities.py +13 -11
  3. snowflake/ml/_internal/utils/identifier.py +2 -2
  4. snowflake/ml/jobs/_utils/constants.py +1 -1
  5. snowflake/ml/jobs/_utils/payload_utils.py +39 -30
  6. snowflake/ml/jobs/_utils/scripts/get_instance_ip.py +4 -4
  7. snowflake/ml/jobs/_utils/scripts/mljob_launcher.py +1 -1
  8. snowflake/ml/jobs/_utils/spec_utils.py +1 -1
  9. snowflake/ml/jobs/decorators.py +6 -0
  10. snowflake/ml/jobs/job.py +63 -16
  11. snowflake/ml/jobs/manager.py +50 -16
  12. snowflake/ml/model/_client/model/model_version_impl.py +1 -1
  13. snowflake/ml/model/_client/ops/service_ops.py +26 -14
  14. snowflake/ml/model/_client/service/model_deployment_spec.py +340 -170
  15. snowflake/ml/model/_client/service/model_deployment_spec_schema.py +25 -0
  16. snowflake/ml/model/_client/sql/service.py +4 -13
  17. snowflake/ml/model/_model_composer/model_composer.py +41 -18
  18. snowflake/ml/model/_packager/model_handlers/_utils.py +32 -2
  19. snowflake/ml/model/_packager/model_handlers/custom.py +1 -1
  20. snowflake/ml/model/_packager/model_handlers/pytorch.py +1 -2
  21. snowflake/ml/model/_packager/model_handlers/sklearn.py +100 -41
  22. snowflake/ml/model/_packager/model_handlers/tensorflow.py +7 -4
  23. snowflake/ml/model/_packager/model_handlers/torchscript.py +2 -2
  24. snowflake/ml/model/_packager/model_handlers/xgboost.py +16 -7
  25. snowflake/ml/model/_packager/model_meta/model_meta.py +2 -1
  26. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +1 -0
  27. snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py +4 -4
  28. snowflake/ml/model/_signatures/dmatrix_handler.py +15 -2
  29. snowflake/ml/model/custom_model.py +17 -4
  30. snowflake/ml/model/model_signature.py +3 -3
  31. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +9 -1
  32. snowflake/ml/modeling/cluster/affinity_propagation.py +9 -1
  33. snowflake/ml/modeling/cluster/agglomerative_clustering.py +9 -1
  34. snowflake/ml/modeling/cluster/birch.py +9 -1
  35. snowflake/ml/modeling/cluster/bisecting_k_means.py +9 -1
  36. snowflake/ml/modeling/cluster/dbscan.py +9 -1
  37. snowflake/ml/modeling/cluster/feature_agglomeration.py +9 -1
  38. snowflake/ml/modeling/cluster/k_means.py +9 -1
  39. snowflake/ml/modeling/cluster/mean_shift.py +9 -1
  40. snowflake/ml/modeling/cluster/mini_batch_k_means.py +9 -1
  41. snowflake/ml/modeling/cluster/optics.py +9 -1
  42. snowflake/ml/modeling/cluster/spectral_biclustering.py +9 -1
  43. snowflake/ml/modeling/cluster/spectral_clustering.py +9 -1
  44. snowflake/ml/modeling/cluster/spectral_coclustering.py +9 -1
  45. snowflake/ml/modeling/compose/column_transformer.py +9 -1
  46. snowflake/ml/modeling/compose/transformed_target_regressor.py +9 -1
  47. snowflake/ml/modeling/covariance/elliptic_envelope.py +9 -1
  48. snowflake/ml/modeling/covariance/empirical_covariance.py +9 -1
  49. snowflake/ml/modeling/covariance/graphical_lasso.py +9 -1
  50. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +9 -1
  51. snowflake/ml/modeling/covariance/ledoit_wolf.py +9 -1
  52. snowflake/ml/modeling/covariance/min_cov_det.py +9 -1
  53. snowflake/ml/modeling/covariance/oas.py +9 -1
  54. snowflake/ml/modeling/covariance/shrunk_covariance.py +9 -1
  55. snowflake/ml/modeling/decomposition/dictionary_learning.py +9 -1
  56. snowflake/ml/modeling/decomposition/factor_analysis.py +9 -1
  57. snowflake/ml/modeling/decomposition/fast_ica.py +9 -1
  58. snowflake/ml/modeling/decomposition/incremental_pca.py +9 -1
  59. snowflake/ml/modeling/decomposition/kernel_pca.py +9 -1
  60. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +9 -1
  61. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +9 -1
  62. snowflake/ml/modeling/decomposition/pca.py +9 -1
  63. snowflake/ml/modeling/decomposition/sparse_pca.py +9 -1
  64. snowflake/ml/modeling/decomposition/truncated_svd.py +9 -1
  65. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +9 -1
  66. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +9 -1
  67. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +9 -1
  68. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +9 -1
  69. snowflake/ml/modeling/ensemble/bagging_classifier.py +9 -1
  70. snowflake/ml/modeling/ensemble/bagging_regressor.py +9 -1
  71. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +9 -1
  72. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +9 -1
  73. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +9 -1
  74. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +9 -1
  75. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +9 -1
  76. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +9 -1
  77. snowflake/ml/modeling/ensemble/isolation_forest.py +9 -1
  78. snowflake/ml/modeling/ensemble/random_forest_classifier.py +9 -1
  79. snowflake/ml/modeling/ensemble/random_forest_regressor.py +9 -1
  80. snowflake/ml/modeling/ensemble/stacking_regressor.py +9 -1
  81. snowflake/ml/modeling/ensemble/voting_classifier.py +9 -1
  82. snowflake/ml/modeling/ensemble/voting_regressor.py +9 -1
  83. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +9 -1
  84. snowflake/ml/modeling/feature_selection/select_fdr.py +9 -1
  85. snowflake/ml/modeling/feature_selection/select_fpr.py +9 -1
  86. snowflake/ml/modeling/feature_selection/select_fwe.py +9 -1
  87. snowflake/ml/modeling/feature_selection/select_k_best.py +9 -1
  88. snowflake/ml/modeling/feature_selection/select_percentile.py +9 -1
  89. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +9 -1
  90. snowflake/ml/modeling/feature_selection/variance_threshold.py +9 -1
  91. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +9 -1
  92. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +9 -1
  93. snowflake/ml/modeling/impute/iterative_imputer.py +9 -1
  94. snowflake/ml/modeling/impute/knn_imputer.py +9 -1
  95. snowflake/ml/modeling/impute/missing_indicator.py +9 -1
  96. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +9 -1
  97. snowflake/ml/modeling/kernel_approximation/nystroem.py +9 -1
  98. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +9 -1
  99. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +9 -1
  100. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +9 -1
  101. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +9 -1
  102. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +9 -1
  103. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +9 -1
  104. snowflake/ml/modeling/linear_model/ard_regression.py +9 -1
  105. snowflake/ml/modeling/linear_model/bayesian_ridge.py +9 -1
  106. snowflake/ml/modeling/linear_model/elastic_net.py +9 -1
  107. snowflake/ml/modeling/linear_model/elastic_net_cv.py +9 -1
  108. snowflake/ml/modeling/linear_model/gamma_regressor.py +9 -1
  109. snowflake/ml/modeling/linear_model/huber_regressor.py +9 -1
  110. snowflake/ml/modeling/linear_model/lars.py +9 -1
  111. snowflake/ml/modeling/linear_model/lars_cv.py +9 -1
  112. snowflake/ml/modeling/linear_model/lasso.py +9 -1
  113. snowflake/ml/modeling/linear_model/lasso_cv.py +9 -1
  114. snowflake/ml/modeling/linear_model/lasso_lars.py +9 -1
  115. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +9 -1
  116. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +9 -1
  117. snowflake/ml/modeling/linear_model/linear_regression.py +9 -1
  118. snowflake/ml/modeling/linear_model/logistic_regression.py +9 -1
  119. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +9 -1
  120. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +9 -1
  121. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +9 -1
  122. snowflake/ml/modeling/linear_model/multi_task_lasso.py +9 -1
  123. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +9 -1
  124. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +9 -1
  125. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +9 -1
  126. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +9 -1
  127. snowflake/ml/modeling/linear_model/perceptron.py +9 -1
  128. snowflake/ml/modeling/linear_model/poisson_regressor.py +9 -1
  129. snowflake/ml/modeling/linear_model/ransac_regressor.py +9 -1
  130. snowflake/ml/modeling/linear_model/ridge.py +9 -1
  131. snowflake/ml/modeling/linear_model/ridge_classifier.py +9 -1
  132. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +9 -1
  133. snowflake/ml/modeling/linear_model/ridge_cv.py +9 -1
  134. snowflake/ml/modeling/linear_model/sgd_classifier.py +9 -1
  135. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +9 -1
  136. snowflake/ml/modeling/linear_model/sgd_regressor.py +9 -1
  137. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +9 -1
  138. snowflake/ml/modeling/linear_model/tweedie_regressor.py +9 -1
  139. snowflake/ml/modeling/manifold/isomap.py +9 -1
  140. snowflake/ml/modeling/manifold/mds.py +9 -1
  141. snowflake/ml/modeling/manifold/spectral_embedding.py +9 -1
  142. snowflake/ml/modeling/manifold/tsne.py +9 -1
  143. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +9 -1
  144. snowflake/ml/modeling/mixture/gaussian_mixture.py +9 -1
  145. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +9 -1
  146. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +9 -1
  147. snowflake/ml/modeling/multiclass/output_code_classifier.py +9 -1
  148. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +9 -1
  149. snowflake/ml/modeling/naive_bayes/categorical_nb.py +9 -1
  150. snowflake/ml/modeling/naive_bayes/complement_nb.py +9 -1
  151. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +9 -1
  152. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +9 -1
  153. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +9 -1
  154. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +9 -1
  155. snowflake/ml/modeling/neighbors/kernel_density.py +9 -1
  156. snowflake/ml/modeling/neighbors/local_outlier_factor.py +9 -1
  157. snowflake/ml/modeling/neighbors/nearest_centroid.py +9 -1
  158. snowflake/ml/modeling/neighbors/nearest_neighbors.py +9 -1
  159. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +9 -1
  160. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +9 -1
  161. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +9 -1
  162. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +9 -1
  163. snowflake/ml/modeling/neural_network/mlp_classifier.py +9 -1
  164. snowflake/ml/modeling/neural_network/mlp_regressor.py +9 -1
  165. snowflake/ml/modeling/preprocessing/polynomial_features.py +9 -1
  166. snowflake/ml/modeling/semi_supervised/label_propagation.py +9 -1
  167. snowflake/ml/modeling/semi_supervised/label_spreading.py +9 -1
  168. snowflake/ml/modeling/svm/linear_svc.py +9 -1
  169. snowflake/ml/modeling/svm/linear_svr.py +9 -1
  170. snowflake/ml/modeling/svm/nu_svc.py +9 -1
  171. snowflake/ml/modeling/svm/nu_svr.py +9 -1
  172. snowflake/ml/modeling/svm/svc.py +9 -1
  173. snowflake/ml/modeling/svm/svr.py +9 -1
  174. snowflake/ml/modeling/tree/decision_tree_classifier.py +9 -1
  175. snowflake/ml/modeling/tree/decision_tree_regressor.py +9 -1
  176. snowflake/ml/modeling/tree/extra_tree_classifier.py +9 -1
  177. snowflake/ml/modeling/tree/extra_tree_regressor.py +9 -1
  178. snowflake/ml/modeling/xgboost/xgb_classifier.py +9 -1
  179. snowflake/ml/modeling/xgboost/xgb_regressor.py +9 -1
  180. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +9 -1
  181. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +9 -1
  182. snowflake/ml/monitoring/explain_visualize.py +286 -0
  183. snowflake/ml/registry/_manager/model_manager.py +23 -2
  184. snowflake/ml/registry/registry.py +10 -9
  185. snowflake/ml/version.py +1 -1
  186. {snowflake_ml_python-1.8.3.dist-info → snowflake_ml_python-1.8.4.dist-info}/METADATA +40 -8
  187. {snowflake_ml_python-1.8.3.dist-info → snowflake_ml_python-1.8.4.dist-info}/RECORD +190 -189
  188. {snowflake_ml_python-1.8.3.dist-info → snowflake_ml_python-1.8.4.dist-info}/WHEEL +1 -1
  189. {snowflake_ml_python-1.8.3.dist-info → snowflake_ml_python-1.8.4.dist-info}/licenses/LICENSE.txt +0 -0
  190. {snowflake_ml_python-1.8.3.dist-info → snowflake_ml_python-1.8.4.dist-info}/top_level.txt +0 -0
@@ -11,7 +11,7 @@ import cloudpickle as cp
11
11
  import numpy as np
12
12
  import pandas as pd
13
13
  from numpy import typing as npt
14
-
14
+ from packaging import version
15
15
 
16
16
  import numpy
17
17
  import sklearn
@@ -60,6 +60,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
64
+ # Modeling library estimators require a smaller sklearn version range.
65
+ if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
+ raise Exception(
67
+ f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
68
+ )
69
+
70
+
63
71
  class LassoLars(BaseTransformer):
64
72
  r"""Lasso model fit with Least Angle Regression a
65
73
  For more details on this class, see [sklearn.linear_model.LassoLars]
@@ -11,7 +11,7 @@ import cloudpickle as cp
11
11
  import numpy as np
12
12
  import pandas as pd
13
13
  from numpy import typing as npt
14
-
14
+ from packaging import version
15
15
 
16
16
  import numpy
17
17
  import sklearn
@@ -60,6 +60,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
64
+ # Modeling library estimators require a smaller sklearn version range.
65
+ if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
+ raise Exception(
67
+ f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
68
+ )
69
+
70
+
63
71
  class LassoLarsCV(BaseTransformer):
64
72
  r"""Cross-validated Lasso, using the LARS algorithm
65
73
  For more details on this class, see [sklearn.linear_model.LassoLarsCV]
@@ -11,7 +11,7 @@ import cloudpickle as cp
11
11
  import numpy as np
12
12
  import pandas as pd
13
13
  from numpy import typing as npt
14
-
14
+ from packaging import version
15
15
 
16
16
  import numpy
17
17
  import sklearn
@@ -60,6 +60,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
64
+ # Modeling library estimators require a smaller sklearn version range.
65
+ if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
+ raise Exception(
67
+ f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
68
+ )
69
+
70
+
63
71
  class LassoLarsIC(BaseTransformer):
64
72
  r"""Lasso model fit with Lars using BIC or AIC for model selection
65
73
  For more details on this class, see [sklearn.linear_model.LassoLarsIC]
@@ -11,7 +11,7 @@ import cloudpickle as cp
11
11
  import numpy as np
12
12
  import pandas as pd
13
13
  from numpy import typing as npt
14
-
14
+ from packaging import version
15
15
 
16
16
  import numpy
17
17
  import sklearn
@@ -60,6 +60,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
64
+ # Modeling library estimators require a smaller sklearn version range.
65
+ if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
+ raise Exception(
67
+ f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
68
+ )
69
+
70
+
63
71
  class LinearRegression(BaseTransformer):
64
72
  r"""Ordinary least squares Linear Regression
65
73
  For more details on this class, see [sklearn.linear_model.LinearRegression]
@@ -11,7 +11,7 @@ import cloudpickle as cp
11
11
  import numpy as np
12
12
  import pandas as pd
13
13
  from numpy import typing as npt
14
-
14
+ from packaging import version
15
15
 
16
16
  import numpy
17
17
  import sklearn
@@ -60,6 +60,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
64
+ # Modeling library estimators require a smaller sklearn version range.
65
+ if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
+ raise Exception(
67
+ f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
68
+ )
69
+
70
+
63
71
  class LogisticRegression(BaseTransformer):
64
72
  r"""Logistic Regression (aka logit, MaxEnt) classifier
65
73
  For more details on this class, see [sklearn.linear_model.LogisticRegression]
@@ -11,7 +11,7 @@ import cloudpickle as cp
11
11
  import numpy as np
12
12
  import pandas as pd
13
13
  from numpy import typing as npt
14
-
14
+ from packaging import version
15
15
 
16
16
  import numpy
17
17
  import sklearn
@@ -60,6 +60,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
64
+ # Modeling library estimators require a smaller sklearn version range.
65
+ if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
+ raise Exception(
67
+ f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
68
+ )
69
+
70
+
63
71
  class LogisticRegressionCV(BaseTransformer):
64
72
  r"""Logistic Regression CV (aka logit, MaxEnt) classifier
65
73
  For more details on this class, see [sklearn.linear_model.LogisticRegressionCV]
@@ -11,7 +11,7 @@ import cloudpickle as cp
11
11
  import numpy as np
12
12
  import pandas as pd
13
13
  from numpy import typing as npt
14
-
14
+ from packaging import version
15
15
 
16
16
  import numpy
17
17
  import sklearn
@@ -60,6 +60,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
64
+ # Modeling library estimators require a smaller sklearn version range.
65
+ if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
+ raise Exception(
67
+ f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
68
+ )
69
+
70
+
63
71
  class MultiTaskElasticNet(BaseTransformer):
64
72
  r"""Multi-task ElasticNet model trained with L1/L2 mixed-norm as regularizer
65
73
  For more details on this class, see [sklearn.linear_model.MultiTaskElasticNet]
@@ -11,7 +11,7 @@ import cloudpickle as cp
11
11
  import numpy as np
12
12
  import pandas as pd
13
13
  from numpy import typing as npt
14
-
14
+ from packaging import version
15
15
 
16
16
  import numpy
17
17
  import sklearn
@@ -60,6 +60,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
64
+ # Modeling library estimators require a smaller sklearn version range.
65
+ if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
+ raise Exception(
67
+ f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
68
+ )
69
+
70
+
63
71
  class MultiTaskElasticNetCV(BaseTransformer):
64
72
  r"""Multi-task L1/L2 ElasticNet with built-in cross-validation
65
73
  For more details on this class, see [sklearn.linear_model.MultiTaskElasticNetCV]
@@ -11,7 +11,7 @@ import cloudpickle as cp
11
11
  import numpy as np
12
12
  import pandas as pd
13
13
  from numpy import typing as npt
14
-
14
+ from packaging import version
15
15
 
16
16
  import numpy
17
17
  import sklearn
@@ -60,6 +60,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
64
+ # Modeling library estimators require a smaller sklearn version range.
65
+ if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
+ raise Exception(
67
+ f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
68
+ )
69
+
70
+
63
71
  class MultiTaskLasso(BaseTransformer):
64
72
  r"""Multi-task Lasso model trained with L1/L2 mixed-norm as regularizer
65
73
  For more details on this class, see [sklearn.linear_model.MultiTaskLasso]
@@ -11,7 +11,7 @@ import cloudpickle as cp
11
11
  import numpy as np
12
12
  import pandas as pd
13
13
  from numpy import typing as npt
14
-
14
+ from packaging import version
15
15
 
16
16
  import numpy
17
17
  import sklearn
@@ -60,6 +60,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
64
+ # Modeling library estimators require a smaller sklearn version range.
65
+ if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
+ raise Exception(
67
+ f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
68
+ )
69
+
70
+
63
71
  class MultiTaskLassoCV(BaseTransformer):
64
72
  r"""Multi-task Lasso model trained with L1/L2 mixed-norm as regularizer
65
73
  For more details on this class, see [sklearn.linear_model.MultiTaskLassoCV]
@@ -11,7 +11,7 @@ import cloudpickle as cp
11
11
  import numpy as np
12
12
  import pandas as pd
13
13
  from numpy import typing as npt
14
-
14
+ from packaging import version
15
15
 
16
16
  import numpy
17
17
  import sklearn
@@ -60,6 +60,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
64
+ # Modeling library estimators require a smaller sklearn version range.
65
+ if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
+ raise Exception(
67
+ f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
68
+ )
69
+
70
+
63
71
  class OrthogonalMatchingPursuit(BaseTransformer):
64
72
  r"""Orthogonal Matching Pursuit model (OMP)
65
73
  For more details on this class, see [sklearn.linear_model.OrthogonalMatchingPursuit]
@@ -11,7 +11,7 @@ import cloudpickle as cp
11
11
  import numpy as np
12
12
  import pandas as pd
13
13
  from numpy import typing as npt
14
-
14
+ from packaging import version
15
15
 
16
16
  import numpy
17
17
  import sklearn
@@ -60,6 +60,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
64
+ # Modeling library estimators require a smaller sklearn version range.
65
+ if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
+ raise Exception(
67
+ f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
68
+ )
69
+
70
+
63
71
  class PassiveAggressiveClassifier(BaseTransformer):
64
72
  r"""Passive Aggressive Classifier
65
73
  For more details on this class, see [sklearn.linear_model.PassiveAggressiveClassifier]
@@ -11,7 +11,7 @@ import cloudpickle as cp
11
11
  import numpy as np
12
12
  import pandas as pd
13
13
  from numpy import typing as npt
14
-
14
+ from packaging import version
15
15
 
16
16
  import numpy
17
17
  import sklearn
@@ -60,6 +60,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
64
+ # Modeling library estimators require a smaller sklearn version range.
65
+ if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
+ raise Exception(
67
+ f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
68
+ )
69
+
70
+
63
71
  class PassiveAggressiveRegressor(BaseTransformer):
64
72
  r"""Passive Aggressive Regressor
65
73
  For more details on this class, see [sklearn.linear_model.PassiveAggressiveRegressor]
@@ -11,7 +11,7 @@ import cloudpickle as cp
11
11
  import numpy as np
12
12
  import pandas as pd
13
13
  from numpy import typing as npt
14
-
14
+ from packaging import version
15
15
 
16
16
  import numpy
17
17
  import sklearn
@@ -60,6 +60,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
64
+ # Modeling library estimators require a smaller sklearn version range.
65
+ if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
+ raise Exception(
67
+ f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
68
+ )
69
+
70
+
63
71
  class Perceptron(BaseTransformer):
64
72
  r"""Linear perceptron classifier
65
73
  For more details on this class, see [sklearn.linear_model.Perceptron]
@@ -11,7 +11,7 @@ import cloudpickle as cp
11
11
  import numpy as np
12
12
  import pandas as pd
13
13
  from numpy import typing as npt
14
-
14
+ from packaging import version
15
15
 
16
16
  import numpy
17
17
  import sklearn
@@ -60,6 +60,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
64
+ # Modeling library estimators require a smaller sklearn version range.
65
+ if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
+ raise Exception(
67
+ f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
68
+ )
69
+
70
+
63
71
  class PoissonRegressor(BaseTransformer):
64
72
  r"""Generalized Linear Model with a Poisson distribution
65
73
  For more details on this class, see [sklearn.linear_model.PoissonRegressor]
@@ -11,7 +11,7 @@ import cloudpickle as cp
11
11
  import numpy as np
12
12
  import pandas as pd
13
13
  from numpy import typing as npt
14
-
14
+ from packaging import version
15
15
 
16
16
  import numpy
17
17
  import sklearn
@@ -60,6 +60,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
64
+ # Modeling library estimators require a smaller sklearn version range.
65
+ if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
+ raise Exception(
67
+ f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
68
+ )
69
+
70
+
63
71
  class RANSACRegressor(BaseTransformer):
64
72
  r"""RANSAC (RANdom SAmple Consensus) algorithm
65
73
  For more details on this class, see [sklearn.linear_model.RANSACRegressor]
@@ -11,7 +11,7 @@ import cloudpickle as cp
11
11
  import numpy as np
12
12
  import pandas as pd
13
13
  from numpy import typing as npt
14
-
14
+ from packaging import version
15
15
 
16
16
  import numpy
17
17
  import sklearn
@@ -60,6 +60,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
64
+ # Modeling library estimators require a smaller sklearn version range.
65
+ if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
+ raise Exception(
67
+ f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
68
+ )
69
+
70
+
63
71
  class Ridge(BaseTransformer):
64
72
  r"""Linear least squares with l2 regularization
65
73
  For more details on this class, see [sklearn.linear_model.Ridge]
@@ -11,7 +11,7 @@ import cloudpickle as cp
11
11
  import numpy as np
12
12
  import pandas as pd
13
13
  from numpy import typing as npt
14
-
14
+ from packaging import version
15
15
 
16
16
  import numpy
17
17
  import sklearn
@@ -60,6 +60,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
64
+ # Modeling library estimators require a smaller sklearn version range.
65
+ if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
+ raise Exception(
67
+ f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
68
+ )
69
+
70
+
63
71
  class RidgeClassifier(BaseTransformer):
64
72
  r"""Classifier using Ridge regression
65
73
  For more details on this class, see [sklearn.linear_model.RidgeClassifier]
@@ -11,7 +11,7 @@ import cloudpickle as cp
11
11
  import numpy as np
12
12
  import pandas as pd
13
13
  from numpy import typing as npt
14
-
14
+ from packaging import version
15
15
 
16
16
  import numpy
17
17
  import sklearn
@@ -60,6 +60,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
64
+ # Modeling library estimators require a smaller sklearn version range.
65
+ if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
+ raise Exception(
67
+ f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
68
+ )
69
+
70
+
63
71
  class RidgeClassifierCV(BaseTransformer):
64
72
  r"""Ridge classifier with built-in cross-validation
65
73
  For more details on this class, see [sklearn.linear_model.RidgeClassifierCV]
@@ -11,7 +11,7 @@ import cloudpickle as cp
11
11
  import numpy as np
12
12
  import pandas as pd
13
13
  from numpy import typing as npt
14
-
14
+ from packaging import version
15
15
 
16
16
  import numpy
17
17
  import sklearn
@@ -60,6 +60,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
64
+ # Modeling library estimators require a smaller sklearn version range.
65
+ if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
+ raise Exception(
67
+ f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
68
+ )
69
+
70
+
63
71
  class RidgeCV(BaseTransformer):
64
72
  r"""Ridge regression with built-in cross-validation
65
73
  For more details on this class, see [sklearn.linear_model.RidgeCV]
@@ -11,7 +11,7 @@ import cloudpickle as cp
11
11
  import numpy as np
12
12
  import pandas as pd
13
13
  from numpy import typing as npt
14
-
14
+ from packaging import version
15
15
 
16
16
  import numpy
17
17
  import sklearn
@@ -60,6 +60,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
64
+ # Modeling library estimators require a smaller sklearn version range.
65
+ if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
+ raise Exception(
67
+ f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
68
+ )
69
+
70
+
63
71
  class SGDClassifier(BaseTransformer):
64
72
  r"""Linear classifiers (SVM, logistic regression, etc
65
73
  For more details on this class, see [sklearn.linear_model.SGDClassifier]
@@ -11,7 +11,7 @@ import cloudpickle as cp
11
11
  import numpy as np
12
12
  import pandas as pd
13
13
  from numpy import typing as npt
14
-
14
+ from packaging import version
15
15
 
16
16
  import numpy
17
17
  import sklearn
@@ -60,6 +60,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
64
+ # Modeling library estimators require a smaller sklearn version range.
65
+ if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
+ raise Exception(
67
+ f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
68
+ )
69
+
70
+
63
71
  class SGDOneClassSVM(BaseTransformer):
64
72
  r"""Solves linear One-Class SVM using Stochastic Gradient Descent
65
73
  For more details on this class, see [sklearn.linear_model.SGDOneClassSVM]
@@ -11,7 +11,7 @@ import cloudpickle as cp
11
11
  import numpy as np
12
12
  import pandas as pd
13
13
  from numpy import typing as npt
14
-
14
+ from packaging import version
15
15
 
16
16
  import numpy
17
17
  import sklearn
@@ -60,6 +60,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
64
+ # Modeling library estimators require a smaller sklearn version range.
65
+ if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
+ raise Exception(
67
+ f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
68
+ )
69
+
70
+
63
71
  class SGDRegressor(BaseTransformer):
64
72
  r"""Linear model fitted by minimizing a regularized empirical loss with SGD
65
73
  For more details on this class, see [sklearn.linear_model.SGDRegressor]
@@ -11,7 +11,7 @@ import cloudpickle as cp
11
11
  import numpy as np
12
12
  import pandas as pd
13
13
  from numpy import typing as npt
14
-
14
+ from packaging import version
15
15
 
16
16
  import numpy
17
17
  import sklearn
@@ -60,6 +60,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
64
+ # Modeling library estimators require a smaller sklearn version range.
65
+ if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
+ raise Exception(
67
+ f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
68
+ )
69
+
70
+
63
71
  class TheilSenRegressor(BaseTransformer):
64
72
  r"""Theil-Sen Estimator: robust multivariate regression model
65
73
  For more details on this class, see [sklearn.linear_model.TheilSenRegressor]
@@ -11,7 +11,7 @@ import cloudpickle as cp
11
11
  import numpy as np
12
12
  import pandas as pd
13
13
  from numpy import typing as npt
14
-
14
+ from packaging import version
15
15
 
16
16
  import numpy
17
17
  import sklearn
@@ -60,6 +60,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
64
+ # Modeling library estimators require a smaller sklearn version range.
65
+ if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
+ raise Exception(
67
+ f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
68
+ )
69
+
70
+
63
71
  class TweedieRegressor(BaseTransformer):
64
72
  r"""Generalized Linear Model with a Tweedie distribution
65
73
  For more details on this class, see [sklearn.linear_model.TweedieRegressor]
@@ -11,7 +11,7 @@ import cloudpickle as cp
11
11
  import numpy as np
12
12
  import pandas as pd
13
13
  from numpy import typing as npt
14
-
14
+ from packaging import version
15
15
 
16
16
  import numpy
17
17
  import sklearn
@@ -60,6 +60,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
64
+ # Modeling library estimators require a smaller sklearn version range.
65
+ if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
+ raise Exception(
67
+ f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
68
+ )
69
+
70
+
63
71
  class Isomap(BaseTransformer):
64
72
  r"""Isomap Embedding
65
73
  For more details on this class, see [sklearn.manifold.Isomap]
@@ -11,7 +11,7 @@ import cloudpickle as cp
11
11
  import numpy as np
12
12
  import pandas as pd
13
13
  from numpy import typing as npt
14
-
14
+ from packaging import version
15
15
 
16
16
  import numpy
17
17
  import sklearn
@@ -60,6 +60,14 @@ DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
60
60
 
61
61
  INFER_SIGNATURE_MAX_ROWS = 100
62
62
 
63
+ SKLEARN_LOWER, SKLEARN_UPPER = ('1.4', '1.6')
64
+ # Modeling library estimators require a smaller sklearn version range.
65
+ if not version.Version(SKLEARN_LOWER) <= version.Version(sklearn.__version__) < version.Version(SKLEARN_UPPER):
66
+ raise Exception(
67
+ f"To use the modeling library, install scikit-learn version >= {SKLEARN_LOWER} and < {SKLEARN_UPPER}"
68
+ )
69
+
70
+
63
71
  class MDS(BaseTransformer):
64
72
  r"""Multidimensional scaling
65
73
  For more details on this class, see [sklearn.manifold.MDS]