snowflake-ml-python 1.8.3__py3-none-any.whl → 1.8.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (190) hide show
  1. snowflake/cortex/__init__.py +7 -1
  2. snowflake/ml/_internal/platform_capabilities.py +13 -11
  3. snowflake/ml/_internal/utils/identifier.py +2 -2
  4. snowflake/ml/jobs/_utils/constants.py +1 -1
  5. snowflake/ml/jobs/_utils/payload_utils.py +39 -30
  6. snowflake/ml/jobs/_utils/scripts/get_instance_ip.py +4 -4
  7. snowflake/ml/jobs/_utils/scripts/mljob_launcher.py +1 -1
  8. snowflake/ml/jobs/_utils/spec_utils.py +1 -1
  9. snowflake/ml/jobs/decorators.py +6 -0
  10. snowflake/ml/jobs/job.py +63 -16
  11. snowflake/ml/jobs/manager.py +50 -16
  12. snowflake/ml/model/_client/model/model_version_impl.py +1 -1
  13. snowflake/ml/model/_client/ops/service_ops.py +26 -14
  14. snowflake/ml/model/_client/service/model_deployment_spec.py +340 -170
  15. snowflake/ml/model/_client/service/model_deployment_spec_schema.py +25 -0
  16. snowflake/ml/model/_client/sql/service.py +4 -13
  17. snowflake/ml/model/_model_composer/model_composer.py +41 -18
  18. snowflake/ml/model/_packager/model_handlers/_utils.py +32 -2
  19. snowflake/ml/model/_packager/model_handlers/custom.py +1 -1
  20. snowflake/ml/model/_packager/model_handlers/pytorch.py +1 -2
  21. snowflake/ml/model/_packager/model_handlers/sklearn.py +100 -41
  22. snowflake/ml/model/_packager/model_handlers/tensorflow.py +7 -4
  23. snowflake/ml/model/_packager/model_handlers/torchscript.py +2 -2
  24. snowflake/ml/model/_packager/model_handlers/xgboost.py +16 -7
  25. snowflake/ml/model/_packager/model_meta/model_meta.py +2 -1
  26. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +1 -0
  27. snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py +4 -4
  28. snowflake/ml/model/_signatures/dmatrix_handler.py +15 -2
  29. snowflake/ml/model/custom_model.py +17 -4
  30. snowflake/ml/model/model_signature.py +3 -3
  31. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +9 -1
  32. snowflake/ml/modeling/cluster/affinity_propagation.py +9 -1
  33. snowflake/ml/modeling/cluster/agglomerative_clustering.py +9 -1
  34. snowflake/ml/modeling/cluster/birch.py +9 -1
  35. snowflake/ml/modeling/cluster/bisecting_k_means.py +9 -1
  36. snowflake/ml/modeling/cluster/dbscan.py +9 -1
  37. snowflake/ml/modeling/cluster/feature_agglomeration.py +9 -1
  38. snowflake/ml/modeling/cluster/k_means.py +9 -1
  39. snowflake/ml/modeling/cluster/mean_shift.py +9 -1
  40. snowflake/ml/modeling/cluster/mini_batch_k_means.py +9 -1
  41. snowflake/ml/modeling/cluster/optics.py +9 -1
  42. snowflake/ml/modeling/cluster/spectral_biclustering.py +9 -1
  43. snowflake/ml/modeling/cluster/spectral_clustering.py +9 -1
  44. snowflake/ml/modeling/cluster/spectral_coclustering.py +9 -1
  45. snowflake/ml/modeling/compose/column_transformer.py +9 -1
  46. snowflake/ml/modeling/compose/transformed_target_regressor.py +9 -1
  47. snowflake/ml/modeling/covariance/elliptic_envelope.py +9 -1
  48. snowflake/ml/modeling/covariance/empirical_covariance.py +9 -1
  49. snowflake/ml/modeling/covariance/graphical_lasso.py +9 -1
  50. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +9 -1
  51. snowflake/ml/modeling/covariance/ledoit_wolf.py +9 -1
  52. snowflake/ml/modeling/covariance/min_cov_det.py +9 -1
  53. snowflake/ml/modeling/covariance/oas.py +9 -1
  54. snowflake/ml/modeling/covariance/shrunk_covariance.py +9 -1
  55. snowflake/ml/modeling/decomposition/dictionary_learning.py +9 -1
  56. snowflake/ml/modeling/decomposition/factor_analysis.py +9 -1
  57. snowflake/ml/modeling/decomposition/fast_ica.py +9 -1
  58. snowflake/ml/modeling/decomposition/incremental_pca.py +9 -1
  59. snowflake/ml/modeling/decomposition/kernel_pca.py +9 -1
  60. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +9 -1
  61. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +9 -1
  62. snowflake/ml/modeling/decomposition/pca.py +9 -1
  63. snowflake/ml/modeling/decomposition/sparse_pca.py +9 -1
  64. snowflake/ml/modeling/decomposition/truncated_svd.py +9 -1
  65. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +9 -1
  66. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +9 -1
  67. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +9 -1
  68. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +9 -1
  69. snowflake/ml/modeling/ensemble/bagging_classifier.py +9 -1
  70. snowflake/ml/modeling/ensemble/bagging_regressor.py +9 -1
  71. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +9 -1
  72. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +9 -1
  73. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +9 -1
  74. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +9 -1
  75. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +9 -1
  76. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +9 -1
  77. snowflake/ml/modeling/ensemble/isolation_forest.py +9 -1
  78. snowflake/ml/modeling/ensemble/random_forest_classifier.py +9 -1
  79. snowflake/ml/modeling/ensemble/random_forest_regressor.py +9 -1
  80. snowflake/ml/modeling/ensemble/stacking_regressor.py +9 -1
  81. snowflake/ml/modeling/ensemble/voting_classifier.py +9 -1
  82. snowflake/ml/modeling/ensemble/voting_regressor.py +9 -1
  83. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +9 -1
  84. snowflake/ml/modeling/feature_selection/select_fdr.py +9 -1
  85. snowflake/ml/modeling/feature_selection/select_fpr.py +9 -1
  86. snowflake/ml/modeling/feature_selection/select_fwe.py +9 -1
  87. snowflake/ml/modeling/feature_selection/select_k_best.py +9 -1
  88. snowflake/ml/modeling/feature_selection/select_percentile.py +9 -1
  89. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +9 -1
  90. snowflake/ml/modeling/feature_selection/variance_threshold.py +9 -1
  91. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +9 -1
  92. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +9 -1
  93. snowflake/ml/modeling/impute/iterative_imputer.py +9 -1
  94. snowflake/ml/modeling/impute/knn_imputer.py +9 -1
  95. snowflake/ml/modeling/impute/missing_indicator.py +9 -1
  96. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +9 -1
  97. snowflake/ml/modeling/kernel_approximation/nystroem.py +9 -1
  98. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +9 -1
  99. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +9 -1
  100. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +9 -1
  101. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +9 -1
  102. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +9 -1
  103. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +9 -1
  104. snowflake/ml/modeling/linear_model/ard_regression.py +9 -1
  105. snowflake/ml/modeling/linear_model/bayesian_ridge.py +9 -1
  106. snowflake/ml/modeling/linear_model/elastic_net.py +9 -1
  107. snowflake/ml/modeling/linear_model/elastic_net_cv.py +9 -1
  108. snowflake/ml/modeling/linear_model/gamma_regressor.py +9 -1
  109. snowflake/ml/modeling/linear_model/huber_regressor.py +9 -1
  110. snowflake/ml/modeling/linear_model/lars.py +9 -1
  111. snowflake/ml/modeling/linear_model/lars_cv.py +9 -1
  112. snowflake/ml/modeling/linear_model/lasso.py +9 -1
  113. snowflake/ml/modeling/linear_model/lasso_cv.py +9 -1
  114. snowflake/ml/modeling/linear_model/lasso_lars.py +9 -1
  115. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +9 -1
  116. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +9 -1
  117. snowflake/ml/modeling/linear_model/linear_regression.py +9 -1
  118. snowflake/ml/modeling/linear_model/logistic_regression.py +9 -1
  119. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +9 -1
  120. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +9 -1
  121. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +9 -1
  122. snowflake/ml/modeling/linear_model/multi_task_lasso.py +9 -1
  123. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +9 -1
  124. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +9 -1
  125. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +9 -1
  126. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +9 -1
  127. snowflake/ml/modeling/linear_model/perceptron.py +9 -1
  128. snowflake/ml/modeling/linear_model/poisson_regressor.py +9 -1
  129. snowflake/ml/modeling/linear_model/ransac_regressor.py +9 -1
  130. snowflake/ml/modeling/linear_model/ridge.py +9 -1
  131. snowflake/ml/modeling/linear_model/ridge_classifier.py +9 -1
  132. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +9 -1
  133. snowflake/ml/modeling/linear_model/ridge_cv.py +9 -1
  134. snowflake/ml/modeling/linear_model/sgd_classifier.py +9 -1
  135. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +9 -1
  136. snowflake/ml/modeling/linear_model/sgd_regressor.py +9 -1
  137. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +9 -1
  138. snowflake/ml/modeling/linear_model/tweedie_regressor.py +9 -1
  139. snowflake/ml/modeling/manifold/isomap.py +9 -1
  140. snowflake/ml/modeling/manifold/mds.py +9 -1
  141. snowflake/ml/modeling/manifold/spectral_embedding.py +9 -1
  142. snowflake/ml/modeling/manifold/tsne.py +9 -1
  143. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +9 -1
  144. snowflake/ml/modeling/mixture/gaussian_mixture.py +9 -1
  145. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +9 -1
  146. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +9 -1
  147. snowflake/ml/modeling/multiclass/output_code_classifier.py +9 -1
  148. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +9 -1
  149. snowflake/ml/modeling/naive_bayes/categorical_nb.py +9 -1
  150. snowflake/ml/modeling/naive_bayes/complement_nb.py +9 -1
  151. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +9 -1
  152. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +9 -1
  153. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +9 -1
  154. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +9 -1
  155. snowflake/ml/modeling/neighbors/kernel_density.py +9 -1
  156. snowflake/ml/modeling/neighbors/local_outlier_factor.py +9 -1
  157. snowflake/ml/modeling/neighbors/nearest_centroid.py +9 -1
  158. snowflake/ml/modeling/neighbors/nearest_neighbors.py +9 -1
  159. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +9 -1
  160. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +9 -1
  161. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +9 -1
  162. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +9 -1
  163. snowflake/ml/modeling/neural_network/mlp_classifier.py +9 -1
  164. snowflake/ml/modeling/neural_network/mlp_regressor.py +9 -1
  165. snowflake/ml/modeling/preprocessing/polynomial_features.py +9 -1
  166. snowflake/ml/modeling/semi_supervised/label_propagation.py +9 -1
  167. snowflake/ml/modeling/semi_supervised/label_spreading.py +9 -1
  168. snowflake/ml/modeling/svm/linear_svc.py +9 -1
  169. snowflake/ml/modeling/svm/linear_svr.py +9 -1
  170. snowflake/ml/modeling/svm/nu_svc.py +9 -1
  171. snowflake/ml/modeling/svm/nu_svr.py +9 -1
  172. snowflake/ml/modeling/svm/svc.py +9 -1
  173. snowflake/ml/modeling/svm/svr.py +9 -1
  174. snowflake/ml/modeling/tree/decision_tree_classifier.py +9 -1
  175. snowflake/ml/modeling/tree/decision_tree_regressor.py +9 -1
  176. snowflake/ml/modeling/tree/extra_tree_classifier.py +9 -1
  177. snowflake/ml/modeling/tree/extra_tree_regressor.py +9 -1
  178. snowflake/ml/modeling/xgboost/xgb_classifier.py +9 -1
  179. snowflake/ml/modeling/xgboost/xgb_regressor.py +9 -1
  180. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +9 -1
  181. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +9 -1
  182. snowflake/ml/monitoring/explain_visualize.py +286 -0
  183. snowflake/ml/registry/_manager/model_manager.py +23 -2
  184. snowflake/ml/registry/registry.py +10 -9
  185. snowflake/ml/version.py +1 -1
  186. {snowflake_ml_python-1.8.3.dist-info → snowflake_ml_python-1.8.4.dist-info}/METADATA +40 -8
  187. {snowflake_ml_python-1.8.3.dist-info → snowflake_ml_python-1.8.4.dist-info}/RECORD +190 -189
  188. {snowflake_ml_python-1.8.3.dist-info → snowflake_ml_python-1.8.4.dist-info}/WHEEL +1 -1
  189. {snowflake_ml_python-1.8.3.dist-info → snowflake_ml_python-1.8.4.dist-info}/licenses/LICENSE.txt +0 -0
  190. {snowflake_ml_python-1.8.3.dist-info → snowflake_ml_python-1.8.4.dist-info}/top_level.txt +0 -0
@@ -1,4 +1,4 @@
1
- snowflake/cortex/__init__.py,sha256=gboUvJBYzJIq11AK_Qa0ipOUbKctHahNXe1p1Z7j8xY,1032
1
+ snowflake/cortex/__init__.py,sha256=Z51KTLHGAC2L1DXYaKeDIoTjBEeRGNZHpHZ47vj6aBk,1101
2
2
  snowflake/cortex/_classify_text.py,sha256=2AYJBABEn8pngFJ2eL7Vt6Ed0t1xEOVWfwb6SHLQKRY,1634
3
3
  snowflake/cortex/_complete.py,sha256=1JRD9Ye1FX9cM6g4QfZn80EiY1X_9mQtM3zHU2tnHjU,19733
4
4
  snowflake/cortex/_embed_text_1024.py,sha256=18DhgNj1zWbmGfEvZyIV8vIBGjF3DbwvlhCxMAxXFAw,1645
@@ -10,13 +10,13 @@ snowflake/cortex/_sse_client.py,sha256=sLYgqAfTOPADCnaWH2RWAJi8KbU_7gSRsTUDcDD5T
10
10
  snowflake/cortex/_summarize.py,sha256=7GH8zqfIdOiHA5w4b6EvJEKEWhaTrL4YA6iDGbn7BNM,1307
11
11
  snowflake/cortex/_translate.py,sha256=9ZGjvAnJFisbzJ_bXnt4pyug5UzhHJRXW8AhGQEersM,1652
12
12
  snowflake/cortex/_util.py,sha256=krNTpbkFLXwdFqy1bd0xi7ZmOzOHRnIfHdQCPiLZJxk,3288
13
- snowflake/ml/version.py,sha256=zl4QsYlqLtC2-mozdfzfQiozJjEqvjIXlpsFKx_YUk4,98
13
+ snowflake/ml/version.py,sha256=Pkx24m7KhMPVK_ZwB4ji7pUldQWHlLDa1P_FQ18SSPU,98
14
14
  snowflake/ml/_internal/env.py,sha256=EY_2KVe8oR3LgKWdaeRb5rRU-NDNXJppPDsFJmMZUUY,265
15
15
  snowflake/ml/_internal/env_utils.py,sha256=tzz8BziiwJEnZwkzDEYCMO20Sb-mnXwDtSakGfgG--M,29364
16
16
  snowflake/ml/_internal/file_utils.py,sha256=7sA6loOeSfmGP4yx16P4usT9ZtRqG3ycnXu7_Tk7dOs,14206
17
17
  snowflake/ml/_internal/init_utils.py,sha256=WhrlvS-xcmKErSpwg6cUk6XDQ5lQcwDqPJnU7cooMIg,2672
18
18
  snowflake/ml/_internal/migrator_utils.py,sha256=k3erO8x3YJcX6nkKeyJAUNGg1qjE3RFmD-W6dtLzIH0,161
19
- snowflake/ml/_internal/platform_capabilities.py,sha256=TNZBmUii1Pz71a4othzaMlzhClcISiB4YYSwDEd5CeM,5218
19
+ snowflake/ml/_internal/platform_capabilities.py,sha256=2l3GeuKIbeoMh5m3z1mWx7niWsnPvNTSVrlK5bnRNpk,5290
20
20
  snowflake/ml/_internal/relax_version_strategy.py,sha256=MYEIZrx1HfKNhl9Na3GN50ipX8c0MKIj9nwxjB0IC0Y,484
21
21
  snowflake/ml/_internal/telemetry.py,sha256=IXHyD5XsCu9uaioO1gflyejAG4FgPCsjD2CCZ2NeRWs,30971
22
22
  snowflake/ml/_internal/type_utils.py,sha256=fGnxGx9Tb9G1Fh9EaD23CxChx0Jfc4KnRZv-M-Dcblk,2197
@@ -36,7 +36,7 @@ snowflake/ml/_internal/human_readable_id/hrid_generator_base.py,sha256=_Egc-L0DK
36
36
  snowflake/ml/_internal/lineage/lineage_utils.py,sha256=-_PKuznsL_w38rVj3wXgbPdm6XkcbnABrU4v4GwZQcg,3426
37
37
  snowflake/ml/_internal/utils/db_utils.py,sha256=HlxdMrgV8UpnxvfKDM-ZR5N566eWZLC-mE291ByrPEQ,1662
38
38
  snowflake/ml/_internal/utils/formatting.py,sha256=PswZ6Xas7sx3Ok1MBLoH2o7nfXOxaJqpUPg_UqXrQb8,3676
39
- snowflake/ml/_internal/utils/identifier.py,sha256=KZjlcVt8X_SAE6GAfshhIKdWI-LlQJjcz1zo2d8G5fY,12572
39
+ snowflake/ml/_internal/utils/identifier.py,sha256=0Tn07XNxyUFYdFIYNvZ0iA7k9jiyOFAqrVx5ZLvoDwQ,12582
40
40
  snowflake/ml/_internal/utils/import_utils.py,sha256=msvUDaCcJpAcNCS-5Ynz4F1CvUhXjRsuZyOv1rN6Yhk,3213
41
41
  snowflake/ml/_internal/utils/jwt_generator.py,sha256=bj7Ltnw68WjRcxtV9t5xrTRvV5ETnvovB-o3Y8QWNBg,5357
42
42
  snowflake/ml/_internal/utils/parallelize.py,sha256=l8Zjo-hp8zqoLgHxBlpz9Zmn2Z-MRQ0fS_NnrR4jWR8,4522
@@ -94,39 +94,39 @@ snowflake/ml/fileset/sfcfs.py,sha256=FJFc9-gc0KXaNyc10ZovN_87aUCShb0WztVwa02t0io
94
94
  snowflake/ml/fileset/snowfs.py,sha256=uF5QluYtiJ-HezGIhF55dONi3t0E6N7ByaVAIAlM3nk,5133
95
95
  snowflake/ml/fileset/stage_fs.py,sha256=V4pysouSKKDPLzuW3u_extxfvjkQa5OlwIRES9Srpzo,20151
96
96
  snowflake/ml/jobs/__init__.py,sha256=ORX_0blPSpl9u5442R-i4e8cqWYfO_vVjFFtX3as184,420
97
- snowflake/ml/jobs/decorators.py,sha256=brpX8irMblvwSi7fUGGFTHd9eYIPyNliTr40deg03co,3105
98
- snowflake/ml/jobs/job.py,sha256=ApySCjZDzUolh11gP41yimpj5uvkxCWhJ9PyzrbnSDw,9799
99
- snowflake/ml/jobs/manager.py,sha256=8sfPnuy_pF9ntgJ1LyipCg5mD8an3CAx32rCEmR2h0E,13399
100
- snowflake/ml/jobs/_utils/constants.py,sha256=5P_hKBg2JpV_yh1SH97DHjTLa2nZftKd05EJiXELriU,3169
97
+ snowflake/ml/jobs/decorators.py,sha256=Of0SsZsOTpjUzmwBWz_gOC4jzFNfD2m9XeVUOkzaLTg,3339
98
+ snowflake/ml/jobs/job.py,sha256=JQ4iWGMq6DrHUt8hbSJxjfO-GUNNmmgGoA_w5us9CKc,11548
99
+ snowflake/ml/jobs/manager.py,sha256=b6FfiOpCp0Ucv551EtYuEQYgoSUnIM61SXHQ8iI-FYk,15091
100
+ snowflake/ml/jobs/_utils/constants.py,sha256=tpw5JWtHIKNbPnWCAPYUL2B-oyDNSaS4elr8XJjr55w,3169
101
101
  snowflake/ml/jobs/_utils/interop_utils.py,sha256=g1-sStVpGwK5wMbswuC8ejGVQjnIBCiw96ElfWK3jg0,18831
102
- snowflake/ml/jobs/_utils/payload_utils.py,sha256=pd_rGBYxloP8DHTKA7k4h1H3Jl6iljeKQaSPOSuR7BU,21578
103
- snowflake/ml/jobs/_utils/spec_utils.py,sha256=Fj7Ki7zcG71RbEImuiarfDT659iTMXGNWDpqcZc33Bk,12217
102
+ snowflake/ml/jobs/_utils/payload_utils.py,sha256=olsy2HfxkrTI1IHZEWeLezLnTsHTmOS35THaRv8mRCM,22307
103
+ snowflake/ml/jobs/_utils/spec_utils.py,sha256=H-deDR8lxJ5ygqtbSAM1L-qWlr_yBO8vxQuqFwKOIgU,12224
104
104
  snowflake/ml/jobs/_utils/types.py,sha256=IRDZZAShUA_trwoSUFqbSRexvLefi2CFcBmQTYN11Yc,972
105
105
  snowflake/ml/jobs/_utils/scripts/constants.py,sha256=YyIWZqQPYOTtgCY6SfyJjk2A98I5RQVmrOuLtET5Pqg,173
106
- snowflake/ml/jobs/_utils/scripts/get_instance_ip.py,sha256=bh23hn1mVebiU7CytzlMVTgfYBlpXHrwjyHLSlfEJB8,5259
107
- snowflake/ml/jobs/_utils/scripts/mljob_launcher.py,sha256=Vlw49RLvNDPzC8TX_q5ZzW1z6fQaomJaV75-PHlGJ2Y,6921
106
+ snowflake/ml/jobs/_utils/scripts/get_instance_ip.py,sha256=DmWs5cVpNmUcrqnwhrUvxE5PycDWFN88Pdut8vFDHPg,5293
107
+ snowflake/ml/jobs/_utils/scripts/mljob_launcher.py,sha256=SUm5yKliGcTNfd25v_hCwxfp5elHYtelR58mNbO3kGM,6950
108
108
  snowflake/ml/jobs/_utils/scripts/signal_workers.py,sha256=AR1Pylkm4-FGh10WXfrCtcxaV0rI7IQ2ZiO0Li7zZ3U,7433
109
109
  snowflake/ml/jobs/_utils/scripts/worker_shutdown_listener.py,sha256=SeJ8v5XDriwHAjIGpcQkwVP-f-lO9QIdVjVD7Fkgafs,7893
110
110
  snowflake/ml/lineage/__init__.py,sha256=8p1YGynC-qOxAZ8jZX2z84Reg5bv1NoJMoJmNJCrzI4,65
111
111
  snowflake/ml/lineage/lineage_node.py,sha256=jCxCwQRvUkH-5nyF1PvdKAyRombOjWDYs5ZJmw5RMT0,5789
112
112
  snowflake/ml/model/__init__.py,sha256=EvPtblqPN6_T6dyVfaYUxCfo_M7D2CQ1OR5giIH4TsQ,314
113
- snowflake/ml/model/custom_model.py,sha256=lRpIr_7c4L_VCqiV08tiHkW5V1o8Y6ux8tcavlMtHvo,11768
114
- snowflake/ml/model/model_signature.py,sha256=PaniWLT9hl4mB2PwotB5I0qRAiNUh3dwN3lmDo8WJeY,32212
113
+ snowflake/ml/model/custom_model.py,sha256=fDhMObqlyzD_qQG1Bq6HHkBN1w3Qzg9e81JWPiqRfc4,12249
114
+ snowflake/ml/model/model_signature.py,sha256=bVRdMx4JEj31gLe2dr10y7aVy9fPDfPlcKYlE1NBOeQ,32265
115
115
  snowflake/ml/model/type_hints.py,sha256=oCyzLllloC_GZVddHSBQMg_fvWQfhLLXwJPxPKpwvtE,9574
116
116
  snowflake/ml/model/_client/model/model_impl.py,sha256=I_bwFX1N7EVS1GdCTjHeyDJ7Ox4dyeqbZtQfl3v2Xzk,15357
117
- snowflake/ml/model/_client/model/model_version_impl.py,sha256=z9Sx8FMwWSiKLi0-uxgfNLBBfuWbweSFLm0GQfSXu7w,43272
117
+ snowflake/ml/model/_client/model/model_version_impl.py,sha256=Nk8J1iHLV0g68txvoQf8Wgfay8UXumOJs8BQBY_2bRg,43273
118
118
  snowflake/ml/model/_client/ops/metadata_ops.py,sha256=qpK6PL3OyfuhyOmpvLCpHLy6vCxbZbp1HlEvakFGwv4,4884
119
119
  snowflake/ml/model/_client/ops/model_ops.py,sha256=Olj5ccsAviHw3Kbhv-_c5JaPvXpAHj1qckOf2IpThu0,47978
120
- snowflake/ml/model/_client/ops/service_ops.py,sha256=dwy_xPwBAp_O-hXMXeUd3TldGKASG-5viFy_T9BkTRI,27876
121
- snowflake/ml/model/_client/service/model_deployment_spec.py,sha256=ZjGrES1iBJtYwKz1PxYu-X1zoHwcP9cFOeI4O9sCgZ0,11153
122
- snowflake/ml/model/_client/service/model_deployment_spec_schema.py,sha256=1AA8Q9x-jfuKdz951zbVp7yAt85v-tEOK_5SAjNb1GM,1115
120
+ snowflake/ml/model/_client/ops/service_ops.py,sha256=_ezoOLdCogL3ySAYVPjquP7p3iGiB9_PD5jGgjlG6F4,28264
121
+ snowflake/ml/model/_client/service/model_deployment_spec.py,sha256=qkLgwxxnVTCtRa7551wk4vSH5Lm2lDNSmpOe4SXNyjs,17177
122
+ snowflake/ml/model/_client/service/model_deployment_spec_schema.py,sha256=cr1yNVlbLzpHIDeyIIHb6m06-w3LfJc12DLQAqEHQqQ,1895
123
123
  snowflake/ml/model/_client/sql/_base.py,sha256=Qrm8M92g3MHb-QnSLUlbd8iVKCRxLhG_zr5M2qmXwJ8,1473
124
124
  snowflake/ml/model/_client/sql/model.py,sha256=nstZ8zR7MkXVEfhqLt7PWMik6dZr06nzq7VsF5NVNow,5840
125
125
  snowflake/ml/model/_client/sql/model_version.py,sha256=_XRgG1-oAzRfwxEH7h_84azmP-_d32yb4nhew241xOQ,23524
126
- snowflake/ml/model/_client/sql/service.py,sha256=U4nFN3Gq0agDx_1H9Sm36vZRnyruUFgNGp8QgNQqgKQ,11738
126
+ snowflake/ml/model/_client/sql/service.py,sha256=l8Y_lp2DVzIoWAR2xUESJb3EIX5dkwK9xe664ZCXQPI,11204
127
127
  snowflake/ml/model/_client/sql/stage.py,sha256=DIFP1m7Itt_FJR4GCt5CNngEHn9OcK-fshoQAYnkNOY,820
128
128
  snowflake/ml/model/_client/sql/tag.py,sha256=9sI0VoldKmsfToWSjMQddozPPGCxYUI6n0gPBiqd6x8,4333
129
- snowflake/ml/model/_model_composer/model_composer.py,sha256=tuy4TR1b9RR_QxeqLLRzwB2zRv02a0Jheev_kkDRDjs,10388
129
+ snowflake/ml/model/_model_composer/model_composer.py,sha256=42dhYHnXof787rSfYzooinOV44EkZ3mgkXXUlVlShkI,11476
130
130
  snowflake/ml/model/_model_composer/model_manifest/model_manifest.py,sha256=0z0TKJ-qI1cGJ9gQOfmxAoWzo0-tBmMkl80bO-P0TKg,9157
131
131
  snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py,sha256=eqv-4-tvA9Lgrp7kQAQGS_CJVR9D6uOd8-SxADNOkeM,2887
132
132
  snowflake/ml/model/_model_composer/model_method/constants.py,sha256=hoJwIopSdZiYn0fGq15_NiirC0l02d5LEs2D-4J_tPk,35
@@ -140,38 +140,38 @@ snowflake/ml/model/_packager/model_handler.py,sha256=qZB5FVRWZD5wDdm6vuuoXnDFar7
140
140
  snowflake/ml/model/_packager/model_packager.py,sha256=FBuepy_W8ZTd4gsQHLnCj-EhO0H2wvjL556YRKOKsO8,6061
141
141
  snowflake/ml/model/_packager/model_env/model_env.py,sha256=D9NBAPSVxPiDl82Dw07OPSLlwtAJqs4fUxm3VSDbYCs,18924
142
142
  snowflake/ml/model/_packager/model_handlers/_base.py,sha256=OZhGv7nyej3PqaoBz021uGa40T06d9rv-kDcKUY3VnM,7152
143
- snowflake/ml/model/_packager/model_handlers/_utils.py,sha256=Ehkz04P02-RNdu6JxD-DbZEjeqt6gvb3lHrrtDam1iA,11189
143
+ snowflake/ml/model/_packager/model_handlers/_utils.py,sha256=8y-LfiBfoj2txQD4Yh_GM0eEEOrm1S0R1149J5z31O0,12572
144
144
  snowflake/ml/model/_packager/model_handlers/catboost.py,sha256=dbI2QizGZS04l6ehgXb3oy5YSXrlwRHz8YENVefEbms,10676
145
- snowflake/ml/model/_packager/model_handlers/custom.py,sha256=LB-WwVuTFlpS3bD75QVWN-O3vlphQbsJvlHPwCLKhAg,8520
145
+ snowflake/ml/model/_packager/model_handlers/custom.py,sha256=fM_13N5ejT0Ta0-M_Uzsqr_TwGVk_3jSjsLJiMEfyR4,8514
146
146
  snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py,sha256=dBxSqOJrZS9Fkk20TAQwY4OYKwaD66SrqWnrW_ZFq5I,22312
147
147
  snowflake/ml/model/_packager/model_handlers/keras.py,sha256=JKBCiJEjc41zaoEhsen7rnlyPo2RBuEqG9Vq6JR_Cq0,8696
148
148
  snowflake/ml/model/_packager/model_handlers/lightgbm.py,sha256=DAFMiqpXEUmKqeq5rgn5j6rtuwScNnuiMUBwS4OyC7Q,11074
149
149
  snowflake/ml/model/_packager/model_handlers/mlflow.py,sha256=xSpoXO0UOfBUpzx2W1O8P2WF0Xi1vrZ_J-DdgzQG0o8,9177
150
- snowflake/ml/model/_packager/model_handlers/pytorch.py,sha256=MCNkqWIvPeS3ZwNXVDQC0I1p7jCYhFu4a3NpP-eDakU,9789
150
+ snowflake/ml/model/_packager/model_handlers/pytorch.py,sha256=jHYRjPUlCpSU2yvrJwuKAYLbG6CethxQx4brQ5ZmiVM,9784
151
151
  snowflake/ml/model/_packager/model_handlers/sentence_transformers.py,sha256=sKp-bt-fAnruDMZJ5cN6F_m9dJRY0G2FjJ4-KjNLgcg,11380
152
- snowflake/ml/model/_packager/model_handlers/sklearn.py,sha256=ipxmKQjOhZOhOMqNCwmOFNOkIbM4Y_0rrxU-ut-y9Vc,15345
152
+ snowflake/ml/model/_packager/model_handlers/sklearn.py,sha256=buuJnOFHbxJKLEfyNMThfffutJCwG37h6CcgYO5nHTg,18095
153
153
  snowflake/ml/model/_packager/model_handlers/snowmlmodel.py,sha256=4YKX6BktNIjRSSUOStOMx4NVmRBE0o9pes3wyKYZ1Y0,17173
154
- snowflake/ml/model/_packager/model_handlers/tensorflow.py,sha256=drXd97lTe0LFMww0dYXWTJgP4HgaKf8zv8NQz01QJFk,11204
155
- snowflake/ml/model/_packager/model_handlers/torchscript.py,sha256=DAmx4ex5CWoKYrwZCTCELoyUtNoWyYunQEUwzQdEuYw,9535
156
- snowflake/ml/model/_packager/model_handlers/xgboost.py,sha256=2PosHHDm33Swqc_XwSV2HHGRXoFUdJhbiffkWbmPFKw,11545
154
+ snowflake/ml/model/_packager/model_handlers/tensorflow.py,sha256=2J2XWYOC70axWaoNJa9aQLMyjLAKIskrT31t_LgqcIk,11350
155
+ snowflake/ml/model/_packager/model_handlers/torchscript.py,sha256=3IbMoVGlBR-RsQAdYZxjAz1ST-jDMQIyhhdwM5e3NeE,9531
156
+ snowflake/ml/model/_packager/model_handlers/xgboost.py,sha256=Nj80oPwvg1Ng9Nfdtf1nRxyBdStoyz9CVe4jPqksxuk,12190
157
157
  snowflake/ml/model/_packager/model_handlers_migrator/base_migrator.py,sha256=BZo14UrywGZM1kTqzN4VFQcYjl7dggDp1U90ZBCMuOg,1409
158
158
  snowflake/ml/model/_packager/model_handlers_migrator/pytorch_migrator_2023_12_01.py,sha256=GVpfYllXa3Voxa54PGNsZ3Hea1kOJe3T_AoA9nrs60A,764
159
159
  snowflake/ml/model/_packager/model_handlers_migrator/tensorflow_migrator_2023_12_01.py,sha256=dXIisQteU55QMw5OvC_1E_sGqFgE88WRhGCWFqUyauM,2239
160
160
  snowflake/ml/model/_packager/model_handlers_migrator/tensorflow_migrator_2025_01_01.py,sha256=0DxwZtXFgXpxb5LQEAfTUfEFV7zgbG4j3F-oNHLkTgE,769
161
161
  snowflake/ml/model/_packager/model_handlers_migrator/torchscript_migrator_2023_12_01.py,sha256=MDOAGV6kML9sJh_hnYjnrPH4GtECP5DDCjaRT7NmYpU,768
162
162
  snowflake/ml/model/_packager/model_meta/model_blob_meta.py,sha256=CzY_MhiSshKi9dWzXc4lrC9PysU0FCdHG2oRlz1vCb8,1943
163
- snowflake/ml/model/_packager/model_meta/model_meta.py,sha256=VAsEbld4Pu89N5JXaL9GeyQWF25SB6_IljpQtW98FzE,19840
164
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py,sha256=acsWYUXF0HuVWiReIYJGXdC3jGnbQ1ruKEs8LXKwidQ,3665
163
+ snowflake/ml/model/_packager/model_meta/model_meta.py,sha256=hX-gZzNxPyWDPBfGPWjhvnEWaPdKyNZcUcywONMndHg,19912
164
+ snowflake/ml/model/_packager/model_meta/model_meta_schema.py,sha256=e4TUbWl998xQOZUzEWvb9CrUyHwGHBGb0TNbtezAeQ0,3707
165
165
  snowflake/ml/model/_packager/model_meta_migrator/base_migrator.py,sha256=8zTgq3n6TBXv7Vcwmf7b9wjK3m-9HHMsY0Qy1Rs-sZ4,1305
166
166
  snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py,sha256=5butM-lyaDRhCAO2BaCOIQufpAxAfSAinsNuGqbbjMU,1029
167
167
  snowflake/ml/model/_packager/model_meta_migrator/migrator_v1.py,sha256=cyZVvBGM3nF1IVqDKfYstLCchNO-ZhSkPvLM4aU7J5c,2066
168
- snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py,sha256=0cbUM1YaHmHQ42cLtryTTy9n8KZNI8N97OU-_iSHCNY,879
168
+ snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py,sha256=F6tdtQgkaMeaL1rW7PDJQnwAVHGQQ31UYCR8DAanRUQ,868
169
169
  snowflake/ml/model/_packager/model_runtime/model_runtime.py,sha256=CDjbfBvZNrW6AI5xapYPFSEEQInd3RVo7_08mru2xx4,5487
170
170
  snowflake/ml/model/_packager/model_task/model_task_utils.py,sha256=_nm3Irl5W6Oa8_OnJyp3bLeA9QAbV9ygGCsgHI70GX4,6641
171
171
  snowflake/ml/model/_signatures/base_handler.py,sha256=4CTZKKbg4WIz_CmXjyVy8tKZW-5OFcz0J8XVPHm2dfQ,1269
172
172
  snowflake/ml/model/_signatures/builtins_handler.py,sha256=ItWb8xNDDvIhDlmfUFCHOnUllvKZSTsny7_mRwks_Lc,3135
173
173
  snowflake/ml/model/_signatures/core.py,sha256=uWa_o7wZQGKQ84g8_LmfS9nyKyuFKeTcAVQROrTbF2w,21024
174
- snowflake/ml/model/_signatures/dmatrix_handler.py,sha256=FPbtRdAhBoVgF6mma4K3Uf2g7kMg9e_oKTUyEv5Xn2A,3659
174
+ snowflake/ml/model/_signatures/dmatrix_handler.py,sha256=ldcWqadJ9fJp9cOaZ3Mn-hTSj8W_laXszlkWb0zpifw,4137
175
175
  snowflake/ml/model/_signatures/numpy_handler.py,sha256=xy7mBEAs9U5eM8F51NLabLbWXRmyQUffhVweO6jmLBA,5461
176
176
  snowflake/ml/model/_signatures/pandas_handler.py,sha256=rYgSaqdh8d-w22e_ZDt4kCFCkPWEhs-KwL9wyoLUacI,10704
177
177
  snowflake/ml/model/_signatures/pytorch_handler.py,sha256=Xy-ITCCX_EgHcyIIqeYSDUIvE2kiqECa8swy1hmohyc,5036
@@ -193,135 +193,135 @@ snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py,sh
193
193
  snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py,sha256=ckeh8plxm0sHIDheYwR4etBfZ9mNy0hySd9ApahUG-k,32240
194
194
  snowflake/ml/modeling/_internal/snowpark_implementations/xgboost_external_memory_trainer.py,sha256=Cu_ywcFzlkflbUvJ5C8rNk1H3YwRDEhVdsyngNcjE2Q,17282
195
195
  snowflake/ml/modeling/calibration/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
196
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py,sha256=JniApR5y_vYUT4vgugsYiOWsXsknIA6uDa5xZohnEr8,53780
196
+ snowflake/ml/modeling/calibration/calibrated_classifier_cv.py,sha256=PN-fBoZIjD3Jl5yn7Av5BPveExrpJn3n2Y1xTGVC_b0,54177
197
197
  snowflake/ml/modeling/cluster/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
198
- snowflake/ml/modeling/cluster/affinity_propagation.py,sha256=CqRDwR5AxWtJOc2cJ1NYdwoC-kPq14Ag4hAHbc29fFg,52033
199
- snowflake/ml/modeling/cluster/agglomerative_clustering.py,sha256=ms167mkw1TxaQ40RIvOkVCKXnYWZ8T66XOyrq061Wxs,53946
200
- snowflake/ml/modeling/cluster/birch.py,sha256=WC_bTyytjC0_awNUt6oJianpeJKQPpsgOUZJ1Pzdj5k,51946
201
- snowflake/ml/modeling/cluster/bisecting_k_means.py,sha256=dv3gctgYmzCk1NhKHx__AlhUvSwE2tprnmc3XV66118,54715
202
- snowflake/ml/modeling/cluster/dbscan.py,sha256=GaeNT3w4yxFPKXj4wg0o24VMc2TlBXbtMuw-Y3awExY,52287
203
- snowflake/ml/modeling/cluster/feature_agglomeration.py,sha256=LVYxbuhcpUD0NAcY-cLp4iW4xNGu3vAQtwCuefAO-gA,54240
204
- snowflake/ml/modeling/cluster/k_means.py,sha256=lJPWARJRd9TKuj7MSmdwFB1fPXh4Bzx4YuBVe07qLU8,54441
205
- snowflake/ml/modeling/cluster/mean_shift.py,sha256=zVlmKd_5dwhATXcxmTxtmW83kAJO1tBpqZY9WNlyZAY,52320
206
- snowflake/ml/modeling/cluster/mini_batch_k_means.py,sha256=Ta4Mk8WvWsmnwAOQhQdV0gi-5S2G6v3X0JgCgMiKYqg,55638
207
- snowflake/ml/modeling/cluster/optics.py,sha256=Ar1GQGlmjx3ielzstafhTnKL1Fd3WG34AX0TCIFfJx0,55497
208
- snowflake/ml/modeling/cluster/spectral_biclustering.py,sha256=Xyq1AJeJp6tHlYHuF4cqsE2VIHIdk6B0sAalgx9MyzY,52330
209
- snowflake/ml/modeling/cluster/spectral_clustering.py,sha256=IoHmeovo0ndflgra5WmDL5i26OdFjc6MH76b90mzk2k,55614
210
- snowflake/ml/modeling/cluster/spectral_coclustering.py,sha256=L0FtG9mzUil-5C5bjkCjZaIPFadZ18Ijep3WVDkTvO0,51463
198
+ snowflake/ml/modeling/cluster/affinity_propagation.py,sha256=XiphFPZDckJ_6bUWMO-8XatkTklUcjpdAH8lR00OuFo,52430
199
+ snowflake/ml/modeling/cluster/agglomerative_clustering.py,sha256=Mdsnf4kiEP3S_4WrjfykEw3eZWsSJoaewvWbzgqYXTQ,54343
200
+ snowflake/ml/modeling/cluster/birch.py,sha256=Jo6TkZfLD5aLs4eAJtcyZtwlgL9DpXz-P0t8e15Mvpw,52343
201
+ snowflake/ml/modeling/cluster/bisecting_k_means.py,sha256=BiuRlG8SgJZfb8uwc188PJsd5qSLWvRF3hdsvDIQADA,55112
202
+ snowflake/ml/modeling/cluster/dbscan.py,sha256=a_EVi5I77x-ieKwwILizlki_ofCoA_L7BwkgpNY1pEs,52684
203
+ snowflake/ml/modeling/cluster/feature_agglomeration.py,sha256=xqMUcExCDQQVjvl_ol23KHAz5uB7x7hxjGq8K4uYuA4,54637
204
+ snowflake/ml/modeling/cluster/k_means.py,sha256=OW5V0N2EtY7LQdbjcpVaW8pyUKTiNuwWWCjj-G7R7RA,54838
205
+ snowflake/ml/modeling/cluster/mean_shift.py,sha256=AlidvXHbUm0BQqCsqykcCI2xImCpCPR8ElLIXXWSlNk,52717
206
+ snowflake/ml/modeling/cluster/mini_batch_k_means.py,sha256=can2LP4Vvpl9yQt4neUrwRnAtwZAihBO-QF1xiU8IYg,56035
207
+ snowflake/ml/modeling/cluster/optics.py,sha256=uTFULCzoDgZ0adK4IX6mqgVAuMv0Gygd25o8zlf7HEE,55894
208
+ snowflake/ml/modeling/cluster/spectral_biclustering.py,sha256=DrEwe-67GQKZXEcHDaV38mRWKG9_deTBzq92ZfDk3rg,52727
209
+ snowflake/ml/modeling/cluster/spectral_clustering.py,sha256=gPwW_o2f9KcJfTkYKzrRbWbCR23Vk1n70Z0JjIHT-BU,56011
210
+ snowflake/ml/modeling/cluster/spectral_coclustering.py,sha256=mMQme1WyTGyK7WJmHrEIPaMY4xmUksXfFlBFBqE8FuM,51860
211
211
  snowflake/ml/modeling/compose/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
212
- snowflake/ml/modeling/compose/column_transformer.py,sha256=2ipCSOw5v7cFpDNvw2AnxombJFC4cbkW4Hb8_32Z9HY,54788
213
- snowflake/ml/modeling/compose/transformed_target_regressor.py,sha256=Lfa3bfdCvvGaaoZFN39zs-knO-dacR5ifz4JiRhQxtI,52075
212
+ snowflake/ml/modeling/compose/column_transformer.py,sha256=3OQQggsNoYpYbDewCUYuBi_qWWYRsV0w185LAwu2N2w,55185
213
+ snowflake/ml/modeling/compose/transformed_target_regressor.py,sha256=XPvXGr2Tlbn3OeDCDU_IGrPf-utPkE4jjXHsW9rGEeM,52472
214
214
  snowflake/ml/modeling/covariance/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
215
- snowflake/ml/modeling/covariance/elliptic_envelope.py,sha256=RaKo_LRGkl4cY0qHDuk8F2MjMIY3FriHL-iIRaoi6YA,52364
216
- snowflake/ml/modeling/covariance/empirical_covariance.py,sha256=2zXGrOTA2acEJeed-TNnv4SsKYQmUtuZWaJ7vUKPbCA,50162
217
- snowflake/ml/modeling/covariance/graphical_lasso.py,sha256=05yYxExMUixdKmBVxUa3TEnukdruMzwagXCQT1ln75Y,52021
218
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py,sha256=8blX9csdbbUJEBmQA_IN31LuGdbKinFoR1MTayffSQI,53213
219
- snowflake/ml/modeling/covariance/ledoit_wolf.py,sha256=M5FLiV8fm9qZhEQXVoEh2N97p6LT05zuXSrrfWMW96A,50291
220
- snowflake/ml/modeling/covariance/min_cov_det.py,sha256=DAFJ5PkON4D1fKgnF7ExKqPzbOCrn01K8N8we6p03wM,51058
221
- snowflake/ml/modeling/covariance/oas.py,sha256=yxUj8dkixKhkCBCc3LhtfqDwactxHnGBX_KaC1jfIuI,49905
222
- snowflake/ml/modeling/covariance/shrunk_covariance.py,sha256=nD7ShDojIk4iAf_YCSKxnl-_kvbL9Zl0FRLtQzcJ3UM,50314
215
+ snowflake/ml/modeling/covariance/elliptic_envelope.py,sha256=9LIpOcLW--RF25jrpoSSJsJM5asbh3gnAwsCFkC6Jvc,52761
216
+ snowflake/ml/modeling/covariance/empirical_covariance.py,sha256=G6fI9hevwGyr3cL14oqJVLdNvncoeiF2vkYjXpEukx8,50559
217
+ snowflake/ml/modeling/covariance/graphical_lasso.py,sha256=Uc35kzMzAZwIo15Y3qcRrvciaRMx2VJLxH64aFqwe-g,52418
218
+ snowflake/ml/modeling/covariance/graphical_lasso_cv.py,sha256=Q0V3LS0sAgJgLgRFNvdwwsRxxT592hlDJIIKQNwHmsI,53610
219
+ snowflake/ml/modeling/covariance/ledoit_wolf.py,sha256=xML2bb31xCUykM40bQELyItRMES-p03aoO9gPNEOeow,50688
220
+ snowflake/ml/modeling/covariance/min_cov_det.py,sha256=fBXLS8hEpY7Iyv7126bEXV_WBUz1sfwm9N_JY82EM48,51455
221
+ snowflake/ml/modeling/covariance/oas.py,sha256=K7lDGHpWELONnZmprN2YVHdWl-lE7n2UKRyGO5MmF08,50302
222
+ snowflake/ml/modeling/covariance/shrunk_covariance.py,sha256=yLfYUr1yhMGUnD1B8dNdjeYTCIWESOHsxrHrXophYFc,50711
223
223
  snowflake/ml/modeling/decomposition/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
224
- snowflake/ml/modeling/decomposition/dictionary_learning.py,sha256=Fkg_HYbxx1N5vZ6Jf-dMq-4Q9IGjMmKzGQad8LPsrPg,55313
225
- snowflake/ml/modeling/decomposition/factor_analysis.py,sha256=xucG_8znJNtZu06tT5G8NoHfPcokXt0XuTuePotydWc,52972
226
- snowflake/ml/modeling/decomposition/fast_ica.py,sha256=hnRksLrvlhKzUa4TDDvd01UFea5N21iJDornOrjhKrc,52899
227
- snowflake/ml/modeling/decomposition/incremental_pca.py,sha256=IFuUgpqxdPcUBCb5vMiNigZ854eJ6Ab4m3h_4qcFvpw,51266
228
- snowflake/ml/modeling/decomposition/kernel_pca.py,sha256=LqilurNUpzQpfQ5lRe142uX6pemDuSlh6hm_JX_PB6I,55256
229
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py,sha256=V0jSC1ujjq3Wrn0BA6kvCOFZ9QBVF11Dit02L2k8Eys,56045
230
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py,sha256=ycjHdaNG5HTIDDH7XoIiY36-MFDYglo_-Ci8IPC0Fz0,53308
231
- snowflake/ml/modeling/decomposition/pca.py,sha256=EZNn5_LjbbgjXVjx_dlBY-Pn3IP0JAZJDftZgY37caM,55476
232
- snowflake/ml/modeling/decomposition/sparse_pca.py,sha256=qbHSoABVm_R-SUTky0lNhOYW4WaN6vK5CchYd6Y8mP8,52415
233
- snowflake/ml/modeling/decomposition/truncated_svd.py,sha256=-ashOOOhiX17jiDsc4EIx6vkSC3TD2wgH-KzzS3Djvs,52041
224
+ snowflake/ml/modeling/decomposition/dictionary_learning.py,sha256=sBg2xt7mT_SW4iaUHf2YMpLwSgIXlg2YoDB5jCo-AwI,55710
225
+ snowflake/ml/modeling/decomposition/factor_analysis.py,sha256=Ut-tYVcqMSXaaLE0putxSz8Aatdt9tbDD5BOtMnDe2Y,53369
226
+ snowflake/ml/modeling/decomposition/fast_ica.py,sha256=IxXCMNcvLb7j9QRK6pq37qhTV0h3u3sJrtS613rz9Xo,53296
227
+ snowflake/ml/modeling/decomposition/incremental_pca.py,sha256=qpiboaU7doR4Ak2RlSLpv5WiF0f0AMwmysZEsZ-zvLA,51663
228
+ snowflake/ml/modeling/decomposition/kernel_pca.py,sha256=hc9LRrdn3hlWsoLVaYtGkbIS9CKcZv7TtPycSKDixdk,55653
229
+ snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py,sha256=4X7770WbECY94vsZyfLpjw9eLHHps5ftJaA55x1U-3Q,56442
230
+ snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py,sha256=cKmHEgNpAgAp2is0MRFDEi7FdXn_zETrDmG3eHj2l0U,53705
231
+ snowflake/ml/modeling/decomposition/pca.py,sha256=DL--DHcMxjoER-gYpKjyUCE3q5ZGi_0I7X8Y_-4tWu4,55873
232
+ snowflake/ml/modeling/decomposition/sparse_pca.py,sha256=dcaCTtxiTHBWqgry6w9ADQNvxP3bZ2N_DzBMxppPUhA,52812
233
+ snowflake/ml/modeling/decomposition/truncated_svd.py,sha256=UR5x27eWCbRwzz4y4gZa6zlc7wfWDrm5XiUvfEVMG18,52438
234
234
  snowflake/ml/modeling/discriminant_analysis/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
235
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py,sha256=gv1DuoypM4rJa_W6Fv27x6B8dTP6fX8Z3MykXicb8u8,54932
236
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py,sha256=90IxGXiskt9SNoRJzR8AvFQnrdDFaDXdKu-6_C87Mys,52511
235
+ snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py,sha256=9qZc2XDOMQS-hVeDcSf7Gi7INnu2PczKF0NgB86Mez8,55329
236
+ snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py,sha256=HzfQbabMIKkGZa975yKumqsOg0gloA5Vw6AX7DH0svQ,52908
237
237
  snowflake/ml/modeling/ensemble/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
238
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py,sha256=IaX1u3qjLCrTz0-xqEG651M7mMChwzwYg9Yxrn9GRT4,52713
239
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py,sha256=5LER9dyYnkIDzMTasn66LxpR97HPGb8yxuVkKRNT7x4,51716
240
- snowflake/ml/modeling/ensemble/bagging_classifier.py,sha256=b93ddAeS6Zk_TlbOO8Vov7g3TWccm641uQeC6ydz0IU,53905
241
- snowflake/ml/modeling/ensemble/bagging_regressor.py,sha256=Fj8KZ81GmUDlwpNeIHjD5t_J9BPvAWd53RZiBlQuuPE,53140
242
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py,sha256=yqHN3SIPg2AJ-6etymTbO2K7qn0RRXBUBoz3VYkLJ6c,59954
243
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py,sha256=YR6O27rGbZvYOEqzBUphnUopk_A4VufI4vtZuGNAj-M,58407
244
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py,sha256=_ph-9VAnsyRvCM0I2DLQotbuM3K2NKBYCc9N6agIi3Q,60713
245
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py,sha256=_i7Px76XlOY1Yh-vz8O4xDibc00LaCqOoQLPjf4qb64,60305
246
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py,sha256=Kzp78g-bMxFIdvQKzqoe2jOAvyGyNSXnaaxscITPVGU,61199
247
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py,sha256=Mf2cTmLgENtF-iy4vCDe_AX59rYRIDrGijraOvbWodU,59534
248
- snowflake/ml/modeling/ensemble/isolation_forest.py,sha256=UydWp5KrT8_FgG29rG_bzr6HOILeykq-3SE_dcIcc_M,53498
249
- snowflake/ml/modeling/ensemble/random_forest_classifier.py,sha256=9eWLXEeRem1XDJjEcty7bZV2mT0Akfe76sPDiPvddag,59927
250
- snowflake/ml/modeling/ensemble/random_forest_regressor.py,sha256=V4jRwqelQXSfBIYGHkVh2uKCKinHNLa1ssi6icGB_ts,58380
251
- snowflake/ml/modeling/ensemble/stacking_regressor.py,sha256=Z-HTdCSQLTuOdwpe_4ScGHPIcqHTcBDiD80KGep6x00,53442
252
- snowflake/ml/modeling/ensemble/voting_classifier.py,sha256=NZKRVdo9ZRrvqNspXU_H8KxzqayU6rrBJCrTR__YFjc,52994
253
- snowflake/ml/modeling/ensemble/voting_regressor.py,sha256=0kwAKXYHJk0REhhAMe0FhYBShd_ysurDV7qP4CWGjOo,51519
238
+ snowflake/ml/modeling/ensemble/ada_boost_classifier.py,sha256=rfOlUx4fc3zfc9YUop8UJh4UyKvL7zTgpK8EDhw77kc,53110
239
+ snowflake/ml/modeling/ensemble/ada_boost_regressor.py,sha256=u5V38S4XEc7PpgMywrLv9bBj8p2pmkPYHXBUFoPx6-w,52113
240
+ snowflake/ml/modeling/ensemble/bagging_classifier.py,sha256=ilghs_lbcCZ-UJx4WzgV7LRE8q2GTZaAUt4f9ORt-d0,54302
241
+ snowflake/ml/modeling/ensemble/bagging_regressor.py,sha256=NlBi6e1Ik9tSdb7AibiJR1VP8QIw7ST40SoaHuC3_yc,53537
242
+ snowflake/ml/modeling/ensemble/extra_trees_classifier.py,sha256=CaOG7EMFb9szt2wWql2bVtFQLOHDU8vg_cs_pHUrLD0,60351
243
+ snowflake/ml/modeling/ensemble/extra_trees_regressor.py,sha256=k9aK1uGdm9KEkHWerXoNsjZ710Ddp5fYBY_OIKlkGCs,58804
244
+ snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py,sha256=uNcKO35j_pRJdyVu-qwmzzt_RHUQyl5f2Rq9J46a93c,61110
245
+ snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py,sha256=a7O5iVOGSHjheqnKCVjnH5K9Ld-SmTWllhPBFqeMEv4,60702
246
+ snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py,sha256=SHSA_bYMRyTkdVaHc9-d2fGd4H_P7y8shWHbqFBrWVU,61596
247
+ snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py,sha256=4FbSw_o-7LWGNzcqweeB3UYIkvfJJGjLBbU_r66UmVU,59931
248
+ snowflake/ml/modeling/ensemble/isolation_forest.py,sha256=valmvjZxGeLzQuA7El-gGKLiW2Y6bymMlU6tjWT29XE,53895
249
+ snowflake/ml/modeling/ensemble/random_forest_classifier.py,sha256=jaD7spMP7ozsxdStwvlovUxx2VbVaf9fbo8ZwWKqPpo,60324
250
+ snowflake/ml/modeling/ensemble/random_forest_regressor.py,sha256=-arnzokzT_qmftZ-Vp-CFBHLcq07vpj4KFvAzFhm8kg,58777
251
+ snowflake/ml/modeling/ensemble/stacking_regressor.py,sha256=QLw56XDhTdNjHOgGbAHHbmRQNzuAUxp3rEdF5fncrg4,53839
252
+ snowflake/ml/modeling/ensemble/voting_classifier.py,sha256=v1ZztvpeqOmkStHQsmgOW3DGc2IPrtX5ritRwkDkCjQ,53391
253
+ snowflake/ml/modeling/ensemble/voting_regressor.py,sha256=Lcl6m5gAD8u7Oagu3_ZCzISU5QdygGiIkAfnehansRI,51916
254
254
  snowflake/ml/modeling/feature_selection/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
255
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py,sha256=Y_qauoRdTYV1xMCDTGtCjQ_Gevp9vlxFBygGeE1fQ-I,50989
256
- snowflake/ml/modeling/feature_selection/select_fdr.py,sha256=ysMpv5h0vjwRP86b96Um69L7YaHdlLhstsYTfO2YkcA,50451
257
- snowflake/ml/modeling/feature_selection/select_fpr.py,sha256=M328iFSomFmUC1tUwgbS6nqb2QL9lLV7I2N12eIvWVk,50445
258
- snowflake/ml/modeling/feature_selection/select_fwe.py,sha256=Oi8E53i9ooXZ7aRYGi7y9eCUZQXHupcq7VvQBIHVVDE,50453
259
- snowflake/ml/modeling/feature_selection/select_k_best.py,sha256=YEYfdIktGtaXEkjo2t2FUHgv274H8qzY6RBXericyAg,50546
260
- snowflake/ml/modeling/feature_selection/select_percentile.py,sha256=taAIIkUGudZnLDDvyS3Bb59NozewAK60u9etVRRltI4,50606
261
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py,sha256=W5-NOY5fkDPCXmQoDUTn7t6Up4ayh3PWtf7-35OjfLw,53385
262
- snowflake/ml/modeling/feature_selection/variance_threshold.py,sha256=NcQxu3aTqkZD-DAxalJeGeOlUB6M0XwYtWaQd8zwPB8,50247
255
+ snowflake/ml/modeling/feature_selection/generic_univariate_select.py,sha256=AOHtDD6nvoL0n-OR_bQToeRHTLwLFgv3y5cvnPhVz_k,51386
256
+ snowflake/ml/modeling/feature_selection/select_fdr.py,sha256=0MPBvzKLLq804ZHWOdubbUNZlyzue2WFMXZQE3PGtsA,50848
257
+ snowflake/ml/modeling/feature_selection/select_fpr.py,sha256=vVPZ2iN_EzbgHQLj5s7HIGb5a_DMvRw1d-i0cykIfqI,50842
258
+ snowflake/ml/modeling/feature_selection/select_fwe.py,sha256=MTUByQDm-T0FwvonKX1Q5XPMDKvLoBLWpK_8jUC1ePg,50850
259
+ snowflake/ml/modeling/feature_selection/select_k_best.py,sha256=CWBHTaR1k79NphpRemJTGaXSQH_8-v7HYXOoQwVyeFA,50943
260
+ snowflake/ml/modeling/feature_selection/select_percentile.py,sha256=J8tbZQpz2tJn-diy3S-O-MxCoak00pfOcTderrPtRwo,51003
261
+ snowflake/ml/modeling/feature_selection/sequential_feature_selector.py,sha256=Kyzf2jziMQp2Q5nq8ar5-JAEV9cRZX2axlN9orZMOBI,53782
262
+ snowflake/ml/modeling/feature_selection/variance_threshold.py,sha256=DombmnjBuNvDItNEXH_OMV-4wkOVAZmXCMTE9kW0j0Y,50644
263
263
  snowflake/ml/modeling/framework/_utils.py,sha256=UvB9hlvvUl_N6qQM-xIDcbtMr0oJQnlV1aTZCRUveQg,10197
264
264
  snowflake/ml/modeling/framework/base.py,sha256=i8DEdGoV9b_Ky8uDO2yzgPN_9YFmGtYOoT6RA11YgWM,31942
265
265
  snowflake/ml/modeling/gaussian_process/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
266
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py,sha256=xkWHEGfuQ4ePw1lhEIOpSa4AHrfPehBrbpE0U6GEbP8,55877
267
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py,sha256=K0g7VbDw8WjiECflDVJqsxDemLiH0cmIdm7Rr7A6xEI,54941
266
+ snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py,sha256=53AOs2kSN7Y6humFHfzQ_b1UdsLKKyvFg3RmPe3jwys,56274
267
+ snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py,sha256=Gt3NvazKv-JN84mBCs40PmGWcJqo65hhJLZS1ZK1TIo,55338
268
268
  snowflake/ml/modeling/impute/__init__.py,sha256=AUAyMIRsAF9Ocf7zDnGPYSvKgGfkR8LInyFvkC-7MiU,281
269
- snowflake/ml/modeling/impute/iterative_imputer.py,sha256=ArB7_BNQ1yS13uiFzMaNUbHAEsnBHyafedIFu4UNPiM,56770
270
- snowflake/ml/modeling/impute/knn_imputer.py,sha256=EJAwTGACFByvJgb-EG2jEFEZ5_GOjDCSmltsQ6QsNg4,52480
271
- snowflake/ml/modeling/impute/missing_indicator.py,sha256=P-4XgNFt6jnHwIv65joaU-yy2aLysIjOQoQemXh7JOU,51343
269
+ snowflake/ml/modeling/impute/iterative_imputer.py,sha256=O3H0l0c2eIOtlaXeI0YMIlNeABIJdfo6H1mkJlNtVzI,57167
270
+ snowflake/ml/modeling/impute/knn_imputer.py,sha256=GLYIS2aEcdYb73SQa7S-MHk5639yoCRGQSvSipTD_jE,52877
271
+ snowflake/ml/modeling/impute/missing_indicator.py,sha256=cjajFF4_f_ogSvmfNgvFCZZZWoxtxfZZi7z3LpQA3vs,51740
272
272
  snowflake/ml/modeling/impute/simple_imputer.py,sha256=Tznj3hrPZQSy6nnaOAWoWYuMcz1AwtzmtToG2l5t-d4,20934
273
273
  snowflake/ml/modeling/kernel_approximation/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
274
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py,sha256=EmJpDmbQTcsde9lEHCtSmPIrsfGL1ywV1jw-hDvMPzU,50377
275
- snowflake/ml/modeling/kernel_approximation/nystroem.py,sha256=Hw-3MSysDlLLcfh5RaKs2IlvvXgait5dJRdZIy4lQx0,52137
276
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py,sha256=GVfBpS486ZXYc6AUyTksz19AToDHKFFabiG1-YW82Kg,51398
277
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py,sha256=I3G5D_64zEypbYywnLcsuXU6MkB6GktdtEDBFHM0QY8,50741
278
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py,sha256=id6MHaqQd2XRJZtct7FJWgbwWID0Jj4Q-4Cmk0_RNmw,50796
274
+ snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py,sha256=kofj3unubKoZkk0hz9nkAdE889UWAWfS9giPXzSJewk,50774
275
+ snowflake/ml/modeling/kernel_approximation/nystroem.py,sha256=P1kBUm1RR85CsJuNXAdKl4O0g2tt0HVykEMqySH9K58,52534
276
+ snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py,sha256=Fn2oMHNMRnvmhkfnSXOJyhE2lg6PCwSYsitQbshQyDk,51795
277
+ snowflake/ml/modeling/kernel_approximation/rbf_sampler.py,sha256=2xr8in9M9M4n_OFsQLr5PtbE1K_3M83ZFg6vq59eoU0,51138
278
+ snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py,sha256=u9qXtk-ZvCYKy6eotHZA0EWsNrbnhfqw_Hhp78VDGAg,51193
279
279
  snowflake/ml/modeling/kernel_ridge/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
280
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py,sha256=mgIqlhdIeDwM1KZvUhuCnq3amSvG-BJ4pByjTTW9uLc,52245
280
+ snowflake/ml/modeling/kernel_ridge/kernel_ridge.py,sha256=YzK3c6HcrbGykQ8hPa6pXJMsuVVHavRkjuNEyLavbm8,52642
281
281
  snowflake/ml/modeling/lightgbm/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
282
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py,sha256=bIWtW2FfW5liDQ_sNQ3DqydbAc0-SFTRr-92WW2iFvI,51748
283
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py,sha256=SC5xBwFNmaHAoZGLiQZGW5Hyhp3LA-WZVg7XDoW97t8,51250
282
+ snowflake/ml/modeling/lightgbm/lgbm_classifier.py,sha256=aqu_9wuJTO0b02jjwIa8Pa9AWJ7ZSjPJNGZjrhDBPFY,52145
283
+ snowflake/ml/modeling/lightgbm/lgbm_regressor.py,sha256=QM2wAK8olzrzI-q_dXv_kAc7CIvV7sGs32AKCTmJcPE,51647
284
284
  snowflake/ml/modeling/linear_model/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
285
- snowflake/ml/modeling/linear_model/ard_regression.py,sha256=W6SyRk2kvzWiN-0RhNVVMk_1GkhRT9Jat3kxzz5wJcw,52005
286
- snowflake/ml/modeling/linear_model/bayesian_ridge.py,sha256=vZh4blm7vn5F8z-mVtMNeR-xLJpGAHL3P-ewwhRsED8,52375
287
- snowflake/ml/modeling/linear_model/elastic_net.py,sha256=Dyn5umhvXZkC0uI-VyoffP117Lqlr-1FEOkq3jJ21JA,53393
288
- snowflake/ml/modeling/linear_model/elastic_net_cv.py,sha256=IyPiRLxt5af6Uu7yZuPBZY5KDGM4o5e2wffN3_HdZ3M,54469
289
- snowflake/ml/modeling/linear_model/gamma_regressor.py,sha256=McjqipVmPyorLES6iMFNF10yobOG7vA8eiZNurlyrYY,52258
290
- snowflake/ml/modeling/linear_model/huber_regressor.py,sha256=6NHnX8MDh-FAhvLjX-TubKE5WAEFu6Mb7NcUn7OPq6s,51455
291
- snowflake/ml/modeling/linear_model/lars.py,sha256=1xB2sbv34CMgKYAcWXyBkAN2mpVaLVFgFT94UdrjLbM,52161
292
- snowflake/ml/modeling/linear_model/lars_cv.py,sha256=vJuyOfcR_A696KArAVV5jl7oyI9NEmYZzRyw_iYDWeM,52409
293
- snowflake/ml/modeling/linear_model/lasso.py,sha256=d76NzkhiSD4j5kSbb4xdlj1nPQP2ER-QixoNavwe2k4,52775
294
- snowflake/ml/modeling/linear_model/lasso_cv.py,sha256=8phiWXGY7KjL2m935jpbW4qHd5JJCv7OQ67sgZsMSoE,53587
295
- snowflake/ml/modeling/linear_model/lasso_lars.py,sha256=coX9bBN0neDpWLUJSs8_Zs9ubWNS5BempBKnIJAofrQ,53302
296
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py,sha256=59oby9-ru7oxiPbZfOaher9B7ZchNjc0sl79k8Z2RE8,53290
297
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py,sha256=2oXUE3-lDogfiUI6T4vNukOQBxHmMkJ70tspc4y3kao,52611
298
- snowflake/ml/modeling/linear_model/linear_regression.py,sha256=acHXbvXwxbscaoZPEs6Ub30Ed65XjH5tcHgaBXb7gxg,50999
299
- snowflake/ml/modeling/linear_model/logistic_regression.py,sha256=OyxunEwnb_cFeZ5nmeatKd86csPQTO_JTZV4O-8qDEY,57764
300
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py,sha256=MDJS8GlgMc6YrtAfTonM5p_FmhVJyp7M35lb2by8f1s,58828
301
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py,sha256=DBZtxHsVoHNrW1_N0Nfd0fQN0rrSpYoqSkguSncqs5Q,52474
302
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py,sha256=X6839FIO3uc9ss6D1a9Mt-zKE2FBI4HsIuaO0-oEgDs,54139
303
- snowflake/ml/modeling/linear_model/multi_task_lasso.py,sha256=Fxkx3JNOONdxNONxxKMyATYlJ6ZdvLOBJLBgj1ADcVM,52017
304
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py,sha256=pBNV_Ki7WDLu6K2XqPGtreSM6Yq7wXne2RZi5_lGNQ8,53306
305
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py,sha256=Pv0GnwY66yeMAxzVNM2255Qy57Rhb9y9i0rXWR86I0g,51222
306
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py,sha256=fPEAy-fc6SU3hgHMaKTmdgMIJj6jf4-W0tU0POl7_fQ,55046
307
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py,sha256=INRSP-tdqg2c4pyszqapNXfFj24zwUNUxp4a64KvrC0,54108
308
- snowflake/ml/modeling/linear_model/perceptron.py,sha256=AC3OuZlOx9R0sXlUzRW1-R-6i9S4gQv5k3hS3ZUr_As,54363
309
- snowflake/ml/modeling/linear_model/poisson_regressor.py,sha256=Q6LsupHo14hEmSWaRFLp9j52EiiY3kMfi2mu-6oUq24,52305
310
- snowflake/ml/modeling/linear_model/ransac_regressor.py,sha256=WO8UB74kp_4X35zSn-vjM2axKNh_n3ErsFJLX5zXPH4,55444
311
- snowflake/ml/modeling/linear_model/ridge.py,sha256=qazKXGMSPby5CkD_hNQ5YjJ-__roQoAmlPf5wu9W7-U,54319
312
- snowflake/ml/modeling/linear_model/ridge_classifier.py,sha256=UlHCBQ23BwxujKIYzgfMYZ6d5qcC9T1lITkhW3uhk8c,54717
313
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py,sha256=mP7wndBMpMwSlyheKq_mOvMvk6yUkjvid_zYasqQMbw,53182
314
- snowflake/ml/modeling/linear_model/ridge_cv.py,sha256=RkjQXV9dpZCXQqON_dZ7DCtef9DNkmXixVxVETH4ehA,53789
315
- snowflake/ml/modeling/linear_model/sgd_classifier.py,sha256=_uM9aLbRU4UEGbXmK-YV1E6v0H1T96QZ9zcbHoit7_w,59774
316
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py,sha256=3v6_WrIeV4mtUzz4Go8o05XgiyEKqtBgC2rJj1zfjeg,54856
317
- snowflake/ml/modeling/linear_model/sgd_regressor.py,sha256=AEcu_eOtTx5okgvf_KLsETmuTF7G6hpRKEBk1cs2_AY,57751
318
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py,sha256=EEghjoAWCuFuIIy2y4E-ydXhEPNKq9WbpBlQpXbPRvY,52741
319
- snowflake/ml/modeling/linear_model/tweedie_regressor.py,sha256=y6DNiZ_aE__t9UicC-saQPjooTL86Rg8uFNzukM9-Gc,53696
285
+ snowflake/ml/modeling/linear_model/ard_regression.py,sha256=W1gl4IGFaX_AXONDbA_gfC-LZHiAGf0DC6ELYp62pZk,52402
286
+ snowflake/ml/modeling/linear_model/bayesian_ridge.py,sha256=w-Pc6xF2ytch-HfPWIgAGadTf64J5e3lsWFHPUISR2Q,52772
287
+ snowflake/ml/modeling/linear_model/elastic_net.py,sha256=UOy7Pc3KIytN9gyRydt56uUoZ4oLc-ng09-uUMF8keA,53790
288
+ snowflake/ml/modeling/linear_model/elastic_net_cv.py,sha256=551rCj5fGimvmNhWHV7F-ug7x-BwkyHK2GbtRZcYRsg,54866
289
+ snowflake/ml/modeling/linear_model/gamma_regressor.py,sha256=HqjrLTaY4EROwp66xGCekuQ_kpHN8InKyf3PEhNML8M,52655
290
+ snowflake/ml/modeling/linear_model/huber_regressor.py,sha256=Rr7aGYwkaBpM-zYBPXeI6W2xXswA7-h77_VB0IzHD4E,51852
291
+ snowflake/ml/modeling/linear_model/lars.py,sha256=qszoPQvf2fPWBIee6CB-e8kij8gUoGGPpLAjaqzNkQk,52558
292
+ snowflake/ml/modeling/linear_model/lars_cv.py,sha256=om9N6A2L6AvNLN7ZGmLYyBkZ-2Vt_dYis6MimNkxW8I,52806
293
+ snowflake/ml/modeling/linear_model/lasso.py,sha256=_sI_TRshSX2nYl8HB0p5ogBtIOoi5crI4GrcJgBeqzQ,53172
294
+ snowflake/ml/modeling/linear_model/lasso_cv.py,sha256=C5TNLWaT3LH4XsSZ_THjWgKSasEEnzGbUEfhpEWBYZc,53984
295
+ snowflake/ml/modeling/linear_model/lasso_lars.py,sha256=knYCrHCOaXBf47AAdhJ9wDDELGSpudj6E-_AnHgMUlI,53699
296
+ snowflake/ml/modeling/linear_model/lasso_lars_cv.py,sha256=-F6A1QHVn6ULJG12ZrRkNZdGbwYm7YZIWG3Ejsr3J8A,53687
297
+ snowflake/ml/modeling/linear_model/lasso_lars_ic.py,sha256=SgdksEfanuFEXzaTSADndsvt99CrcKjhE0Gq-40o_y0,53008
298
+ snowflake/ml/modeling/linear_model/linear_regression.py,sha256=x6XurxKT0F-rSkpsog-kMH4dqf8IGkT7bS1oYz_fFfc,51396
299
+ snowflake/ml/modeling/linear_model/logistic_regression.py,sha256=IlDx28zrwblP-8DdZ5tN1CeaOfrHMunRMP-fbi8RosM,58161
300
+ snowflake/ml/modeling/linear_model/logistic_regression_cv.py,sha256=El5o3udl4EXCeqE3UQchb5TbrGXbApvRoktiMgc6_Vw,59225
301
+ snowflake/ml/modeling/linear_model/multi_task_elastic_net.py,sha256=j59Bb4DfPOPbvV3ekxCPaLlXyN_ZsDFH0VIUkBcKIVE,52871
302
+ snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py,sha256=LmsFrKdIQrbTuhoxTo-Ta83IUuAZu85R6A0oHw7YAYc,54536
303
+ snowflake/ml/modeling/linear_model/multi_task_lasso.py,sha256=MnsTR1ZzNxEiOzPtJh5ClKcgKxzyeyDCxkuEZhC4cu0,52414
304
+ snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py,sha256=8k8kpcFy48NDr0s3c3-BL4PjOHSkjly0dCMUkKXKmDg,53703
305
+ snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py,sha256=JgWKwDHYI43j1A3GNCjS4NWo4hT0cibil0L-0gC9fA4,51619
306
+ snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py,sha256=PcAHLuuFMDDOZL45yatHIWN61jw61msOXsNfMNGcjWg,55443
307
+ snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py,sha256=NCfQHD9VJiIDl-eGCPQZ4492yTPZzZN5RYz72PCOWVQ,54505
308
+ snowflake/ml/modeling/linear_model/perceptron.py,sha256=hSpgHC4XO-08h2AXqnfTbScHUzRH460_V4FyPQ1siT0,54760
309
+ snowflake/ml/modeling/linear_model/poisson_regressor.py,sha256=2H46W-XbwX-8GwBh5Eca3kV5LioYIcwohYaLIpo3yGI,52702
310
+ snowflake/ml/modeling/linear_model/ransac_regressor.py,sha256=_cVkRspXP0ljSe7YdxYFRv-5JBeiamaibk509NTCDgw,55841
311
+ snowflake/ml/modeling/linear_model/ridge.py,sha256=L5Ajz3PwJteqcflPslez66NTr7IAKjbigUTHxMYpiDg,54716
312
+ snowflake/ml/modeling/linear_model/ridge_classifier.py,sha256=niM44vDmpoRMMGJ9g-5qIuUHqeDkrsOk5TJpHZMvlAU,55114
313
+ snowflake/ml/modeling/linear_model/ridge_classifier_cv.py,sha256=6sawX5avdKR0ZOStnFom-FbcjCRXySoTPtHksMnNaj0,53579
314
+ snowflake/ml/modeling/linear_model/ridge_cv.py,sha256=iiTABk8xZD1T3QY1WrmicduN2Jk3UZ_wutFHdGrXwUM,54186
315
+ snowflake/ml/modeling/linear_model/sgd_classifier.py,sha256=CGymVQuwdfbip_YfDqz-pniCGTFd7NI82UUDTGp1c_g,60171
316
+ snowflake/ml/modeling/linear_model/sgd_one_class_svm.py,sha256=mTAzO2gVL5TtDRExgpytgNEVxt7DvPTYPb6xNbxRYt8,55253
317
+ snowflake/ml/modeling/linear_model/sgd_regressor.py,sha256=ToIeH8C32chpaXf8v8DgqozfwwKa12-22shdBcmJ-QU,58148
318
+ snowflake/ml/modeling/linear_model/theil_sen_regressor.py,sha256=wEtbl-3q1w62qVnE-GRgjhTmq7ItQsR063Igm9k8QX0,53138
319
+ snowflake/ml/modeling/linear_model/tweedie_regressor.py,sha256=c0kO63RiGi1N8d_xtmROUgLX6edbRSbHw5byrA7aMY8,54093
320
320
  snowflake/ml/modeling/manifold/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
321
- snowflake/ml/modeling/manifold/isomap.py,sha256=6vV6UxfDtG6XdfuRHP7RuFy5z5JVhmx-uF4Vx370rEE,52999
322
- snowflake/ml/modeling/manifold/mds.py,sha256=R8Vcoq6Pil8rIMa4rfP7fWQJ4rGO5_VyqA8OAF6ttn4,52215
323
- snowflake/ml/modeling/manifold/spectral_embedding.py,sha256=Eq4Qlti2yur3shm-WtmA4X8_NrqXHLUujXDEXPdzyys,53079
324
- snowflake/ml/modeling/manifold/tsne.py,sha256=ufxDqlE1lwEAYY6n8n8ESCg8bw5n1DL9bz-RLYXenvY,56202
321
+ snowflake/ml/modeling/manifold/isomap.py,sha256=aFdaFP0fRxXtHnWDxiyOdas2xjjTFB0JqFBSrXxbqEE,53396
322
+ snowflake/ml/modeling/manifold/mds.py,sha256=I_QuAmmAvR_XVhC02S1Id8_86onuZVDn3C2vmEIaskY,52612
323
+ snowflake/ml/modeling/manifold/spectral_embedding.py,sha256=WWXDnycP_jkLO5krDH_HkF8RGmvGbc0p5UcNpojImRs,53476
324
+ snowflake/ml/modeling/manifold/tsne.py,sha256=oSHMII0dVUst6ezVmfTlyP3wJywVJIt7Aj965a1p1PY,56599
325
325
  snowflake/ml/modeling/metrics/__init__.py,sha256=1lc1DCVNeo7D-gvvCjmpI5tFIIrOsEdEZMrQiXJnQ8E,507
326
326
  snowflake/ml/modeling/metrics/classification.py,sha256=E-Dx3xSmZQrF_MXf2BHAjrDstbCXVyU5g6x6CeizosQ,66411
327
327
  snowflake/ml/modeling/metrics/correlation.py,sha256=Roi17Sx5F81VlJaLQTeBAe5qZ7sZYc31UkIuC6z4qkQ,4803
@@ -330,35 +330,35 @@ snowflake/ml/modeling/metrics/metrics_utils.py,sha256=MLqTN59F3NLkldhsUrJFAZsHmf
330
330
  snowflake/ml/modeling/metrics/ranking.py,sha256=znjIIRkGqnGzid7BAGhBowGHbau7mTV5gc-RY_HVfoQ,17760
331
331
  snowflake/ml/modeling/metrics/regression.py,sha256=TcqnADqfL9_1XY47HQeul09t3DMPBkPSVtHP5Z9SyV4,26043
332
332
  snowflake/ml/modeling/mixture/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
333
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py,sha256=qT01m49GVLSA0YgK7uFCWj9ivacr-X50dtZA6uhotKk,57587
334
- snowflake/ml/modeling/mixture/gaussian_mixture.py,sha256=Qd2WXZIzwhJKxISyMR58uln30TPtKj-VI3IS1eoRKyM,55480
333
+ snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py,sha256=vKF2eQnrB63KmDKv0uRytR9-1CYOYU52fr79q0Mfvp8,57984
334
+ snowflake/ml/modeling/mixture/gaussian_mixture.py,sha256=-RLbWrJUJTZ1GZwNn0yrZKwGQpSJZgof6iJpYJG0Wz0,55877
335
335
  snowflake/ml/modeling/model_selection/__init__.py,sha256=AUAyMIRsAF9Ocf7zDnGPYSvKgGfkR8LInyFvkC-7MiU,281
336
336
  snowflake/ml/modeling/model_selection/grid_search_cv.py,sha256=MN2ShNWFKDJYU8-ofhNfef3zAsGyPMAzfToC6EuQMs4,38358
337
337
  snowflake/ml/modeling/model_selection/randomized_search_cv.py,sha256=E5i1AsL50HV9A25JkUUTEQZkX4EVJqrFP2T9EOW5B4U,39100
338
338
  snowflake/ml/modeling/multiclass/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
339
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py,sha256=d-rMWrJgFc8FQDczE7jhL1EqWzn7cw-P0wvF2Ouke1A,51001
340
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py,sha256=NxHBfHMH4e1u_P0oLb_5SBpSOoP05WX2SsSc9Ke14NY,51936
341
- snowflake/ml/modeling/multiclass/output_code_classifier.py,sha256=MU20m10b4TbgsGiLXTc0i2Mx3R8_it-qg58BSvN4OqA,51273
339
+ snowflake/ml/modeling/multiclass/one_vs_one_classifier.py,sha256=Wfh4mMKFKbh82cZYSVSn1Ra0CrWdw1uplrpuUl9z3RU,51398
340
+ snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py,sha256=-Hpcu72UIFh2TjPavGXl4GLfuQ6KBProKFc0omJvF54,52333
341
+ snowflake/ml/modeling/multiclass/output_code_classifier.py,sha256=qlTdJpZ_kG68l2suCDc2Q-lFhZAzof8DuH7Fpn2kxH4,51670
342
342
  snowflake/ml/modeling/naive_bayes/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
343
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py,sha256=NknEgL-CJXBTcFhqZcl6B-QCM-82tbebdmPjsBcGTfE,51528
344
- snowflake/ml/modeling/naive_bayes/categorical_nb.py,sha256=aOcI4oZ55BUJ9E8HaTVH6W0GTlfWH3EBnHe8kZNYN34,51865
345
- snowflake/ml/modeling/naive_bayes/complement_nb.py,sha256=2pkgOKdf4NWEFplAAD8eZAWgPBSp0Z1wIATYhvoL7j4,51544
346
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py,sha256=d_CO11bj35yvC9lPQKhIaHb5KVR_sIb7iwI0uRIJ0i4,50676
347
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py,sha256=1TxZJMhpeoWf5AcEF6dRWL6wo3tRjGB8vL-2ektgbPs,51310
343
+ snowflake/ml/modeling/naive_bayes/bernoulli_nb.py,sha256=KNaMA7jiWY1k2y1NJQti6DjHJDmNDjn9GNpmdik_EqY,51925
344
+ snowflake/ml/modeling/naive_bayes/categorical_nb.py,sha256=4y2cpGa7I49_yA8mUTnVk3yHFl8I02-5-C1zFSbPzwo,52262
345
+ snowflake/ml/modeling/naive_bayes/complement_nb.py,sha256=AIl4z8cJywDBWB9Aj77mWqwPQM2FXDJa3iZbX-HFFyg,51941
346
+ snowflake/ml/modeling/naive_bayes/gaussian_nb.py,sha256=J6jl4rFzTu3wXEXCE0gg_XHGKYMqKdsJrw7KEmEqGu4,51073
347
+ snowflake/ml/modeling/naive_bayes/multinomial_nb.py,sha256=J1-OnSpbELzx5N75mXU4DwoKQQVQV6cExx37E9YPBXI,51707
348
348
  snowflake/ml/modeling/neighbors/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
349
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py,sha256=-Lw3Tj1YksHExlOz694PInABD0j5tMmwh4fMOWZSTLY,54642
350
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py,sha256=6DAR9iSF2D8lgQ7YM8112Ec0UW05iFNFnwqddkcU7rc,54008
351
- snowflake/ml/modeling/neighbors/kernel_density.py,sha256=XIVWCoS0wPaibTfwUmFVszbK3YeI65AYsWMch1mcNjI,52297
352
- snowflake/ml/modeling/neighbors/local_outlier_factor.py,sha256=Lm1WQBljRWI2dfC47u8kVGwqyQK3muwSIjSGodAZPaU,54873
353
- snowflake/ml/modeling/neighbors/nearest_centroid.py,sha256=Bik3QQh5SA4g7TE0k8h9BUo5X2EYR3NU1loJJ7loMDI,50461
354
- snowflake/ml/modeling/neighbors/nearest_neighbors.py,sha256=1JYMwd3S__GF5IyC7lSKh6O2gZn_pkhp7sFN4AGWNqQ,52780
355
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py,sha256=fW5eoEljvwjcCYn6aUc1NKIXCgeyIBJY4XzvKbCMMfw,54362
356
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py,sha256=neVDWJ8V1xZdF0gntrjvSjPZPkf9dS8oe0KpFk2yJTg,55091
357
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py,sha256=NTGYoDVdM8ICki2y5q45ARHKlRWpvMuqgQyfQiuWUUc,53691
349
+ snowflake/ml/modeling/neighbors/k_neighbors_classifier.py,sha256=_Yf9GV5V48Odh-xD4urNQKgtEisQz-V85RCAmdZDcS0,55039
350
+ snowflake/ml/modeling/neighbors/k_neighbors_regressor.py,sha256=KUAfOp5spxNgiy1sx_S9B8iugvRdCXwPOkgtK_pwrtM,54405
351
+ snowflake/ml/modeling/neighbors/kernel_density.py,sha256=PMX2ee5gmtnBk2Tn6QVe0tvLJWHtntAkvCbRqI07-9M,52694
352
+ snowflake/ml/modeling/neighbors/local_outlier_factor.py,sha256=C-BHWY1LTSUxet9Cq2RRNOuYp1PBAc8U9tEGmZOn1l0,55270
353
+ snowflake/ml/modeling/neighbors/nearest_centroid.py,sha256=54-5Z0s0UqOzgbW12mBrRLJXX-b2s1rLLE40zGJtqyA,50858
354
+ snowflake/ml/modeling/neighbors/nearest_neighbors.py,sha256=cT7OHKZZz3ZVBSCF2sEv3eigrJfdZ4ceXIJTbU6uk50,53177
355
+ snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py,sha256=kmwYOcG7oEPRSYRACms6lnAwBbaTr5ZpLWRkI_qkILA,54759
356
+ snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py,sha256=_n3tarqrvg-YrNOpOVuQIsgQL0YdPoJ2g-eXPVPoaTk,55488
357
+ snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py,sha256=N1CaJ-AEcYnzcQg8XzKq-JDJIqvi01xxCAeTh7TJQPM,54088
358
358
  snowflake/ml/modeling/neural_network/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
359
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py,sha256=U0Q9HMcZK2NTzBO-POL7wjmf68uUQz7-oiPbe0PIrmU,51504
360
- snowflake/ml/modeling/neural_network/mlp_classifier.py,sha256=CeIglosQLNRE9uk00qw7KQfroHQpTJBEuKMi9CPtia0,59058
361
- snowflake/ml/modeling/neural_network/mlp_regressor.py,sha256=1qWTOJni734BzrPvbmVpBvpSWKrspyvookgOdisAo74,58170
359
+ snowflake/ml/modeling/neural_network/bernoulli_rbm.py,sha256=e5iUpcB_ZHpHjtf2uZD5N0qwPKaIiy2sxdv9I6dr7tQ,51901
360
+ snowflake/ml/modeling/neural_network/mlp_classifier.py,sha256=DV9IQYwGTW-12O2tP2vEl5Y4lkB653sP4Bw6PEsZHho,59455
361
+ snowflake/ml/modeling/neural_network/mlp_regressor.py,sha256=evzApQusrUFssU6PDu4YXk3apyOGnTDKberoXANN1VU,58567
362
362
  snowflake/ml/modeling/parameters/disable_distributed_hpo.py,sha256=jyjlLPrtnDSQxlTTM0ayMjWKVL_IP3snd--yeXK5htY,221
363
363
  snowflake/ml/modeling/parameters/disable_model_tracer.py,sha256=uj6SZz7HQpThGLs90zfUDcNMChxf0C6DKRN2xOfjmvI,203
364
364
  snowflake/ml/modeling/parameters/enable_anonymous_sproc.py,sha256=7FUdfhLbEGEocdd5XZ-7MFYMzOva58qI1dPDurPt7fw,207
@@ -373,29 +373,30 @@ snowflake/ml/modeling/preprocessing/min_max_scaler.py,sha256=NappHtB3aOPDstBFkc-
373
373
  snowflake/ml/modeling/preprocessing/normalizer.py,sha256=rVlTClMkFz2N12vlV5pbKBMLJ14FU9XOd1p064Wv1lU,6984
374
374
  snowflake/ml/modeling/preprocessing/one_hot_encoder.py,sha256=JWwBI5Ew1pwyMmJRmvEEnfkNn4zR-p4BbpgqGHQpFVQ,75160
375
375
  snowflake/ml/modeling/preprocessing/ordinal_encoder.py,sha256=FLPX9ix3dWUe2_8GdEZ9v4MWPzoYfp8Ig6B5w4svPcQ,35307
376
- snowflake/ml/modeling/preprocessing/polynomial_features.py,sha256=fvALEVPkko_dPaM1BKHOyizz6UNlDg_-OAEmDIr0JoE,51446
376
+ snowflake/ml/modeling/preprocessing/polynomial_features.py,sha256=r22lF0Qw3ylUesyu4SDX0rqXzs4MYmdJoqlakCBz7_c,51843
377
377
  snowflake/ml/modeling/preprocessing/robust_scaler.py,sha256=XW9d7z0JlQlmkcsNxfEgf78uOmb0T2uQd4B-vfyA8zY,12634
378
378
  snowflake/ml/modeling/preprocessing/standard_scaler.py,sha256=V-9LbiD5G-RXGayLMnsC4wh9EQx0rw3bAou1gARWtIQ,11761
379
379
  snowflake/ml/modeling/semi_supervised/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
380
- snowflake/ml/modeling/semi_supervised/label_propagation.py,sha256=1dZ1FdTslUwnXlztJJF8wQsUo5u743OLtinsFDLU7aM,51775
381
- snowflake/ml/modeling/semi_supervised/label_spreading.py,sha256=s3-pdgqAAH0PKBCF2z_J6_iext2QrQoFsEbdszQ5DK4,52122
380
+ snowflake/ml/modeling/semi_supervised/label_propagation.py,sha256=QvurssFENi7-aHTkLyyWxS9rQ_s_dmmxr7kjDmn7Ygg,52172
381
+ snowflake/ml/modeling/semi_supervised/label_spreading.py,sha256=4FsxD-Owdu_a7jr6lO3LPWEaRqtlODg-8MIokB-Avbo,52519
382
382
  snowflake/ml/modeling/svm/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
383
- snowflake/ml/modeling/svm/linear_svc.py,sha256=mgwUa_S2F8bCzYYiMvv5lwL2DwEJSJ6pHErAMrab8MQ,55347
384
- snowflake/ml/modeling/svm/linear_svr.py,sha256=bksG2eKvC4usWMOPUx_6-sYuSQ1zYaVeFOUe7n39k74,53530
385
- snowflake/ml/modeling/svm/nu_svc.py,sha256=8KRVjB1dtwVBQ_ese9LaCIO9UH16d9tTZFCwTWuJuRI,55015
386
- snowflake/ml/modeling/svm/nu_svr.py,sha256=8J1huYpx9hMkNeRGGKwpJet8WmJbV_r99T_g3NaWNZU,52129
387
- snowflake/ml/modeling/svm/svc.py,sha256=Rw5sqJUZZOTpExLYUBow9xG5G2tBEG7ZxANTWzLdAl4,55329
388
- snowflake/ml/modeling/svm/svr.py,sha256=8RLXSgSCdrcny5zdZAxFIwbDxVu6HwX1_jjWeec_Ra0,52308
383
+ snowflake/ml/modeling/svm/linear_svc.py,sha256=ccGMbftE9R49lKdZfBMlpT4B0LefdJSaNSP--8v8InU,55744
384
+ snowflake/ml/modeling/svm/linear_svr.py,sha256=1lI0VDv_huwEE0lBZaMhtJ3qi2ZJ3dNeKzvyVpE5PUo,53927
385
+ snowflake/ml/modeling/svm/nu_svc.py,sha256=qijEUvsgmjfStiyyvg8_TTMv_BVFq69R39M5olbLyHc,55412
386
+ snowflake/ml/modeling/svm/nu_svr.py,sha256=Fti-_OEaYxMlP_7KQnmSJ5J6JfPZowSrXQVeGxnPATE,52526
387
+ snowflake/ml/modeling/svm/svc.py,sha256=-6AL1e6eoReuwD34wiC3fKAEy7oXrLwSIAJLFPHYb1o,55726
388
+ snowflake/ml/modeling/svm/svr.py,sha256=-c39k9sfWZGOshzQDblh-IH_SM1AAywevOXw93G9GlI,52705
389
389
  snowflake/ml/modeling/tree/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
390
- snowflake/ml/modeling/tree/decision_tree_classifier.py,sha256=SuXlnQA8BJezz5BTAthaFYtMnclXXYQxfQgsBTxcoVc,58115
391
- snowflake/ml/modeling/tree/decision_tree_regressor.py,sha256=Q1ngJLdJAsy5Q_PCiPtlLW9ZBkF0eodvU5F6rWEx7k0,56663
392
- snowflake/ml/modeling/tree/extra_tree_classifier.py,sha256=LmCt0EUXYWsGYC7D2djxphHZW01xyLOx8JUsaEO3yPM,57426
393
- snowflake/ml/modeling/tree/extra_tree_regressor.py,sha256=O2syhYHAZfd6LzO3HtAb_kPk6KFj3SZUmcKd8phF-GY,56011
390
+ snowflake/ml/modeling/tree/decision_tree_classifier.py,sha256=sikvjQMyaD0ji8cHERdCSvhY161wWpWzT8EYAEcoBl4,58512
391
+ snowflake/ml/modeling/tree/decision_tree_regressor.py,sha256=999NuwdM3ioYv6bgvtAA6RhSmUHj9fpwLEzigLQmWsg,57060
392
+ snowflake/ml/modeling/tree/extra_tree_classifier.py,sha256=4qCZ_LgKEn1CjJwe-jvYqYrEG03s89_AVBCevaR3zcc,57823
393
+ snowflake/ml/modeling/tree/extra_tree_regressor.py,sha256=1WP5zhhdXsNbFtZ38RLGj0THvMpVUF_zZr-j5qlEzds,56408
394
394
  snowflake/ml/modeling/xgboost/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
395
- snowflake/ml/modeling/xgboost/xgb_classifier.py,sha256=a3Fb1QquZ-jAlHA89duy9f3Z43kMcYoiN2d1eNF5r0g,63580
396
- snowflake/ml/modeling/xgboost/xgb_regressor.py,sha256=O5e6nJEGyEBgEfSIeuKJ2MwIiyVRJzoKrZM-tfUBtJs,63183
397
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py,sha256=PskavP_1rg-bzi8naADViV3alnLEBa7phtYHMwSWGkA,63856
398
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py,sha256=8umj4GSb8Txu5RmvWjjYb_qYd0cPe7vDb8jg6NB0As0,63381
395
+ snowflake/ml/modeling/xgboost/xgb_classifier.py,sha256=SF5F4elDdHmt8Wtth8BIH2Sc60l7ZgVen_XsGoKraIo,63977
396
+ snowflake/ml/modeling/xgboost/xgb_regressor.py,sha256=5x-N1Yym0OfF3D7lHNzLByaazc4aoDNVmCQ-TgbYOGg,63580
397
+ snowflake/ml/modeling/xgboost/xgbrf_classifier.py,sha256=H3SAtx-2mIwS3N_ltBXVHlbLeYun5TtdBBN_goeKrBg,64253
398
+ snowflake/ml/modeling/xgboost/xgbrf_regressor.py,sha256=Up3rbL7pfeglVKx920UpLhBzHxteXLTWHqIk5WX9iPY,63778
399
+ snowflake/ml/monitoring/explain_visualize.py,sha256=CJMH5W7m2iIAwUPXdBAOUVW8t97zLm1lLCagyUV-g88,10278
399
400
  snowflake/ml/monitoring/model_monitor.py,sha256=8vJf1YROmJgBLUtpaH-lGKSSJv9R7PxPaQnOdr_j5YE,2200
400
401
  snowflake/ml/monitoring/model_monitor_version.py,sha256=TlmDJZDE0lCVatRaBRgXIjzDF538nrMIc-zWj9MM_nk,46
401
402
  snowflake/ml/monitoring/shap.py,sha256=Dp9nYquPEZjxMTW62YYA9g9qUdmCEFxcSk7ejvOP7PE,3597
@@ -405,14 +406,14 @@ snowflake/ml/monitoring/_client/queries/rmse.ssql,sha256=OEJiSStRz9-qKoZaFvmubtY
405
406
  snowflake/ml/monitoring/_manager/model_monitor_manager.py,sha256=0jpT1-aRU2tsxSM87I-C2kfJeLevCgM-a-OwU_-VUdI,10302
406
407
  snowflake/ml/monitoring/entities/model_monitor_config.py,sha256=1W6TFTPicC6YAbjD7A0w8WMhWireyUxyuEy0RQXmqyY,1787
407
408
  snowflake/ml/registry/__init__.py,sha256=XdPQK9ejYkSJVrSQ7HD3jKQO0hKq2mC4bPCB6qrtH3U,76
408
- snowflake/ml/registry/registry.py,sha256=fFDZ-o2xER0ib7JM9GPVDG7hQuAXXfp8KXL2vak6gaQ,30684
409
- snowflake/ml/registry/_manager/model_manager.py,sha256=Em9vhFSMkVQHjRKE15aijBUVFrRILCHr94cdpqNIlY8,17110
409
+ snowflake/ml/registry/registry.py,sha256=FImEpQghF9tiSVwKAH5w0ePo2HG9i5AZNJ_4dw_6J54,30634
410
+ snowflake/ml/registry/_manager/model_manager.py,sha256=5HMLGSEJK8uYD4OVlxJqa83g9OPvdj-K7j_UaW-dde8,18271
410
411
  snowflake/ml/utils/authentication.py,sha256=E1at4TIAQRDZDsMXSbrKvSJaT6_kSYJBkkr37vU9P2s,2606
411
412
  snowflake/ml/utils/connection_params.py,sha256=w3Ws1_rqSjqEzg1oehVCGXcyYdcNRpg-whiw4EyrvYM,7999
412
413
  snowflake/ml/utils/sparse.py,sha256=zLBNh-ynhGpKH5TFtopk0YLkHGvv0yq1q-sV59YQKgg,3819
413
414
  snowflake/ml/utils/sql_client.py,sha256=pSe2od6Pkh-8NwG3D-xqN76_uNf-ohOtVbT55HeQg1Y,668
414
- snowflake_ml_python-1.8.3.dist-info/licenses/LICENSE.txt,sha256=PdEp56Av5m3_kl21iFkVTX_EbHJKFGEdmYeIO1pL_Yk,11365
415
- snowflake_ml_python-1.8.3.dist-info/METADATA,sha256=PXRo4-PJBu7-U_BGD17A4FZvSXxuOyJDMRAudsNvdeI,82662
416
- snowflake_ml_python-1.8.3.dist-info/WHEEL,sha256=ck4Vq1_RXyvS4Jt6SI0Vz6fyVs4GWg7AINwpsaGEgPE,91
417
- snowflake_ml_python-1.8.3.dist-info/top_level.txt,sha256=TY0gFSHKDdZy3THb0FGomyikWQasEGldIR1O0HGOHVw,10
418
- snowflake_ml_python-1.8.3.dist-info/RECORD,,
415
+ snowflake_ml_python-1.8.4.dist-info/licenses/LICENSE.txt,sha256=PdEp56Av5m3_kl21iFkVTX_EbHJKFGEdmYeIO1pL_Yk,11365
416
+ snowflake_ml_python-1.8.4.dist-info/METADATA,sha256=C8w7DA8fDZ_y3aB7q55ezQ8kRTYpKU_HFFEhDg3Z8T0,84232
417
+ snowflake_ml_python-1.8.4.dist-info/WHEEL,sha256=DnLRTWE75wApRYVsjgc6wsVswC54sMSJhAEd4xhDpBk,91
418
+ snowflake_ml_python-1.8.4.dist-info/top_level.txt,sha256=TY0gFSHKDdZy3THb0FGomyikWQasEGldIR1O0HGOHVw,10
419
+ snowflake_ml_python-1.8.4.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (80.0.0)
2
+ Generator: setuptools (80.4.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5