smftools 0.1.3__tar.gz → 0.1.6__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (196) hide show
  1. {smftools-0.1.3 → smftools-0.1.6}/PKG-INFO +44 -11
  2. {smftools-0.1.3 → smftools-0.1.6}/README.md +13 -7
  3. smftools-0.1.6/docs/source/_static/smftools-1.svg +1 -0
  4. smftools-0.1.6/docs/source/_static/smftools-1.tif +0 -0
  5. {smftools-0.1.3 → smftools-0.1.6}/experiment_config.csv +3 -1
  6. {smftools-0.1.3 → smftools-0.1.6}/pyproject.toml +15 -5
  7. {smftools-0.1.3 → smftools-0.1.6}/requirements.txt +11 -2
  8. {smftools-0.1.3/src → smftools-0.1.6}/smftools/__init__.py +5 -1
  9. smftools-0.1.6/smftools/_version.py +1 -0
  10. {smftools-0.1.3/src → smftools-0.1.6}/smftools/informatics/__init__.py +2 -0
  11. smftools-0.1.6/smftools/informatics/archived/print_bam_query_seq.py +29 -0
  12. smftools-0.1.6/smftools/informatics/basecall_pod5s.py +80 -0
  13. smftools-0.1.6/smftools/informatics/conversion_smf.py +132 -0
  14. smftools-0.1.6/smftools/informatics/direct_smf.py +137 -0
  15. {smftools-0.1.3/src → smftools-0.1.6}/smftools/informatics/helpers/LoadExperimentConfig.py +1 -0
  16. {smftools-0.1.3/src → smftools-0.1.6}/smftools/informatics/helpers/__init__.py +16 -2
  17. {smftools-0.1.3/src → smftools-0.1.6}/smftools/informatics/helpers/align_and_sort_BAM.py +27 -16
  18. smftools-0.1.6/smftools/informatics/helpers/aligned_BAM_to_bed.py +74 -0
  19. smftools-0.1.6/smftools/informatics/helpers/bam_qc.py +66 -0
  20. smftools-0.1.6/smftools/informatics/helpers/binarize_converted_base_identities.py +79 -0
  21. smftools-0.1.6/smftools/informatics/helpers/canoncall.py +34 -0
  22. {smftools-0.1.3/src → smftools-0.1.6}/smftools/informatics/helpers/concatenate_fastqs_to_bam.py +5 -4
  23. {smftools-0.1.3/src → smftools-0.1.6}/smftools/informatics/helpers/converted_BAM_to_adata.py +34 -22
  24. smftools-0.1.6/smftools/informatics/helpers/converted_BAM_to_adata_II.py +369 -0
  25. smftools-0.1.6/smftools/informatics/helpers/demux_and_index_BAM.py +52 -0
  26. smftools-0.1.6/smftools/informatics/helpers/extract_base_identities.py +44 -0
  27. smftools-0.1.6/smftools/informatics/helpers/extract_mods.py +83 -0
  28. smftools-0.1.6/smftools/informatics/helpers/extract_read_features_from_bam.py +31 -0
  29. smftools-0.1.6/smftools/informatics/helpers/extract_read_lengths_from_bed.py +25 -0
  30. smftools-0.1.6/smftools/informatics/helpers/find_conversion_sites.py +50 -0
  31. smftools-0.1.6/smftools/informatics/helpers/generate_converted_FASTA.py +99 -0
  32. smftools-0.1.6/smftools/informatics/helpers/modcall.py +36 -0
  33. smftools-0.1.6/smftools/informatics/helpers/modkit_extract_to_adata.py +884 -0
  34. smftools-0.1.6/smftools/informatics/helpers/ohe_batching.py +76 -0
  35. smftools-0.1.6/smftools/informatics/helpers/ohe_layers_decode.py +32 -0
  36. smftools-0.1.6/smftools/informatics/helpers/one_hot_decode.py +27 -0
  37. smftools-0.1.6/smftools/informatics/helpers/one_hot_encode.py +57 -0
  38. {smftools-0.1.3/src → smftools-0.1.6}/smftools/informatics/helpers/plot_read_length_and_coverage_histograms.py +1 -0
  39. smftools-0.1.6/smftools/informatics/helpers/run_multiqc.py +28 -0
  40. {smftools-0.1.3/src → smftools-0.1.6}/smftools/informatics/helpers/split_and_index_BAM.py +3 -8
  41. {smftools-0.1.3/src → smftools-0.1.6}/smftools/informatics/load_adata.py +58 -3
  42. smftools-0.1.6/smftools/plotting/__init__.py +15 -0
  43. smftools-0.1.6/smftools/plotting/classifiers.py +355 -0
  44. smftools-0.1.6/smftools/plotting/general_plotting.py +205 -0
  45. smftools-0.1.6/smftools/plotting/position_stats.py +462 -0
  46. {smftools-0.1.3/src → smftools-0.1.6}/smftools/preprocessing/__init__.py +6 -7
  47. {smftools-0.1.3/src → smftools-0.1.6}/smftools/preprocessing/append_C_context.py +22 -9
  48. {smftools-0.1.3/src/smftools/preprocessing → smftools-0.1.6/smftools/preprocessing/archives}/mark_duplicates.py +38 -26
  49. smftools-0.1.6/smftools/preprocessing/binarize_on_Youden.py +45 -0
  50. {smftools-0.1.3/src → smftools-0.1.6}/smftools/preprocessing/binary_layers_to_ohe.py +13 -3
  51. {smftools-0.1.3/src → smftools-0.1.6}/smftools/preprocessing/calculate_complexity.py +3 -2
  52. smftools-0.1.6/smftools/preprocessing/calculate_converted_read_methylation_stats.py +94 -0
  53. smftools-0.1.6/smftools/preprocessing/calculate_coverage.py +42 -0
  54. smftools-0.1.6/smftools/preprocessing/calculate_pairwise_differences.py +49 -0
  55. {smftools-0.1.3/src → smftools-0.1.6}/smftools/preprocessing/calculate_position_Youden.py +18 -7
  56. smftools-0.1.6/smftools/preprocessing/calculate_read_length_stats.py +79 -0
  57. smftools-0.1.6/smftools/preprocessing/clean_NaN.py +46 -0
  58. smftools-0.1.6/smftools/preprocessing/filter_adata_by_nan_proportion.py +31 -0
  59. {smftools-0.1.3/src → smftools-0.1.6}/smftools/preprocessing/filter_converted_reads_on_methylation.py +20 -5
  60. {smftools-0.1.3/src → smftools-0.1.6}/smftools/preprocessing/filter_reads_on_length.py +14 -4
  61. smftools-0.1.6/smftools/preprocessing/flag_duplicate_reads.py +149 -0
  62. smftools-0.1.6/smftools/preprocessing/invert_adata.py +30 -0
  63. smftools-0.1.6/smftools/preprocessing/load_sample_sheet.py +38 -0
  64. {smftools-0.1.3/src → smftools-0.1.6}/smftools/preprocessing/recipes.py +22 -20
  65. smftools-0.1.6/smftools/preprocessing/subsample_adata.py +58 -0
  66. smftools-0.1.6/smftools/readwrite.py +198 -0
  67. smftools-0.1.6/smftools/tools/__init__.py +49 -0
  68. smftools-0.1.6/smftools/tools/apply_hmm.py +202 -0
  69. smftools-0.1.6/smftools/tools/apply_hmm_batched.py +241 -0
  70. smftools-0.1.6/smftools/tools/archived/classify_methylated_features.py +66 -0
  71. smftools-0.1.6/smftools/tools/archived/classify_non_methylated_features.py +75 -0
  72. smftools-0.1.6/smftools/tools/archived/subset_adata_v2.py +46 -0
  73. smftools-0.1.6/smftools/tools/calculate_distances.py +18 -0
  74. smftools-0.1.6/smftools/tools/calculate_umap.py +62 -0
  75. smftools-0.1.6/smftools/tools/call_hmm_peaks.py +105 -0
  76. smftools-0.1.6/smftools/tools/classifiers.py +787 -0
  77. smftools-0.1.6/smftools/tools/cluster_adata_on_methylation.py +105 -0
  78. smftools-0.1.6/smftools/tools/data/__init__.py +1 -0
  79. smftools-0.1.6/smftools/tools/data/preprocessing.py +6 -0
  80. smftools-0.1.6/smftools/tools/display_hmm.py +18 -0
  81. smftools-0.1.6/smftools/tools/general_tools.py +69 -0
  82. smftools-0.1.6/smftools/tools/hmm_readwrite.py +16 -0
  83. smftools-0.1.6/smftools/tools/models/__init__.py +7 -0
  84. smftools-0.1.6/smftools/tools/models/base.py +14 -0
  85. smftools-0.1.6/smftools/tools/models/cnn.py +34 -0
  86. smftools-0.1.6/smftools/tools/models/mlp.py +17 -0
  87. smftools-0.1.6/smftools/tools/models/positional.py +17 -0
  88. smftools-0.1.6/smftools/tools/models/rnn.py +16 -0
  89. smftools-0.1.6/smftools/tools/models/transformer.py +133 -0
  90. smftools-0.1.6/smftools/tools/models/wrappers.py +20 -0
  91. smftools-0.1.6/smftools/tools/nucleosome_hmm_refinement.py +104 -0
  92. smftools-0.1.6/smftools/tools/position_stats.py +239 -0
  93. smftools-0.1.6/smftools/tools/read_stats.py +70 -0
  94. smftools-0.1.6/smftools/tools/subset_adata.py +28 -0
  95. smftools-0.1.6/smftools/tools/train_hmm.py +78 -0
  96. smftools-0.1.6/smftools/tools/training/__init__.py +0 -0
  97. smftools-0.1.6/smftools/tools/utils/__init__.py +2 -0
  98. smftools-0.1.6/smftools/tools/utils/device.py +10 -0
  99. smftools-0.1.6/smftools/tools/utils/grl.py +14 -0
  100. smftools-0.1.3/src/smftools/_version.py +0 -1
  101. smftools-0.1.3/src/smftools/informatics/conversion_smf.py +0 -79
  102. smftools-0.1.3/src/smftools/informatics/direct_smf.py +0 -89
  103. smftools-0.1.3/src/smftools/informatics/helpers/aligned_BAM_to_bed.py +0 -73
  104. smftools-0.1.3/src/smftools/informatics/helpers/binarize_converted_base_identities.py +0 -31
  105. smftools-0.1.3/src/smftools/informatics/helpers/canoncall.py +0 -25
  106. smftools-0.1.3/src/smftools/informatics/helpers/extract_base_identities.py +0 -57
  107. smftools-0.1.3/src/smftools/informatics/helpers/extract_mods.py +0 -51
  108. smftools-0.1.3/src/smftools/informatics/helpers/find_conversion_sites.py +0 -61
  109. smftools-0.1.3/src/smftools/informatics/helpers/generate_converted_FASTA.py +0 -98
  110. smftools-0.1.3/src/smftools/informatics/helpers/modcall.py +0 -28
  111. smftools-0.1.3/src/smftools/informatics/helpers/modkit_extract_to_adata.py +0 -518
  112. smftools-0.1.3/src/smftools/informatics/helpers/ohe_batching.py +0 -52
  113. smftools-0.1.3/src/smftools/informatics/helpers/one_hot_encode.py +0 -21
  114. smftools-0.1.3/src/smftools/preprocessing/binarize_on_Youden.py +0 -42
  115. smftools-0.1.3/src/smftools/preprocessing/calculate_converted_read_methylation_stats.py +0 -96
  116. smftools-0.1.3/src/smftools/preprocessing/calculate_coverage.py +0 -41
  117. smftools-0.1.3/src/smftools/preprocessing/calculate_read_length_stats.py +0 -86
  118. smftools-0.1.3/src/smftools/preprocessing/clean_NaN.py +0 -38
  119. smftools-0.1.3/src/smftools/preprocessing/invert_adata.py +0 -23
  120. smftools-0.1.3/src/smftools/preprocessing/load_sample_sheet.py +0 -24
  121. smftools-0.1.3/src/smftools/readwrite.py +0 -106
  122. smftools-0.1.3/src/smftools/tools/apply_HMM.py +0 -1
  123. smftools-0.1.3/src/smftools/tools/read_HMM.py +0 -1
  124. smftools-0.1.3/src/smftools/tools/train_HMM.py +0 -43
  125. {smftools-0.1.3 → smftools-0.1.6}/.gitattributes +0 -0
  126. {smftools-0.1.3 → smftools-0.1.6}/.gitignore +0 -0
  127. {smftools-0.1.3 → smftools-0.1.6}/.readthedocs.yaml +0 -0
  128. {smftools-0.1.3 → smftools-0.1.6}/CONTRIBUTING.md +0 -0
  129. {smftools-0.1.3 → smftools-0.1.6}/LICENSE +0 -0
  130. {smftools-0.1.3 → smftools-0.1.6}/docs/Makefile +0 -0
  131. {smftools-0.1.3 → smftools-0.1.6}/docs/make.bat +0 -0
  132. {smftools-0.1.3 → smftools-0.1.6}/docs/source/_static/converted_BAM_to_adata.png +0 -0
  133. {smftools-0.1.3 → smftools-0.1.6}/docs/source/_static/modkit_extract_to_adata.png +0 -0
  134. {smftools-0.1.3 → smftools-0.1.6}/docs/source/_static/smftools_informatics_diagram.pdf +0 -0
  135. {smftools-0.1.3 → smftools-0.1.6}/docs/source/_static/smftools_informatics_diagram.png +0 -0
  136. {smftools-0.1.3 → smftools-0.1.6}/docs/source/_static/smftools_preprocessing_diagram.png +0 -0
  137. {smftools-0.1.3 → smftools-0.1.6}/docs/source/_templates/tmp +0 -0
  138. {smftools-0.1.3 → smftools-0.1.6}/docs/source/api/datasets.md +0 -0
  139. {smftools-0.1.3 → smftools-0.1.6}/docs/source/api/index.md +0 -0
  140. {smftools-0.1.3 → smftools-0.1.6}/docs/source/api/informatics.md +0 -0
  141. {smftools-0.1.3 → smftools-0.1.6}/docs/source/api/preprocessing.md +0 -0
  142. {smftools-0.1.3 → smftools-0.1.6}/docs/source/api/tools.md +0 -0
  143. {smftools-0.1.3 → smftools-0.1.6}/docs/source/basic_usage.md +0 -0
  144. {smftools-0.1.3 → smftools-0.1.6}/docs/source/conf.py +0 -0
  145. {smftools-0.1.3 → smftools-0.1.6}/docs/source/contributors.md +0 -0
  146. {smftools-0.1.3 → smftools-0.1.6}/docs/source/dev/index.md +0 -0
  147. {smftools-0.1.3 → smftools-0.1.6}/docs/source/index.md +0 -0
  148. {smftools-0.1.3 → smftools-0.1.6}/docs/source/installation.md +0 -0
  149. {smftools-0.1.3 → smftools-0.1.6}/docs/source/references.bib +0 -0
  150. {smftools-0.1.3 → smftools-0.1.6}/docs/source/references.rst +0 -0
  151. {smftools-0.1.3 → smftools-0.1.6}/docs/source/release-notes/0.1.0.md +0 -0
  152. {smftools-0.1.3 → smftools-0.1.6}/docs/source/release-notes/index.md +0 -0
  153. {smftools-0.1.3 → smftools-0.1.6}/docs/source/requirements.txt +0 -0
  154. {smftools-0.1.3 → smftools-0.1.6}/docs/source/tutorials/index.md +0 -0
  155. {smftools-0.1.3 → smftools-0.1.6}/notebooks/Kissiov_and_McKenna_2025_example_notebook.ipynb +0 -0
  156. {smftools-0.1.3 → smftools-0.1.6}/notebooks/Kissiov_and_McKenna_2025_sample_sheet.csv +0 -0
  157. {smftools-0.1.3 → smftools-0.1.6}/sample_sheet.csv +0 -0
  158. {smftools-0.1.3/src → smftools-0.1.6}/smftools/_settings.py +0 -0
  159. {smftools-0.1.3/src → smftools-0.1.6}/smftools/datasets/F1_hybrid_NKG2A_enhander_promoter_GpC_conversion_SMF.h5ad.gz +0 -0
  160. {smftools-0.1.3/src → smftools-0.1.6}/smftools/datasets/F1_sample_sheet.csv +0 -0
  161. {smftools-0.1.3/src → smftools-0.1.6}/smftools/datasets/__init__.py +0 -0
  162. {smftools-0.1.3/src → smftools-0.1.6}/smftools/datasets/dCas9_m6A_invitro_kinetics.h5ad.gz +0 -0
  163. {smftools-0.1.3/src → smftools-0.1.6}/smftools/datasets/datasets.py +0 -0
  164. {smftools-0.1.3/src → smftools-0.1.6}/smftools/informatics/archived/bam_conversion.py +0 -0
  165. {smftools-0.1.3/src → smftools-0.1.6}/smftools/informatics/archived/bam_direct.py +0 -0
  166. {smftools-0.1.3/src → smftools-0.1.6}/smftools/informatics/archived/basecalls_to_adata.py +0 -0
  167. {smftools-0.1.3/src → smftools-0.1.6}/smftools/informatics/fast5_to_pod5.py +0 -0
  168. {smftools-0.1.3/src → smftools-0.1.6}/smftools/informatics/helpers/archived/informatics.py +0 -0
  169. {smftools-0.1.3/src → smftools-0.1.6}/smftools/informatics/helpers/archived/load_adata.py +0 -0
  170. {smftools-0.1.3/src → smftools-0.1.6}/smftools/informatics/helpers/bed_to_bigwig.py +0 -0
  171. {smftools-0.1.3/src → smftools-0.1.6}/smftools/informatics/helpers/complement_base_list.py +0 -0
  172. {smftools-0.1.3/src → smftools-0.1.6}/smftools/informatics/helpers/count_aligned_reads.py +0 -0
  173. {smftools-0.1.3/src → smftools-0.1.6}/smftools/informatics/helpers/extract_readnames_from_BAM.py +0 -0
  174. {smftools-0.1.3/src → smftools-0.1.6}/smftools/informatics/helpers/get_chromosome_lengths.py +0 -0
  175. {smftools-0.1.3/src → smftools-0.1.6}/smftools/informatics/helpers/get_native_references.py +0 -0
  176. {smftools-0.1.3/src → smftools-0.1.6}/smftools/informatics/helpers/index_fasta.py +0 -0
  177. {smftools-0.1.3/src → smftools-0.1.6}/smftools/informatics/helpers/make_dirs.py +0 -0
  178. {smftools-0.1.3/src → smftools-0.1.6}/smftools/informatics/helpers/make_modbed.py +0 -0
  179. {smftools-0.1.3/src → smftools-0.1.6}/smftools/informatics/helpers/modQC.py +0 -0
  180. {smftools-0.1.3/src → smftools-0.1.6}/smftools/informatics/helpers/separate_bam_by_bc.py +0 -0
  181. {smftools-0.1.3/src → smftools-0.1.6}/smftools/informatics/readwrite.py +0 -0
  182. {smftools-0.1.3/src → smftools-0.1.6}/smftools/informatics/subsample_fasta_from_bed.py +0 -0
  183. {smftools-0.1.3/src → smftools-0.1.6}/smftools/informatics/subsample_pod5.py +0 -0
  184. {smftools-0.1.3/src → smftools-0.1.6}/smftools/preprocessing/archives/preprocessing.py +0 -0
  185. {smftools-0.1.3/src/smftools/preprocessing → smftools-0.1.6/smftools/preprocessing/archives}/remove_duplicates.py +0 -0
  186. {smftools-0.1.3/src → smftools-0.1.6}/smftools/preprocessing/calculate_consensus.py +0 -0
  187. {smftools-0.1.3/src → smftools-0.1.6}/smftools/preprocessing/calculate_pairwise_hamming_distances.py +0 -0
  188. {smftools-0.1.3/src → smftools-0.1.6}/smftools/preprocessing/make_dirs.py +0 -0
  189. {smftools-0.1.3/src → smftools-0.1.6}/smftools/preprocessing/min_non_diagonal.py +0 -0
  190. /smftools-0.1.3/src/smftools/tools/subset_adata.py → /smftools-0.1.6/smftools/tools/archived/subset_adata_v1.py +0 -0
  191. {smftools-0.1.3/src/smftools/plotting → smftools-0.1.6/smftools/tools/evaluation}/__init__.py +0 -0
  192. {smftools-0.1.3/src/smftools/tools → smftools-0.1.6/smftools/tools/inference}/__init__.py +0 -0
  193. /smftools-0.1.3/src/smftools/tools/cluster.py → /smftools-0.1.6/smftools/tools/models/sklearn_models.py +0 -0
  194. {smftools-0.1.3 → smftools-0.1.6}/tests/datasets/test_datasets.py +0 -0
  195. {smftools-0.1.3 → smftools-0.1.6}/tests/informatics/helpers/test_LoadExperimentConfig.py +0 -0
  196. {smftools-0.1.3 → smftools-0.1.6}/tests/test_readwrite.py +0 -0
@@ -1,12 +1,32 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: smftools
3
- Version: 0.1.3
3
+ Version: 0.1.6
4
4
  Summary: Single Molecule Footprinting Analysis in Python.
5
5
  Project-URL: Source, https://github.com/jkmckenna/smftools
6
6
  Project-URL: Documentation, https://smftools.readthedocs.io/
7
7
  Author: Joseph McKenna
8
8
  Maintainer-email: Joseph McKenna <jkmckenna@berkeley.edu>
9
- License-Expression: MIT
9
+ License: MIT License
10
+
11
+ Copyright (c) 2024 jkmckenna
12
+
13
+ Permission is hereby granted, free of charge, to any person obtaining a copy
14
+ of this software and associated documentation files (the "Software"), to deal
15
+ in the Software without restriction, including without limitation the rights
16
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
17
+ copies of the Software, and to permit persons to whom the Software is
18
+ furnished to do so, subject to the following conditions:
19
+
20
+ The above copyright notice and this permission notice shall be included in all
21
+ copies or substantial portions of the Software.
22
+
23
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
24
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
26
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
28
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29
+ SOFTWARE.
10
30
  License-File: LICENSE
11
31
  Keywords: anndata,chromatin-accessibility,machine-learning,nanopore,protein-dna-binding,single-locus,single-molecule-footprinting
12
32
  Classifier: Development Status :: 2 - Pre-Alpha
@@ -26,12 +46,18 @@ Classifier: Topic :: Scientific/Engineering :: Visualization
26
46
  Requires-Python: >=3.9
27
47
  Requires-Dist: anndata>=0.10.0
28
48
  Requires-Dist: biopython>=1.79
29
- Requires-Dist: cython>=0.29.28
49
+ Requires-Dist: fastcluster
50
+ Requires-Dist: hydra-core
51
+ Requires-Dist: igraph
52
+ Requires-Dist: leidenalg
53
+ Requires-Dist: lightning
54
+ Requires-Dist: multiqc
30
55
  Requires-Dist: networkx>=3.2
31
56
  Requires-Dist: numpy<2,>=1.22.0
57
+ Requires-Dist: omegaconf
32
58
  Requires-Dist: pandas>=1.4.2
33
59
  Requires-Dist: pod5>=0.1.21
34
- Requires-Dist: pomegranate>1.0.0
60
+ Requires-Dist: pomegranate>=1.0.0
35
61
  Requires-Dist: pyfaidx>=0.8.0
36
62
  Requires-Dist: pysam>=0.19.1
37
63
  Requires-Dist: scanpy>=1.9
@@ -40,6 +66,7 @@ Requires-Dist: scipy>=1.7.3
40
66
  Requires-Dist: seaborn>=0.11
41
67
  Requires-Dist: torch>=1.9.0
42
68
  Requires-Dist: tqdm
69
+ Requires-Dist: wandb
43
70
  Provides-Extra: docs
44
71
  Requires-Dist: ipython>=7.20; extra == 'docs'
45
72
  Requires-Dist: matplotlib!=3.6.1; extra == 'docs'
@@ -67,7 +94,7 @@ Description-Content-Type: text/markdown
67
94
  A Python tool for processing raw sequencing data derived from single molecule footprinting experiments into [anndata](https://anndata.readthedocs.io/en/latest/) objects. Additional functionality for preprocessing, analysis, and visualization.
68
95
 
69
96
  ## Philosophy
70
- While most genomic data structures handle low-coverage data (<100X) along large references, smftools prioritizes high-coverage data (scalable to at least 1 million X coverage) of a few genomic loci at a time. This enables efficient data storage, rapid data operations, hierarchical metadata handling, seamless integration with various machine-learning packages, and ease of visualization. Furthermore, functionality is modularized, enabling analysis sessions to be saved, reloaded, and easily shared with collaborators. Analyses are centered around the [anndata](https://anndata.readthedocs.io/en/latest/) object, and are heavily inspired by the work conducted within the single-cell genomics community.
97
+ While most genomic data structures handle low-coverage data (<100X) along large references, smftools prioritizes high-coverage data (scalable to >1,000,000X coverage) of a few genomic loci at a time. This enables efficient data storage, rapid data operations, hierarchical metadata handling, seamless integration with various machine-learning packages, and ease of visualization. Furthermore, functionality is modularized, enabling analysis sessions to be saved, reloaded, and easily shared with collaborators. Analyses are centered around the [anndata](https://anndata.readthedocs.io/en/latest/) object, and are heavily inspired by the work conducted within the single-cell genomics community.
71
98
 
72
99
  ## Dependencies
73
100
  The following CLI tools need to be installed and configured before using the informatics (smftools.inform) module of smftools:
@@ -81,14 +108,20 @@ The following CLI tools need to be installed and configured before using the inf
81
108
  ## Modules
82
109
  ### Informatics: Processes raw Nanopore/Illumina data from SMF experiments into an AnnData object.
83
110
  ![](docs/source/_static/smftools_informatics_diagram.png)
84
- ### Preprocessing: Appends QC metrics to the AnnData object and perfroms filtering.
111
+ ### Preprocessing: Appends QC metrics to the AnnData object and performs filtering.
85
112
  ![](docs/source/_static/smftools_preprocessing_diagram.png)
86
- - Tools: Appends various analyses to the AnnData object.
87
- - Plotting: Visualization of analyses stored within the AnnData object.
113
+ ### Tools: Appends analyses to the AnnData object.
114
+ - Currently Includes: Position X Position correlation matrices, Hidden Markov Model feature detection, clustering, dimensionality reduction, peak calling, train/test workflows for various ML classifiers.
115
+ - To do: Additional ML methods for learning predictive single molecule features on condition labels: Autoencoders, Variational Autoencoders, Transformers.
116
+ ### Plotting: Visualization of analyses stored within the AnnData object.
117
+ - Most analyses appended to the adata object by a tools method have, or will have, an accompanying plotting method.
88
118
 
89
119
  ## Announcements
90
- ### 09/09/24 - The pre-alpha phase package ([smftools-0.1.1](https://pypi.org/project/smftools/))
120
+
121
+ ### 10/01/24 - More recent versions are being updated through github and are not currently on pypi, please install from source. Thank you!
122
+
123
+ ### 09/09/24 - The version 0.1.1 package ([smftools-0.1.1](https://pypi.org/project/smftools/)) is installable through pypi!
91
124
  The informatics module has been bumped to alpha-phase status. This module can deal with POD5s and unaligned BAMS from nanopore conversion and direct SMF experiments, as well as FASTQs from Illumina conversion SMF experiments. Primary output from this module is an AnnData object containing all relevant SMF data, which is compatible with all downstream smftools modules. The other modules are still in pre-alpha phase. Preprocessing, Tools, and Plotting modules should be promoted to alpha-phase within the next month or so.
92
125
 
93
- ### 08/30/24 - The pre-alpha phase package ([smftools-0.1.0](https://pypi.org/project/smftools/)) is installable through pypi!
94
- Currently, this package (smftools-0.1.0) is going through rapid improvement (dependency handling accross Linux and Mac OS, testing, documentation, debugging) and is still too early in development for standard use. The underlying functionality was originally developed as a collection of scripts for single molecule footprinting (SMF) experiments in our lab, but is being packaged/developed to facilitate the expansion of SMF to any lab that is interested in performing these styles of experiments/analyses. The alpha-phase package is expected to be available within a couple months, so stay tuned!
126
+ ### 08/30/24 - The version 0.1.0 package ([smftools-0.1.0](https://pypi.org/project/smftools/)) is installable through pypi!
127
+ Currently, this package (smftools-0.1.0) is going through rapid improvement (dependency handling accross Linux and Mac OS, testing, documentation, debugging) and is still too early in development for widespread use. The underlying functionality was originally developed as a collection of scripts for single molecule footprinting (SMF) experiments in our lab, but is being packaged/developed to facilitate the expansion of SMF to any lab that is interested in performing these styles of experiments/analyses. The alpha-phase package is expected to be available within a couple months, so stay tuned!
@@ -5,7 +5,7 @@
5
5
  A Python tool for processing raw sequencing data derived from single molecule footprinting experiments into [anndata](https://anndata.readthedocs.io/en/latest/) objects. Additional functionality for preprocessing, analysis, and visualization.
6
6
 
7
7
  ## Philosophy
8
- While most genomic data structures handle low-coverage data (<100X) along large references, smftools prioritizes high-coverage data (scalable to at least 1 million X coverage) of a few genomic loci at a time. This enables efficient data storage, rapid data operations, hierarchical metadata handling, seamless integration with various machine-learning packages, and ease of visualization. Furthermore, functionality is modularized, enabling analysis sessions to be saved, reloaded, and easily shared with collaborators. Analyses are centered around the [anndata](https://anndata.readthedocs.io/en/latest/) object, and are heavily inspired by the work conducted within the single-cell genomics community.
8
+ While most genomic data structures handle low-coverage data (<100X) along large references, smftools prioritizes high-coverage data (scalable to >1,000,000X coverage) of a few genomic loci at a time. This enables efficient data storage, rapid data operations, hierarchical metadata handling, seamless integration with various machine-learning packages, and ease of visualization. Furthermore, functionality is modularized, enabling analysis sessions to be saved, reloaded, and easily shared with collaborators. Analyses are centered around the [anndata](https://anndata.readthedocs.io/en/latest/) object, and are heavily inspired by the work conducted within the single-cell genomics community.
9
9
 
10
10
  ## Dependencies
11
11
  The following CLI tools need to be installed and configured before using the informatics (smftools.inform) module of smftools:
@@ -19,14 +19,20 @@ The following CLI tools need to be installed and configured before using the inf
19
19
  ## Modules
20
20
  ### Informatics: Processes raw Nanopore/Illumina data from SMF experiments into an AnnData object.
21
21
  ![](docs/source/_static/smftools_informatics_diagram.png)
22
- ### Preprocessing: Appends QC metrics to the AnnData object and perfroms filtering.
22
+ ### Preprocessing: Appends QC metrics to the AnnData object and performs filtering.
23
23
  ![](docs/source/_static/smftools_preprocessing_diagram.png)
24
- - Tools: Appends various analyses to the AnnData object.
25
- - Plotting: Visualization of analyses stored within the AnnData object.
24
+ ### Tools: Appends analyses to the AnnData object.
25
+ - Currently Includes: Position X Position correlation matrices, Hidden Markov Model feature detection, clustering, dimensionality reduction, peak calling, train/test workflows for various ML classifiers.
26
+ - To do: Additional ML methods for learning predictive single molecule features on condition labels: Autoencoders, Variational Autoencoders, Transformers.
27
+ ### Plotting: Visualization of analyses stored within the AnnData object.
28
+ - Most analyses appended to the adata object by a tools method have, or will have, an accompanying plotting method.
26
29
 
27
30
  ## Announcements
28
- ### 09/09/24 - The pre-alpha phase package ([smftools-0.1.1](https://pypi.org/project/smftools/))
31
+
32
+ ### 10/01/24 - More recent versions are being updated through github and are not currently on pypi, please install from source. Thank you!
33
+
34
+ ### 09/09/24 - The version 0.1.1 package ([smftools-0.1.1](https://pypi.org/project/smftools/)) is installable through pypi!
29
35
  The informatics module has been bumped to alpha-phase status. This module can deal with POD5s and unaligned BAMS from nanopore conversion and direct SMF experiments, as well as FASTQs from Illumina conversion SMF experiments. Primary output from this module is an AnnData object containing all relevant SMF data, which is compatible with all downstream smftools modules. The other modules are still in pre-alpha phase. Preprocessing, Tools, and Plotting modules should be promoted to alpha-phase within the next month or so.
30
36
 
31
- ### 08/30/24 - The pre-alpha phase package ([smftools-0.1.0](https://pypi.org/project/smftools/)) is installable through pypi!
32
- Currently, this package (smftools-0.1.0) is going through rapid improvement (dependency handling accross Linux and Mac OS, testing, documentation, debugging) and is still too early in development for standard use. The underlying functionality was originally developed as a collection of scripts for single molecule footprinting (SMF) experiments in our lab, but is being packaged/developed to facilitate the expansion of SMF to any lab that is interested in performing these styles of experiments/analyses. The alpha-phase package is expected to be available within a couple months, so stay tuned!
37
+ ### 08/30/24 - The version 0.1.0 package ([smftools-0.1.0](https://pypi.org/project/smftools/)) is installable through pypi!
38
+ Currently, this package (smftools-0.1.0) is going through rapid improvement (dependency handling accross Linux and Mac OS, testing, documentation, debugging) and is still too early in development for widespread use. The underlying functionality was originally developed as a collection of scripts for single molecule footprinting (SMF) experiments in our lab, but is being packaged/developed to facilitate the expansion of SMF to any lab that is interested in performing these styles of experiments/analyses. The alpha-phase package is expected to be available within a couple months, so stay tuned!
@@ -0,0 +1 @@
1
+ <?xml version="1.0" encoding="UTF-8"?><svg id="Layer_1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" viewBox="0 0 306 304"><g id="Ylu31t.tif"><image id="Layer_1-2" width="306" height="304" xlink:href=""/></g></svg>
@@ -14,4 +14,6 @@ m5C_threshold,0.8,Minimum probability to flag m5C as True,,float
14
14
  hm5C_threshold,0.8,Minimum probability to flag hm5C as True,,float
15
15
  mod_list,[5mC_5hmC],Modified base names for Dorado,"""6mA"", ""5mC_5hmC""",list
16
16
  batch_size,4,number of samples to analyze at a time,,int
17
- conversion_types,[5mC],Types of modification types to use in conversion SMF,"5mC', '6mA'",list
17
+ conversion_types,[5mC],Types of modification types to use in conversion SMF,"5mC', '6mA'",list
18
+ barcode_both_ends,TRUE,whether to require both ends of a read to be barcoded for demultiplexing,,bool
19
+ trim,FALSE,whether to trim barcodes and adapters from reads during demultiplexing,,bool
@@ -6,7 +6,7 @@ build-backend = "hatchling.build"
6
6
  name = "smftools"
7
7
  description = "Single Molecule Footprinting Analysis in Python."
8
8
  requires-python = ">=3.9"
9
- license = "MIT"
9
+ license = { file = "LICENSE" }
10
10
  authors = [
11
11
  {name = "Joseph McKenna"}
12
12
  ]
@@ -42,12 +42,18 @@ classifiers = [
42
42
  dependencies = [
43
43
  "anndata>=0.10.0",
44
44
  "biopython>=1.79",
45
- "Cython>=0.29.28",
45
+ "fastcluster",
46
+ "hydra-core",
47
+ "igraph",
48
+ "leidenalg",
49
+ "lightning",
50
+ "multiqc",
46
51
  "networkx>=3.2",
47
52
  "numpy>=1.22.0,<2",
53
+ "omegaconf",
48
54
  "pandas>=1.4.2",
49
55
  "pod5>=0.1.21",
50
- "pomegranate>1.0.0",
56
+ "pomegranate>=1.0.0",
51
57
  "pyfaidx>=0.8.0",
52
58
  "pysam>=0.19.1",
53
59
  "scanpy>=1.9",
@@ -55,7 +61,8 @@ dependencies = [
55
61
  "scipy>=1.7.3",
56
62
  "seaborn>=0.11",
57
63
  "torch>=1.9.0",
58
- "tqdm"
64
+ "tqdm",
65
+ "wandb"
59
66
  ]
60
67
  dynamic = ["version"]
61
68
 
@@ -86,8 +93,11 @@ docs = [
86
93
  "setuptools"
87
94
  ]
88
95
 
96
+ [tool.hatch.build]
97
+ sources = ["src"]
98
+
89
99
  [tool.hatch.build.targets.wheel]
90
- packages = ["src/smftools"]
100
+ packages = ["smftools"]
91
101
 
92
102
  [tool.hatch.version]
93
103
  path = "src/smftools/_version.py"
@@ -1,12 +1,20 @@
1
1
  # Essential packages
2
2
  anndata>=0.10.0
3
3
  biopython>=1.79
4
- Cython>=0.29.28
4
+ fastcluster
5
+ hydra-core
6
+ leidenalg
7
+ lightning
8
+ igraph
9
+ leidenalg
10
+ lightning
11
+ multiqc
5
12
  networkx>=3.2
6
13
  numpy>=1.22.0,<2
14
+ omegaconf
7
15
  pandas>=1.4.2
8
- pomegranate>1.0.0
9
16
  pod5>=0.1.21
17
+ pomegranate>=1.0.0
10
18
  pyfaidx>=0.8.0
11
19
  pysam>=0.19.1
12
20
  scanpy>=1.9
@@ -15,3 +23,4 @@ scipy>=1.7.3
15
23
  seaborn>=0.11
16
24
  torch>=1.9.0
17
25
  tqdm
26
+ wandb
@@ -8,6 +8,7 @@ from . import preprocessing as pp
8
8
  from . import tools as tl
9
9
  from . import plotting as pl
10
10
  from . import readwrite, datasets
11
+ from .readwrite import adata_to_df, safe_write_h5ad, merge_barcoded_anndatas
11
12
 
12
13
 
13
14
  from importlib.metadata import version
@@ -16,10 +17,13 @@ package_name = "smftools"
16
17
  __version__ = version(package_name)
17
18
 
18
19
  __all__ = [
20
+ "adata_to_df",
19
21
  "inform",
20
22
  "pp",
21
23
  "tl",
22
24
  "pl",
23
25
  "readwrite",
24
- "datasets"
26
+ "datasets",
27
+ "safe_write_h5ad",
28
+ "merge_barcoded_anndatas"
25
29
  ]
@@ -0,0 +1 @@
1
+ __version__ = "0.1.6"
@@ -1,4 +1,5 @@
1
1
  from . import helpers
2
+ from .basecall_pod5s import basecall_pod5s
2
3
  from .load_adata import load_adata
3
4
  from .subsample_fasta_from_bed import subsample_fasta_from_bed
4
5
  from .subsample_pod5 import subsample_pod5
@@ -6,6 +7,7 @@ from .fast5_to_pod5 import fast5_to_pod5
6
7
 
7
8
 
8
9
  __all__ = [
10
+ "basecall_pod5s",
9
11
  "load_adata",
10
12
  "subsample_fasta_from_bed",
11
13
  "subsample_pod5",
@@ -0,0 +1,29 @@
1
+ import pysam
2
+ import sys
3
+
4
+ def extract_reads(bam_file_path, num_reads=10):
5
+ # Open the BAM file
6
+ bam_file = pysam.AlignmentFile(bam_file_path, "rb")
7
+
8
+ # Iterate through the first 'num_reads' reads and print the sequences
9
+ count = 0
10
+ for read in bam_file:
11
+ print(f"Read {count + 1}: {read.query_sequence}")
12
+ count += 1
13
+ if count >= num_reads:
14
+ break
15
+
16
+ # Close the BAM file
17
+ bam_file.close()
18
+
19
+ if __name__ == "__main__":
20
+ # Ensure a BAM file path is provided as a command line argument
21
+ if len(sys.argv) < 2:
22
+ print("Usage: python extract_reads.py <path_to_bam_file>")
23
+ sys.exit(1)
24
+
25
+ # Get the BAM file path from command line arguments
26
+ bam_file_path = sys.argv[1]
27
+
28
+ # Call the function to extract the first 10 reads
29
+ extract_reads(bam_file_path)
@@ -0,0 +1,80 @@
1
+ # basecall_pod5s
2
+
3
+ def basecall_pod5s(config_path):
4
+ """
5
+ Basecall from pod5s given a config file.
6
+
7
+ Parameters:
8
+ config_path (str): File path to the basecall configuration file
9
+
10
+ Returns:
11
+ None
12
+ """
13
+ # Lazy importing of packages
14
+ from .helpers import LoadExperimentConfig, make_dirs, canoncall, modcall
15
+ from .fast5_to_pod5 import fast5_to_pod5
16
+ import os
17
+ from pathlib import Path
18
+
19
+ # Default params
20
+ bam_suffix = '.bam' # If different, change from here.
21
+
22
+ # Load experiment config parameters into global variables
23
+ experiment_config = LoadExperimentConfig(config_path)
24
+ var_dict = experiment_config.var_dict
25
+
26
+ # These below variables will point to default_value if they are empty in the experiment_config.csv or if the variable is fully omitted from the csv.
27
+ default_value = None
28
+
29
+ # General config variable init
30
+ input_data_path = var_dict.get('input_data_path', default_value) # Path to a directory of POD5s/FAST5s or to a BAM/FASTQ file. Necessary.
31
+ output_directory = var_dict.get('output_directory', default_value) # Path to the output directory to make for the analysis. Necessary.
32
+ model = var_dict.get('model', default_value) # needed for dorado basecaller
33
+ barcode_kit = var_dict.get('barcode_kit', default_value) # needed for dorado basecaller
34
+ barcode_both_ends = var_dict.get('barcode_both_ends', default_value) # dorado demultiplexing
35
+ trim = var_dict.get('trim', default_value) # dorado adapter and barcode removal
36
+ device = var_dict.get('device', 'auto')
37
+
38
+ # Modified basecalling specific variable init
39
+ filter_threshold = var_dict.get('filter_threshold', default_value)
40
+ m6A_threshold = var_dict.get('m6A_threshold', default_value)
41
+ m5C_threshold = var_dict.get('m5C_threshold', default_value)
42
+ hm5C_threshold = var_dict.get('hm5C_threshold', default_value)
43
+ thresholds = [filter_threshold, m6A_threshold, m5C_threshold, hm5C_threshold]
44
+ mod_list = var_dict.get('mod_list', default_value)
45
+
46
+ # Make initial output directory
47
+ make_dirs([output_directory])
48
+ os.chdir(output_directory)
49
+
50
+ # Get the input filetype
51
+ if Path(input_data_path).is_file():
52
+ input_data_filetype = '.' + os.path.basename(input_data_path).split('.')[1].lower()
53
+ input_is_pod5 = input_data_filetype in ['.pod5','.p5']
54
+ input_is_fast5 = input_data_filetype in ['.fast5','.f5']
55
+
56
+ elif Path(input_data_path).is_dir():
57
+ # Get the file names in the input data dir
58
+ input_files = os.listdir(input_data_path)
59
+ input_is_pod5 = sum([True for file in input_files if '.pod5' in file or '.p5' in file])
60
+ input_is_fast5 = sum([True for file in input_files if '.fast5' in file or '.f5' in file])
61
+
62
+ # If the input files are not pod5 files, and they are fast5 files, convert the files to a pod5 file before proceeding.
63
+ if input_is_fast5 and not input_is_pod5:
64
+ # take the input directory of fast5 files and write out a single pod5 file into the output directory.
65
+ output_pod5 = os.path.join(output_directory, 'FAST5s_to_POD5.pod5')
66
+ print(f'Input directory contains fast5 files, converting them and concatenating into a single pod5 file in the {output_pod5}')
67
+ fast5_to_pod5(input_data_path, output_pod5)
68
+ # Reassign the pod5_dir variable to point to the new pod5 file.
69
+ input_data_path = output_pod5
70
+
71
+ model_basename = os.path.basename(model)
72
+ model_basename = model_basename.replace('.', '_')
73
+
74
+ if mod_list:
75
+ mod_string = "_".join(mod_list)
76
+ bam=f"{output_directory}/{model_basename}_{mod_string}_calls"
77
+ modcall(model, input_data_path, barcode_kit, mod_list, bam, bam_suffix, barcode_both_ends, trim, device)
78
+ else:
79
+ bam=f"{output_directory}/{model_basename}_canonical_basecalls"
80
+ canoncall(model, input_data_path, barcode_kit, bam, bam_suffix, barcode_both_ends, trim, device)