slurmray 7.4.0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
slurmray-7.4.0/LICENSE ADDED
@@ -0,0 +1,201 @@
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ APPENDIX: How to apply the Apache License to your work.
179
+
180
+ To apply the Apache License to your work, attach the following
181
+ boilerplate notice, with the fields enclosed by brackets "[]"
182
+ replaced with your own identifying information. (Don't include
183
+ the brackets!) The text should be enclosed in the appropriate
184
+ comment syntax for the file format. We also recommend that a
185
+ file or class name and description of purpose be included on the
186
+ same "printed page" as the copyright notice for easier
187
+ identification within third-party archives.
188
+
189
+ Copyright [yyyy] [name of copyright owner]
190
+
191
+ Licensed under the Apache License, Version 2.0 (the "License");
192
+ you may not use this file except in compliance with the License.
193
+ You may obtain a copy of the License at
194
+
195
+ http://www.apache.org/licenses/LICENSE-2.0
196
+
197
+ Unless required by applicable law or agreed to in writing, software
198
+ distributed under the License is distributed on an "AS IS" BASIS,
199
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
+ See the License for the specific language governing permissions and
201
+ limitations under the License.
@@ -0,0 +1,211 @@
1
+ Metadata-Version: 2.4
2
+ Name: slurmray
3
+ Version: 7.4.0
4
+ Summary: SlurmRay is an official tool from DESI @ HEC UNIL for effortlessly distributing tasks on Slurm clusters (e.g., Curnagl) or standalone servers (e.g., ISIPOL09/Desi) using the Ray library.
5
+ License: Apache License
6
+ License-File: LICENSE
7
+ Keywords: ray,slurm,distributed-computing,hpc,desi,hec-unil
8
+ Author: Henri Jamet
9
+ Author-email: henri.jamet@unil.ch
10
+ Requires-Python: >=3.10,<3.13
11
+ Classifier: License :: Other/Proprietary License
12
+ Classifier: Programming Language :: Python :: 3
13
+ Classifier: Programming Language :: Python :: 3.10
14
+ Classifier: Programming Language :: Python :: 3.11
15
+ Classifier: Programming Language :: Python :: 3.12
16
+ Requires-Dist: dill (>=0.3.7,<0.4.0)
17
+ Requires-Dist: inquirer (>=3.1.3,<4.0.0)
18
+ Requires-Dist: paramiko (>=3.3.1,<4.0.0)
19
+ Requires-Dist: pdoc3 (>=0.10.0,<0.11.0)
20
+ Requires-Dist: python-dotenv (>=1.0.0,<2.0.0)
21
+ Requires-Dist: ray[data,serve,train,tune] (>=2.7.1,<3.0.0)
22
+ Requires-Dist: rich (>=14.2.0,<15.0.0)
23
+ Requires-Dist: setuptools (>=80.9.0,<81.0.0)
24
+ Requires-Dist: torch (>=2.9.1,<3.0.0)
25
+ Project-URL: Documentation, https://henri-jamet.vercel.app/cards/documentation/slurm-ray/slurm-ray/
26
+ Project-URL: Homepage, https://henri-jamet.vercel.app/
27
+ Description-Content-Type: text/markdown
28
+
29
+ # SlurmRay v6.0.7 - Autonomous Distributed Ray on Slurm
30
+
31
+ > **The intelligent bridge between your local terminal and High-Performance Computing (HPC) power.**
32
+
33
+ [![Python Version](https://img.shields.io/badge/python-3.9%2B-blue.svg)](https://www.python.org/)
34
+ [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
35
+
36
+ SlurmRay allows you to transparently distribute your Python tasks across Slurm clusters (like Curnagl) or standalone servers. It handles environment synchronization, local package detection, and task distribution automatically, turning your local machine into a control center for massive compute resources.
37
+
38
+ ---
39
+
40
+ ## 🚀 The "Local-to-Cluster" Concept
41
+
42
+ ![SlurmRay Concept Diagram](documentation/slurmray_concept_diagram.png)
43
+
44
+ SlurmRay orchestrates the entire lifecycle of a remote task:
45
+
46
+ 1. **AST-Based Analysis**: It automatically scans the imports in your Python functions to identify which local modules and packages need to be uploaded.
47
+ 2. **Incremental Synchronization**: Uses `rsync` to efficiently push only the changed project files to the remote worker.
48
+ 3. **Autonomous Ray Bridging**: Automatically allocates Slurm nodes, installs a synchronized virtual environment, and deploys a temporary Ray cluster.
49
+ 4. **Transparent Execution**: Runs your local function on the remote cluster using `dill` serialization, returning results directly to your local session.
50
+
51
+ [**Explore the Interactive Documentation (HTML)**](https://htmlpreview.github.io/?https://github.com/lopilo/SLURM_RAY/blob/master/documentation/index.html)
52
+
53
+ ---
54
+
55
+ ## 🛠 Installation
56
+
57
+ ```bash
58
+ pip install slurmray
59
+ ```
60
+
61
+ ### Prerequisites
62
+ * **Local**: Python 3.9+
63
+ * **Remote**: SSH access to a Slurm cluster or a server with Ray installed.
64
+ * **Recommendation**: Use a `.python-version` file to ensure version consistency.
65
+
66
+ ---
67
+
68
+ ## ⚙️ Configuration
69
+
70
+ SlurmRay uses a priority-based configuration system. Create a `.env` file in your project root for seamless authentication:
71
+
72
+ ```env
73
+ # Credentials for Curnagl or Custom Slurm Clusters
74
+ CURNAGL_USERNAME=your_username
75
+ CURNAGL_PASSWORD=your_password # (Optional, will prompt if missing)
76
+
77
+ # Credentials for Standalone Servers (Desi mode)
78
+ DESI_USERNAME=your_username
79
+ DESI_PASSWORD=your_password
80
+ ```
81
+
82
+ | Parameter | Default | Description |
83
+ | :--- | :--- | :--- |
84
+ | `project_name` | **Required** | Unique ID for the project logs and remote files. |
85
+ | `cluster` | `"curnagl"` | `"curnagl"`, `"desi"`, `"local"`, or a custom IP. |
86
+ | `node_nbr` | `1` | Number of nodes to allocate on Slurm. |
87
+ | `num_gpus` | `0` | Number of GPUs to request. |
88
+ | `memory` | `64` | GB of RAM per node. |
89
+ | `max_running_time` | `60` | Max job duration in minutes. |
90
+ | `retention_days` | `7` | Days before remote environment cleanup. |
91
+ | `force_reinstall_venv` | `False` | Force complete venv reinstallation. |
92
+ | `force_reinstall_project` | `False` | Force project files cleanup before upload. |
93
+
94
+ ---
95
+
96
+ ## 📚 Code Examples
97
+
98
+ ### 1. Basic CPU Distribution
99
+ Distribute a heavy computation on the Curnagl cluster:
100
+
101
+ ```python
102
+ from slurmray import RayLauncher
103
+
104
+ def heavy_task(n):
105
+ # This code runs on the remote cluster
106
+ return sum(i**2 for i in range(n))
107
+
108
+ # Initialize the bridge
109
+ launcher = RayLauncher(
110
+ project_name="my_research",
111
+ cluster="curnagl",
112
+ node_nbr=2,
113
+ memory=16
114
+ )
115
+
116
+ # Launch and wait for result
117
+ result = launcher(heavy_task, args={"n": 10**8})
118
+ print(f"Result: {result}")
119
+ ```
120
+
121
+ ### 2. GPU Accelerated Training
122
+ Automatically load CUDA modules and request GPUs:
123
+
124
+ ```python
125
+ import torch
126
+ from slurmray import RayLauncher
127
+
128
+ def train_model(epochs):
129
+ device = "cuda" if torch.cuda.is_available() else "cpu"
130
+ # Your PyTorch training logic here...
131
+ return f"Model trained on {device}"
132
+
133
+ launcher = RayLauncher(
134
+ project_name="deep_learning",
135
+ num_gpus=1,
136
+ node_nbr=1,
137
+ max_running_time=120
138
+ )
139
+
140
+ print(launcher(train_model, args={"epochs": 10}))
141
+ ```
142
+
143
+ ### 3. Asynchronous Execution & Log Streaming
144
+ Don't wait for your job to finish. Monitor it in real-time:
145
+
146
+ ```python
147
+ launcher = RayLauncher(
148
+ project_name="long_job",
149
+ asynchronous=True
150
+ )
151
+
152
+ handle = launcher(my_long_function)
153
+
154
+ print(f"Job ID: {handle.job_id}")
155
+
156
+ # Stream logs in real-time
157
+ for line in handle.logs:
158
+ print(f"[Remote Log] {line}")
159
+
160
+ # Get result when ready
161
+ final_result = handle.result
162
+ ```
163
+
164
+ ### 4. Intelligent Dependency Detection
165
+ SlurmRay automatically detects if your function uses other local modules:
166
+
167
+ ```python
168
+ # file: my_utils.py
169
+ def helper(): return "Hello from local file!"
170
+
171
+ # file: main.py
172
+ from my_utils import helper
173
+ from slurmray import RayLauncher
174
+
175
+ def main_task():
176
+ return helper() # SlurmRay detects 'my_utils.py' and uploads it automatically!
177
+
178
+ launcher = RayLauncher(project_name="auto_sync")
179
+ print(launcher(main_task))
180
+ ```
181
+
182
+ > **New in v7.3**: SlurmRay auto-detects hardcoded paths for local `.py` files in your code (e.g., `subprocess.run(["python", "script.py"])`), preventing remote `FileNotFoundError`. Note: Non-Python files (like `.sh`, `.json`, `.md`) are NOT auto-detected and must be added manually to `files=[...]` if needed.
183
+
184
+ ---
185
+
186
+ ## 🗺 Repository Map
187
+
188
+ * `slurmray/`: Core orchestration logic.
189
+ * `backend/`: Modules for Slurm, Desi, and Local backends.
190
+ * `scanner.py`: AST scanner for auto-dependency detection.
191
+ * `file_sync.py`: Incremental `rsync` synchronization logic.
192
+ * `documentation/`: Detailed [HTML Docs](documentation/index.html) and [API Reference](documentation/RayLauncher.md).
193
+ * `tests/`: Comprehensive test suite (CPU, GPU, Multi-node).
194
+
195
+ ---
196
+
197
+ ## 🛤 Roadmap 2026
198
+
199
+ * [ ] **Enhanced Caching**: Implement global caching for massive virtual environments.
200
+ * [ ] **Live Dashboard**: Web-based UI for job monitoring and logs.
201
+ * [ ] **Containerization**: Native support for Apptainer/Docker on Slurm.
202
+
203
+ ---
204
+
205
+ ## 👥 Credits & License
206
+
207
+ SlurmRay is maintained by the **DESI Department @ HEC UNIL**.
208
+ Distributed under the **MIT License**.
209
+
210
+ *Built with ❤️ for researchers who value their time.*
211
+
@@ -0,0 +1,182 @@
1
+ # SlurmRay v6.0.7 - Autonomous Distributed Ray on Slurm
2
+
3
+ > **The intelligent bridge between your local terminal and High-Performance Computing (HPC) power.**
4
+
5
+ [![Python Version](https://img.shields.io/badge/python-3.9%2B-blue.svg)](https://www.python.org/)
6
+ [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
7
+
8
+ SlurmRay allows you to transparently distribute your Python tasks across Slurm clusters (like Curnagl) or standalone servers. It handles environment synchronization, local package detection, and task distribution automatically, turning your local machine into a control center for massive compute resources.
9
+
10
+ ---
11
+
12
+ ## 🚀 The "Local-to-Cluster" Concept
13
+
14
+ ![SlurmRay Concept Diagram](documentation/slurmray_concept_diagram.png)
15
+
16
+ SlurmRay orchestrates the entire lifecycle of a remote task:
17
+
18
+ 1. **AST-Based Analysis**: It automatically scans the imports in your Python functions to identify which local modules and packages need to be uploaded.
19
+ 2. **Incremental Synchronization**: Uses `rsync` to efficiently push only the changed project files to the remote worker.
20
+ 3. **Autonomous Ray Bridging**: Automatically allocates Slurm nodes, installs a synchronized virtual environment, and deploys a temporary Ray cluster.
21
+ 4. **Transparent Execution**: Runs your local function on the remote cluster using `dill` serialization, returning results directly to your local session.
22
+
23
+ [**Explore the Interactive Documentation (HTML)**](https://htmlpreview.github.io/?https://github.com/lopilo/SLURM_RAY/blob/master/documentation/index.html)
24
+
25
+ ---
26
+
27
+ ## 🛠 Installation
28
+
29
+ ```bash
30
+ pip install slurmray
31
+ ```
32
+
33
+ ### Prerequisites
34
+ * **Local**: Python 3.9+
35
+ * **Remote**: SSH access to a Slurm cluster or a server with Ray installed.
36
+ * **Recommendation**: Use a `.python-version` file to ensure version consistency.
37
+
38
+ ---
39
+
40
+ ## ⚙️ Configuration
41
+
42
+ SlurmRay uses a priority-based configuration system. Create a `.env` file in your project root for seamless authentication:
43
+
44
+ ```env
45
+ # Credentials for Curnagl or Custom Slurm Clusters
46
+ CURNAGL_USERNAME=your_username
47
+ CURNAGL_PASSWORD=your_password # (Optional, will prompt if missing)
48
+
49
+ # Credentials for Standalone Servers (Desi mode)
50
+ DESI_USERNAME=your_username
51
+ DESI_PASSWORD=your_password
52
+ ```
53
+
54
+ | Parameter | Default | Description |
55
+ | :--- | :--- | :--- |
56
+ | `project_name` | **Required** | Unique ID for the project logs and remote files. |
57
+ | `cluster` | `"curnagl"` | `"curnagl"`, `"desi"`, `"local"`, or a custom IP. |
58
+ | `node_nbr` | `1` | Number of nodes to allocate on Slurm. |
59
+ | `num_gpus` | `0` | Number of GPUs to request. |
60
+ | `memory` | `64` | GB of RAM per node. |
61
+ | `max_running_time` | `60` | Max job duration in minutes. |
62
+ | `retention_days` | `7` | Days before remote environment cleanup. |
63
+ | `force_reinstall_venv` | `False` | Force complete venv reinstallation. |
64
+ | `force_reinstall_project` | `False` | Force project files cleanup before upload. |
65
+
66
+ ---
67
+
68
+ ## 📚 Code Examples
69
+
70
+ ### 1. Basic CPU Distribution
71
+ Distribute a heavy computation on the Curnagl cluster:
72
+
73
+ ```python
74
+ from slurmray import RayLauncher
75
+
76
+ def heavy_task(n):
77
+ # This code runs on the remote cluster
78
+ return sum(i**2 for i in range(n))
79
+
80
+ # Initialize the bridge
81
+ launcher = RayLauncher(
82
+ project_name="my_research",
83
+ cluster="curnagl",
84
+ node_nbr=2,
85
+ memory=16
86
+ )
87
+
88
+ # Launch and wait for result
89
+ result = launcher(heavy_task, args={"n": 10**8})
90
+ print(f"Result: {result}")
91
+ ```
92
+
93
+ ### 2. GPU Accelerated Training
94
+ Automatically load CUDA modules and request GPUs:
95
+
96
+ ```python
97
+ import torch
98
+ from slurmray import RayLauncher
99
+
100
+ def train_model(epochs):
101
+ device = "cuda" if torch.cuda.is_available() else "cpu"
102
+ # Your PyTorch training logic here...
103
+ return f"Model trained on {device}"
104
+
105
+ launcher = RayLauncher(
106
+ project_name="deep_learning",
107
+ num_gpus=1,
108
+ node_nbr=1,
109
+ max_running_time=120
110
+ )
111
+
112
+ print(launcher(train_model, args={"epochs": 10}))
113
+ ```
114
+
115
+ ### 3. Asynchronous Execution & Log Streaming
116
+ Don't wait for your job to finish. Monitor it in real-time:
117
+
118
+ ```python
119
+ launcher = RayLauncher(
120
+ project_name="long_job",
121
+ asynchronous=True
122
+ )
123
+
124
+ handle = launcher(my_long_function)
125
+
126
+ print(f"Job ID: {handle.job_id}")
127
+
128
+ # Stream logs in real-time
129
+ for line in handle.logs:
130
+ print(f"[Remote Log] {line}")
131
+
132
+ # Get result when ready
133
+ final_result = handle.result
134
+ ```
135
+
136
+ ### 4. Intelligent Dependency Detection
137
+ SlurmRay automatically detects if your function uses other local modules:
138
+
139
+ ```python
140
+ # file: my_utils.py
141
+ def helper(): return "Hello from local file!"
142
+
143
+ # file: main.py
144
+ from my_utils import helper
145
+ from slurmray import RayLauncher
146
+
147
+ def main_task():
148
+ return helper() # SlurmRay detects 'my_utils.py' and uploads it automatically!
149
+
150
+ launcher = RayLauncher(project_name="auto_sync")
151
+ print(launcher(main_task))
152
+ ```
153
+
154
+ > **New in v7.3**: SlurmRay auto-detects hardcoded paths for local `.py` files in your code (e.g., `subprocess.run(["python", "script.py"])`), preventing remote `FileNotFoundError`. Note: Non-Python files (like `.sh`, `.json`, `.md`) are NOT auto-detected and must be added manually to `files=[...]` if needed.
155
+
156
+ ---
157
+
158
+ ## 🗺 Repository Map
159
+
160
+ * `slurmray/`: Core orchestration logic.
161
+ * `backend/`: Modules for Slurm, Desi, and Local backends.
162
+ * `scanner.py`: AST scanner for auto-dependency detection.
163
+ * `file_sync.py`: Incremental `rsync` synchronization logic.
164
+ * `documentation/`: Detailed [HTML Docs](documentation/index.html) and [API Reference](documentation/RayLauncher.md).
165
+ * `tests/`: Comprehensive test suite (CPU, GPU, Multi-node).
166
+
167
+ ---
168
+
169
+ ## 🛤 Roadmap 2026
170
+
171
+ * [ ] **Enhanced Caching**: Implement global caching for massive virtual environments.
172
+ * [ ] **Live Dashboard**: Web-based UI for job monitoring and logs.
173
+ * [ ] **Containerization**: Native support for Apptainer/Docker on Slurm.
174
+
175
+ ---
176
+
177
+ ## 👥 Credits & License
178
+
179
+ SlurmRay is maintained by the **DESI Department @ HEC UNIL**.
180
+ Distributed under the **MIT License**.
181
+
182
+ *Built with ❤️ for researchers who value their time.*
@@ -0,0 +1,40 @@
1
+ [tool.poetry]
2
+ name = "slurmray"
3
+ version = "7.4.0"
4
+ description = "SlurmRay is an official tool from DESI @ HEC UNIL for effortlessly distributing tasks on Slurm clusters (e.g., Curnagl) or standalone servers (e.g., ISIPOL09/Desi) using the Ray library."
5
+ authors = ["Henri Jamet <henri.jamet@unil.ch>"]
6
+ license = "Apache License"
7
+ homepage = "https://henri-jamet.vercel.app/"
8
+ documentation = "https://henri-jamet.vercel.app/cards/documentation/slurm-ray/slurm-ray/"
9
+ readme = "README.md"
10
+ keywords = ["ray", "slurm", "distributed-computing", "hpc", "desi", "hec-unil"]
11
+
12
+ [tool.poetry.dependencies]
13
+ python = ">=3.10,<3.13"
14
+ dill = "^0.3.7"
15
+ ray = {extras = ["data", "serve", "train", "tune"], version = "^2.7.1"}
16
+ pdoc3 = "^0.10.0"
17
+ paramiko = "^3.3.1"
18
+ python-dotenv = "^1.0.0"
19
+ setuptools = "^80.9.0"
20
+ rich = "^14.2.0"
21
+ inquirer = "^3.1.3"
22
+ torch = "^2.9.1"
23
+
24
+
25
+ [tool.poetry.group.dev.dependencies]
26
+ ipykernel = "^6.26.0"
27
+ pytest = "^8.0.0"
28
+ requests = "^2.32.5"
29
+
30
+ [tool.pytest.ini_options]
31
+ testpaths = ["tests"]
32
+ python_files = ["test_*.py"]
33
+ python_functions = ["test_*"]
34
+
35
+ [tool.poetry.scripts]
36
+ slurmray = "slurmray.cli:main"
37
+
38
+ [build-system]
39
+ requires = ["poetry-core"]
40
+ build-backend = "poetry.core.masonry.api"